首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple method for phylogenetic tree construction is described. In this method each node is calculated considering the distance between the elements and the difference between these elements and an average element, allowing the selection of the most probable node.Two examples of tRNA phylogenies (E. coli set and Phe family) are analyzed, giving both reliable trees. Data from these dendrograms give support to the idea of an early cloverleaf arising.  相似文献   

2.
Recent years have seen an increasing effort to incorporate phylogenetic hypotheses to the study of community assembly processes. The incorporation of such evolutionary information has been eased by the emergence of specialized software for the automatic estimation of partially resolved supertrees based on published phylogenies. Despite this growing interest in the use of phylogenies in ecological research, very few studies have attempted to quantify the potential biases related to the use of partially resolved phylogenies and to branch length accuracy, and no work has examined how tree shape may affect inference of community phylogenetic metrics. In this study, we tested the influence of phylogenetic resolution and branch length information on the quantification of phylogenetic structure, and also explored the impact of tree shape (stemminess) on the loss of accuracy in phylogenetic structure quantification due to phylogenetic resolution. For this purpose, we used 9 sets of phylogenetic hypotheses of varying resolution and branch lengths to calculate three indices of phylogenetic structure: the mean phylogenetic distance (NRI), the mean nearest taxon distance (NTI) and phylogenetic diversity (stdPD) metrics. The NRI metric was the less sensitive to phylogenetic resolution, stdPD showed an intermediate sensitivity, and NTI was the most sensitive one; NRI was also less sensitive to branch length accuracy than NTI and stdPD, the degree of sensitivity being strongly dependent on the dating method and the sample size. Directional biases were generally towards type II errors. Interestingly, we detected that tree shape influenced the accuracy loss derived from the lack of phylogenetic resolution, particularly for NRI and stdPD. We conclude that well‐resolved molecular phylogenies with accurate branch length information are needed to identify the underlying phylogenetic structure of communities, and also that sensitivity of phylogenetic structure measures to low phylogenetic resolution can strongly vary depending on phylogenetic tree shape.  相似文献   

3.
Ecologists frequently use a supertree method to generate phylogenies in ecological studies. However, the robustness of research results based on phylogenies generated with a supertree method has not been well evaluated. Here, we use the angiosperm tree flora of North America as a model system to test the robustness of phylogenies generated with a supertree method for studies on the relationship between phylogenetic properties and environment, by comparing the relationship between phylogenetic metrics and environmental variables derived from a phylogeny reconstructed with a supertree method to that derived from a phylogeny resolved at species level. North America was divided into equal area quadrats of 12 100 km2. Nine indices of phylogenetic structure were calculated for angiosperm tree assemblages in each quadrat using two phylogenies resolved at different levels (one resolved at the family level and the other resolved at the species level). Scores of phylogenetic indices were related to two major climatic variables (temperature and precipitation) using correlation and regression analyses. Scores of phylogenetic indices resulting from the two phylogenies are perfectly or nearly perfectly correlated. On average, there is no difference in the variation explained by the two climatic variables between scores of phylogenetic indices derived from the two phylogenies. Our study suggests that a phylogeny derived from a well resolved family-level supertree as backbone with genera and species attached to the backbone as polytomies is robust for studies investigating the relationship between phylogenetic structure and environment in biological assemblages at a broad spatial scale.  相似文献   

4.
Elongation factor 1 alpha (EF-1 alpha) is a highly conserved ubiquitous protein involved in translation that has been suggested to have desirable properties for phylogenetic inference. To examine the utility of EF-1 alpha as a phylogenetic marker for eukaryotes, we studied three properties of EF-1 alpha trees: congruency with other phyogenetic markers, the impact of species sampling, and the degree of substitutional saturation occurring between taxa. Our analyses indicate that the EF-1 alpha tree is congruent with some other molecular phylogenies in identifying both the deepest branches and some recent relationships in the eukaryotic line of descent. However, the topology of the intermediate portion of the EF-1 alpha tree, occupied by most of the protist lineages, differs for different phylogenetic methods, and bootstrap values for branches are low. Most problematic in this region is the failure of all phylogenetic methods to resolve the monophyly of two higher-order protistan taxa, the Ciliophora and the Alveolata. JACKMONO analyses indicated that the impact of species sampling on bootstrap support for most internal nodes of the eukaryotic EF-1 alpha tree is extreme. Furthermore, a comparison of observed versus inferred numbers of substitutions indicates that multiple overlapping substitutions have occurred, especially on the branch separating the Eukaryota from the Archaebacteria, suggesting that the rooting of the eukaryotic tree on the diplomonad lineage should be treated with caution. Overall, these results suggest that the phylogenies obtained from EF-1 alpha are congruent with other molecular phylogenies in recovering the monophyly of groups such as the Metazoa, Fungi, Magnoliophyta, and Euglenozoa. However, the interrelationships between these and other protist lineages are not well resolved. This lack of resolution may result from the combined effects of poor taxonomic sampling, relatively few informative positions, large numbers of overlapping substitutions that obscure phylogenetic signal, and lineage-specific rate increases in the EF-1 alpha data set. It is also consistent with the nearly simultaneous diversification of major eukaryotic lineages implied by the "big-bang" hypothesis of eukaryote evolution.  相似文献   

5.
Consequences of recombination on traditional phylogenetic analysis   总被引:38,自引:0,他引:38  
Schierup MH  Hein J 《Genetics》2000,156(2):879-891
We investigate the shape of a phylogenetic tree reconstructed from sequences evolving under the coalescent with recombination. The motivation is that evolutionary inferences are often made from phylogenetic trees reconstructed from population data even though recombination may well occur (mtDNA or viral sequences) or does occur (nuclear sequences). We investigate the size and direction of biases when a single tree is reconstructed ignoring recombination. Standard software (PHYLIP) was used to construct the best phylogenetic tree from sequences simulated under the coalescent with recombination. With recombination present, the length of terminal branches and the total branch length are larger, and the time to the most recent common ancestor smaller, than for a tree reconstructed from sequences evolving with no recombination. The effects are pronounced even for small levels of recombination that may not be immediately detectable in a data set. The phylogenies when recombination is present superficially resemble phylogenies for sequences from an exponentially growing population. However, exponential growth has a different effect on statistics such as Tajima's D. Furthermore, ignoring recombination leads to a large overestimation of the substitution rate heterogeneity and the loss of the molecular clock. These results are discussed in relation to viral and mtDNA data sets.  相似文献   

6.
SplitsTree: analyzing and visualizing evolutionary data   总被引:15,自引:0,他引:15  
MOTIVATION: Real evolutionary data often contain a number of different and sometimes conflicting phylogenetic signals, and thus do not always clearly support a unique tree. To address this problem, Bandelt and Dress (Adv. Math., 92, 47-05, 1992) developed the method of split decomposition. For ideal data, this method gives rise to a tree, whereas less ideal data are represented by a tree-like network that may indicate evidence for different and conflicting phylogenies. RESULTS: SplitsTree is an interactive program, for analyzing and visualizing evolutionary data, that implements this approach. It also supports a number of distances transformations, the computation of parsimony splits, spectral analysis and bootstrapping.   相似文献   

7.
We report here the results of one of the first analyses to use male-specific nuclear markers in elucidating primate phylogenetic relationships at the intrageneric level. Two closely linked Y chromosome markers, TSPY and SRY, were sequenced for a total of 3100 bases. Forty-four macaques, representing 18 of the 19 recognized species, were sequenced for the full 3.1 kb, as was 1 individual from each of the following outgroup genera: Papio, Theropithecus, Mandrillus, Allenopithecus,Cercopithecus, Trachypithecus, Presbytis, and Homo. In contrast to recent mtDNA phylogenies, Y chromosome loci support four monophyletic species groups, including a sinica group containing M. arctoides-a classification largely congruent with those of Fooden and Delson. Comparison of mtDNA and Y chromosome phylogenies highlight (1) a potential hybrid origin of Macaca arctoides from M. fascicularis and proto-M. assamensis/thibetana and (2) cases of mitochondrial paraphyly in macaque species whose Y chromosome lineages are monophyletic-a probable evolutionary consequence of philopatric females vs dispersing males. These results raise the question of whether a phylogenetic tree should be a topology of species origins or a depiction of more current species relationships, including subsequent episodes of introgression.  相似文献   

8.
We consider the problem of reconstructing near-perfect phylogenetic trees using binary character states (referred to as BNPP). A perfect phylogeny assumes that every character mutates at most once in the evolutionary tree, yielding an algorithm for binary character states that is computationally efficient but not robust to imperfections in real data. A near-perfect phylogeny relaxes the perfect phylogeny assumption by allowing at most a constant number of additional mutations. We develop two algorithms for constructing optimal near-perfect phylogenies and provide empirical evidence of their performance. The first simple algorithm is fixed parameter tractable when the number of additional mutations and the number of characters that share four gametes with some other character are constants. The second, more involved algorithm for the problem is fixed parameter tractable when only the number of additional mutations is fixed. We have implemented both algorithms and shown them to be extremely efficient in practice on biologically significant data sets. This work proves the BNPP problem fixed parameter tractable and provides the first practical phylogenetic tree reconstruction algorithms that find guaranteed optimal solutions while being easily implemented and computationally feasible for data sets of biologically meaningful size and complexity.  相似文献   

9.
Phylogenetic trees from multiple genes can be obtained in two fundamentally different ways. In one, gene sequences are concatenated into a super-gene alignment, which is then analyzed to generate the species tree. In the other, phylogenies are inferred separately from each gene, and a consensus of these gene phylogenies is used to represent the species tree. Here, we have compared these two approaches by means of computer simulation, using 448 parameter sets, including evolutionary rate, sequence length, base composition, and transition/transversion rate bias. In these simulations, we emphasized a worst-case scenario analysis in which 100 replicate datasets for each evolutionary parameter set (gene) were generated, and the replicate dataset that produced a tree topology showing the largest number of phylogenetic errors was selected to represent that parameter set. Both randomly selected and worst-case replicates were utilized to compare the consensus and concatenation approaches primarily using the neighbor-joining (NJ) method. We find that the concatenation approach yields more accurate trees, even when the sequences concatenated have evolved with very different substitution patterns and no attempts are made to accommodate these differences while inferring phylogenies. These results appear to hold true for parsimony and likelihood methods as well. The concatenation approach shows >95% accuracy with only 10 genes. However, this gain in accuracy is sometimes accompanied by reinforcement of certain systematic biases, resulting in spuriously high bootstrap support for incorrect partitions, whether we employ site, gene, or a combined bootstrap resampling approach. Therefore, it will be prudent to report the number of individual genes supporting an inferred clade in the concatenated sequence tree, in addition to the bootstrap support.  相似文献   

10.
One of the major issues in phylogenetic analysis is that gene genealogies from different gene regions may not reflect the true species tree or history of speciation. This has led to considerable debate about whether concatenation of loci is the best approach for phylogenetic analysis. The application of Next‐generation sequencing techniques such as RAD‐seq generates thousands of relatively short sequence reads from across the genomes of the sampled taxa. These data sets are typically concatenated for phylogenetic analysis leading to data sets that contain millions of base pairs per taxon. The influence of gene region conflict among so many loci in determining the phylogenetic relationships among taxa is unclear. We simulated RAD‐seq data by sampling 100 and 500 base pairs from alignments of over 6000 coding regions that each produce one of three highly supported alternative phylogenies of seven species of Drosophila. We conducted phylogenetic analyses on different sets of these regions to vary the sampling of loci with alternative gene trees to examine the effect on detecting the species tree. Irrespective of sequence length sampled per region and which subset of regions was used, phylogenetic analyses of the concatenated data always recovered the species tree. The results suggest that concatenated alignments of Next‐generation data that consist of many short sequences are robust to gene tree/species tree conflict when the goal is to determine the phylogenetic relationships among taxa.  相似文献   

11.
Nye TM 《Systematic biology》2008,57(5):785-794
Phylogenetic analysis very commonly produces several alternative trees for a given fixed set of taxa. For example, different sets of orthologous genes may be analyzed, or the analysis may sample from a distribution of probable trees. This article describes an approach to comparing and visualizing multiple alternative phylogenies via the idea of a "tree of trees" or "meta-tree." A meta-tree clusters phylogenies with similar topologies together in the same way that a phylogeny clusters species with similar DNA sequences. Leaf nodes on a meta-tree correspond to the original set of phylogenies given by some analysis, whereas interior nodes correspond to certain consensus topologies. The construction of meta-trees is motivated by analogy with construction of a most parsimonious tree for DNA data, but instead of using DNA letters, in a meta-tree the characters are partitions or splits of the set of taxa. An efficient algorithm for meta-tree construction is described that makes use of a known relationship between the majority consensus and parsimony in terms of gain and loss of splits. To illustrate these ideas meta-trees are constructed for two datasets: a set of gene trees for species of yeast and trees from a bootstrap analysis of a set of gene trees in ray-finned fish. A software tool for constructing meta-trees and comparing alternative phylogenies is available online, and the source code can be obtained from the author.  相似文献   

12.
The increasing availability of large genomic data sets as well as the advent of Bayesian phylogenetics facilitates the investigation of phylogenetic incongruence, which can result in the impossibility of representing phylogenetic relationships using a single tree. While sometimes considered as a nuisance, phylogenetic incongruence can also reflect meaningful biological processes as well as relevant statistical uncertainty, both of which can yield valuable insights in evolutionary studies. We introduce a new tool for investigating phylogenetic incongruence through the exploration of phylogenetic tree landscapes. Our approach, implemented in the R package treespace , combines tree metrics and multivariate analysis to provide low‐dimensional representations of the topological variability in a set of trees, which can be used for identifying clusters of similar trees and group‐specific consensus phylogenies. treespace also provides a user‐friendly web interface for interactive data analysis and is integrated alongside existing standards for phylogenetics. It fills a gap in the current phylogenetics toolbox in R and will facilitate the investigation of phylogenetic results.  相似文献   

13.
Territorial song structures are often the most prominent characters for distinguishing closely related taxa among songbirds. Learning processes may cause convergent evolution of passerine songs, but phylogenetic information of acoustic traits can be investigated with the help of molecular phylogenies, which are not affected by cultural evolutionary processes. We used a phylogeny based on cytochrome b sequences to trace the evolution of territorial song within the genus Regulus. Five discrete song units are defined as basic components of regulid song via sonagraphic measurements. Traits of each unit are traced on a molecular tree and a mean acoustic character difference between taxon pairs is calculated. Acoustic divergence between regulid taxa correlates strongly with genetic distances. Syntax features of complete songs and of single units are most consistent with the molecular data, whereas the abundance of certain element types is not. Whether song characters are innate or learned was interpreted using hand-reared birds in aviary experiments. We found that convergent character evolution seems to be most probable for learned acoustic traits. We conclude that syntax traits of whole verses or subunits of territorial song, especially innate song structures, are the most reliable acoustic traits for phylogenetic reconstructions in Regulus.  相似文献   

14.
15.
16.
The deduced amino acid sequences from 1200 Haemophilus influenzae genes was compared to a data set that contained the orfs from yeast, two different Archaea and the Gram+ and Gram− bacteria, Bacillus subtilis and Escherichia coli. The results of the comparison yielded a 26 orthologous gene set that had at least one representative from each of the four groups. A four taxa phylogenetic relationship for these 26 genes was determined. The statistical significance of each minimal tree was tested against the two alternative four taxa trees. The result was that four genes significantly supported the (Archaea, Eukaryota) (Gram+, Gram−) topology, two genes supported the one where Gram− and Eukaryota form a clade, and one gene supported the tree where Gram+ and Eukaryota define one clade. The remaining genes do not uniquely support any phylogeny, thereby collapsing the two central nodes into a single node. These are referred to as star phylogenies. I offer a new suggestion for the mechanism that gave rise to the star phylogenies. Namely, these are genes that are younger than the underlying lineages that currently harbor them. This hypothesis is examined with two proteins that display the star phylogeny; namely onithine transcarbamylase and tryptophan synthetase. It is shown, using the distance matrix rate test, that the rate of evolution of these two proteins is comparable to a control gene when rates are determined by comparing closely related species. This implies that the genes under comparison experience comparable functional constraint. However, when the genes from remotely related species are compared, a plateau is encountered. Since we see no unusual levels of functional constraint this plateau cannot be attributed to the divergence of the protein having reached saturation. The simplest explanation is that the genes displaying the star phylogenies were introduced after Archaea, Eukaryota, and Bacteria had diverged from one another. They presumably spread through life by horizontal gene transfer. Received: 12 July 2001 / Accepted: 27 July 2001  相似文献   

17.
Most methods for phylogenetic tree reconstruction are based on sequence alignments; they infer phylogenies from substitutions that may have occurred at the aligned sequence positions. Gaps in alignments are usually not employed as phylogenetic signal. In this paper, we explore an alignment-free approach that uses insertions and deletions (indels) as an additional source of information for phylogeny inference. For a set of four or more input sequences, we generate so-called quartet blocks of four putative homologous segments each. For pairs of such quartet blocks involving the same four sequences, we compare the distances between the two blocks in these sequences, to obtain hints about indels that may have happened between the blocks since the respective four sequences have evolved from their last common ancestor. A prototype implementation that we call Gap-SpaM is presented to infer phylogenetic trees from these data, using a quartet-tree approach or, alternatively, under the maximum-parsimony paradigm. This approach should not be regarded as an alternative to established methods, but rather as a complementary source of phylogenetic information. Interestingly, however, our software is able to produce phylogenetic trees from putative indels alone that are comparable to trees obtained with existing alignment-free methods.  相似文献   

18.
A phylogeny is a tree-based model of common ancestry that is an indispensable tool for studying biological variation. Phylogenies play a special role in the study of rapidly evolving populations such as viruses, where the proliferation of lineages is constantly being shaped by the mode of virus transmission, by adaptation to immune systems, and by patterns of human migration and contact. These processes may leave an imprint on the shapes of virus phylogenies that can be extracted for comparative study; however, tree shapes are intrinsically difficult to quantify. Here we present a comprehensive study of phylogenies reconstructed from 38 different RNA viruses from 12 taxonomic families that are associated with human pathologies. To accomplish this, we have developed a new procedure for studying phylogenetic tree shapes based on the ‘kernel trick’, a technique that maps complex objects into a statistically convenient space. We show that our kernel method outperforms nine different tree balance statistics at correctly classifying phylogenies that were simulated under different evolutionary scenarios. Using the kernel method, we observe patterns in the distribution of RNA virus phylogenies in this space that reflect modes of transmission and pathogenesis. For example, viruses that can establish persistent chronic infections (such as HIV and hepatitis C virus) form a distinct cluster. Although the visibly ‘star-like’ shape characteristic of trees from these viruses has been well-documented, we show that established methods for quantifying tree shape fail to distinguish these trees from those of other viruses. The kernel approach presented here potentially represents an important new tool for characterizing the evolution and epidemiology of RNA viruses.  相似文献   

19.
Asexual reproduction, a rare trait among cestodes in general, occurs in the “larval” (metacestode) stage of species of the family Taeniidae. The distribution of this trait among taeniid species is not consistent with an ecological hypothesis of current environmental predictability. We therefore chose a subset of the family and studied their phylogenetic relationships by Wagner parsimony analysis as a test of historical influences on asexual reproduction. We produced a consensus tree based on four 50-step trees with consistency indices of 0.38. Given these hypothetical relationships, we found that asexual reproduction either arose or was lost multiple times. Moreover, this consensus tree is incongruent with both definitive and intermediate host phylogenies, and asexual reproduction does not correlate with host transfers inferred from these phylogenies. Developmental and phylogenetic constraints on asexual reproduction therefore appear to have been minimal. Given current information, neither historical constraint nor explanations invoking adaptation based on environmental predictability can account for life-history variation in these cestodes.  相似文献   

20.
Large and comprehensive phylogenetic trees are desirable for studying macroevolutionary processes and for classification purposes. Such trees can be obtained in two different ways. Either the widest possible range of taxa can be sampled and used in a phylogenetic analysis to produce a "big tree," or preexisting topologies can be used to create a supertree. Although large multigene analyses are often favored, combinable data are not always available, and supertrees offer a suitable solution. The most commonly used method of supertree reconstruction, matrix representation with parsimony (MRP), is presented here. We used a combined data set for the Poaceae to (1) assess the differences between an approach that uses combined data and one that uses different MRP modifications based on the character partitions and (2) investigate the advantages and disadvantages of these modifications. Baum and Ragan and Purvis modifications gave similar results. Incorporating bootstrap support associated with pre-existing topologies improved Baum and Ragan modification and its similarity with a combined analysis. Finally, we used the supertree reconstruction approach on 55 published phylogenies to build one of most comprehensive phylogenetic trees published for the grass family including 403 taxa and discuss its strengths and weaknesses in relation to other published hypotheses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号