首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The Xenopus Cripto-1 protein is confined to the cells of the animal hemisphere during early embryogenesis where it regulates the formation of anterior structures. Cripto-1 protein accumulates only in animal cells because cripto-1 mRNA in cells of the vegetal hemisphere is translationally repressed. Here, we show that the RNA binding protein, Bicaudal-C (Bic-C), functioned directly in this vegetal cell-specific repression. While Bic-C protein is normally confined to vegetal cells, ectopic expression of Bic-C in animal cells repressed a cripto-1 mRNA reporter and associated with endogenous cripto-1 mRNA. Repression by Bic-C required its N-terminal domain, comprised of multiple KH motifs, for specific binding to relevant control elements within the cripto-1 mRNA and a functionally separable C-terminal translation repression domain. Bic-C-mediated repression required the 5′ CAP and translation initiation factors, but not a poly(A) tail or the conserved SAM domain within Bic-C. Bic-C-directed immunoprecipitation followed by deep sequencing of associated mRNAs identified multiple Bic-C-regulated mRNA targets, including cripto-1 mRNA, providing new insights and tools for understanding the role of Bic-C in vertebrate development.  相似文献   

2.
Bicaudal-C (Bic-C) RNA binding proteins function as important translational repressors in multiple biological contexts within metazoans. However, their RNA binding sites are unknown. We recently demonstrated that Bic-C functions in spatially regulated translational repression of the xCR1 mRNA during Xenopus development. This repression contributes to normal development by confining the xCR1 protein, a regulator of key signaling pathways, to specific cells of the embryo. In this report, we combined biochemical approaches with in vivo mRNA reporter assays to define the minimal Bic-C target site within the xCR1 mRNA. This 32-nucleotide Bic-C target site is predicted to fold into a stem-loop secondary structure. Mutational analyses provided evidence that this stem-loop structure is important for Bic-C binding. The Bic-C target site was sufficient for Bic-C mediated repression in vivo. Thus, we describe the first RNA binding site for a Bic-C protein. This identification provides an important step toward understanding the mechanisms by which evolutionarily conserved Bic-C proteins control cellular function in metazoans.  相似文献   

3.
Du Z  Ulyanov NB  Yu J  Andino R  James TL 《Biochemistry》2004,43(19):5757-5771
The 5'-untranslated region of positive-strand RNA viruses harbors many cis-acting RNA structural elements that are important for various viral processes such as replication, translation, and packaging of new virions. Among these is loop B RNA of the stem-loop IV domain within the internal ribosomal entry site (IRES) of enteroviruses, including Poliovirus type 1 (PV1). Studies on PV1 have shown that specific recognition of loop B by the first KH (hnRNP K homology) domain of cellular poly(rC)-binding protein 2 (PCBP2) is essential for efficient translation of the viral mRNA. Here we report the NMR solution structures of two representative sequence variants of enteroviral loop B RNA. The two RNA variants differ at only one position (C vs U) within a six-nucleotide asymmetric internal loop sequence that is the binding site for the PCBP2 KH1 domain. Surprisingly, the two RNAs are drastically different in the overall shape and local dynamics of the bulge region. The RNA with the 5'-AUCCCU bulge sequence adopts an overall L shape. Its bulge nucleotides, especially the last four, are highly flexible and not very well defined by NMR. The RNA with the 5'-AUUCCU bulge sequence adopts an overall U shape, and its bulge sequence exhibits only limited flexibility. A detailed analysis of the two RNA structures and their dynamic properties, as well as available sequence data and known KH domain-RNA complex structures, not only provides insights into how loop B RNA might be recognized by the PCBP2 KH1 domain but also suggests a possible correlation between structural flexibility and pre-existing structural features for protein recognition.  相似文献   

4.
Drosophila P-element somatic inhibitor protein (PSI) regulates splicing of the P-element transposase pre-mRNA by binding a pseudo-splice site upstream of the authentic splice site using four tandem KH-type RNA binding motifs. While the binding domains and specificity of PSI have been established, little is known about the contributions of each PSI KH domain to overall protein stability and RNA binding affinity. Using a construct containing only the RNA binding domain of PSI (PSI-KH03), we introduced a physiologically relevant point mutation into each KH domain of PSI individually and measured stability and RNA binding affinity of the resulting mutant proteins. Although secondary structure, as measured by circular dichroism spectroscopy, is only subtly changed for each mutant protein relative to wild type, RNA binding affinity is reduced in each case. Mutations in the second or third KH domains of the protein are significantly more deleterious to substrate recognition than mutation of the outer (first and fourth) domains. These results show that despite the ability of a single KH domain to bind RNA in some systems, PSI requires multiple tandem KH domains for specific and high-affinity recognition of substrate RNA.  相似文献   

5.
Wang SW  Aldovini A 《Journal of virology》2002,76(23):11853-11865
The nucleocapsid (NC) domain of retroviruses plays a critical role in specific viral RNA packaging and virus assembly. RNA is thought to facilitate viral particle assembly, but the results described here with NC mutants indicate that it also plays a critical role in particle integrity. We investigated the assembly and integrity of particles produced by the human immunodeficiency virus type 1 M1-2/BR mutant virus, in which 10 of the 13 positive residues of NC have been replaced with alanines and incorporation of viral genomic RNA is virtually abolished. We found that the mutations in the basic residues of NC did not disrupt Gag assembly at the cell membrane. The mutant Gag protein can assemble efficiently at the cell membrane, and viral proteins are detected outside the cell as efficiently as they are for the wild type. However, only approximately 10% of the Gag molecules present in the supernatant of this mutant sediment at the correct density for a retroviral particle. The reduction of positive charge in the NC basic domain of the M1-2/BR virus adversely affects both the specific and nonspecific RNA binding properties of NC, and thus the assembled Gag polyprotein does not bind significant amounts of viral or cellular RNA. We found a direct correlation between the percentage of Gag associated with sedimented particles and the amount of incorporated RNA. We conclude that RNA binding by Gag, whether the RNA is viral or not, is critical to retroviral particle integrity after cell membrane assembly and is less important for Gag-Gag interactions during particle assembly and release.  相似文献   

6.
The processing of ribosomal RNA has been studied in a temperature sensitive mutant of the Syrian hamster cell line BHK 21. At 39 degrees C, these cells are unable to synthesize 28S RNA, and 60S ribosomal subunits, while 18S RNA, and 40S subunits are produced at both temperatures. At 39 degrees C the 45S RNA precursor is transcribed and processed as in wild type cells. The processing of the RNA precursors becomes defective after the cleavage of the 41S RNA, and the separation of the 18S and 28S RNAs sequences in two different RNA molecules. The 36S RNA precursor, which is always present in very small quantity in the nucleoli of wild type cells and of the mutant at 33 degrees C, is found in very large amounts in the mutant at 39 degrees C. The 36S RNA can be, however, slowly processed to 32S RNA. The 32S RNA cannot be processed at 39 degrees C, and it is degraded soon after its formation. Only a small proportion accumulates in the nucleoli. The 32S RNA synthesized at 39 degrees C cannot be processed to 28S RNA upon shift to the permissive temperature, even when the processing of the newly synthesized rRNA has returned to normal. The data suggest that the 36S and 32S RNAs are contained in aberrant ribonucleoprotein particles, leading to a defective processing of the particles as a whole.  相似文献   

7.
Bicaudal-C (Bic-C) encodes an RNA-binding protein required maternally for patterning the Drosophila embryo. We identified a set of mRNAs that associate with Bic-C in ovarian ribonucleoprotein complexes. These mRNAs are enriched for mRNAs that function in oogenesis and in cytoskeletal regulation, and include Bic-C RNA itself. Bic-C binds specific segments of the Bic-C 5' untranslated region and negatively regulates its own expression by binding directly to NOT3/5, a component of the CCR4 core deadenylase complex, thereby promoting deadenylation. Bic-C overexpression induces premature cytoplasmic-streaming, a posterior-group phenotype, defects in Oskar and Kinesin heavy chain:betaGal localization as well as dorsal-appendage defects. These phenotypes are largely reciprocal to those of Bic-C mutants, and they affect cellular processes that Bic-C-associated mRNAs are known, or predicted, to regulate. We conclude that Bic-C regulates expression of specific germline mRNAs by controlling their poly(A)-tail length.  相似文献   

8.
The interaction between bacteriophage R17 coat protein and its RNA binding site for translational repression was studied as an example of a sequence-specific RNA-protein interaction. A nitrocellulose filter retention assay is used to demonstrate equimolar binding between the coat protein and a synthetic 21 nucleotide RNA fragment. The Kd at 2 degrees C in a buffer containing 0.19 M salt is about 1 nM. The relatively weak ionic strength dependence of Ka and a delta H = -19 kcal/mole indicates that most of the binding free energy is due to non-electrostatic interactions. Since a variety of RNAs failed to compete with the 21 nucleotide fragment for coat protein binding, the interaction appears highly sequence specific. We have synthesized more than 30 different variants of the binding site sequence in order to identify the portions of the RNA molecule which are important for protein binding. Out of the five single stranded residues examined, four were essential for protein binding whereas the fifth could be replaced by any nucleotide. One variant was found to bind better than the wild type sequence. Substitution of nucleotides which disrupted the secondary structure of the binding fragment resulted in very poor binding to the protein. These data indicated that there are several points of contact between the RNA and the protein and the correct hairpin secondary structure of the RNA is essential for protein binding.  相似文献   

9.
The S. cerevisiae ribosomal protein L30e is an autoregulatory protein that binds to its own pre-mRNA and mature mRNA to inhibit splicing and translation, respectively. The L30e RNA-binding element is a stem-asymmetric loop–stem that forms a kink-turn. A bacterial genetic system was designed to test the ability of protein variants to repress the expression of reporter mRNAs containing the L30e RNA-binding element. Initial screens revealed that changes in several RNA nucleotides had a measurable effect on repression of the reporter by the wild type protein. RNA mutants that reduce repression were screened against libraries of randomly mutagenized L30e proteins. These screens identified a glycine to serine mutation of L30e, which specifically restores activity to an RNA variant containing a U that replaces a helix-capping G. Similarly, an asparagine to alanine mutation was found to suppress a substitution at a position where the L30e RNA nucleotide extends out into the protein pocket. In addition, a compensatory RNA mutation within a defective RNA variant was found. The identification of these suppressors provides new insights into the architecture of a functional binding element and its recognition by an important RNA-binding protein.  相似文献   

10.
In some strains of Saccharomyces cerevisiae the mitochondrial gene coding for 21S rRNA is interrupted by an intron of 1143 bp. This intron contains a reading frame for 235 amino acids: Unassigned Reading Frame (URF). In order to check whether expression of this URF is required for proper splicing of precursors to 21S rRNA, the precision of RNA splicing was analysed in a petite mutant, where no mitochondrial protein synthesis is possible anymore. We have devised a new assay to monitor the precision of the splicing event. The method is of general application, provided that the sequence of the splice boundaries is known. In the case of the 21S rRNA it involves the synthesis of the DNA oligonucleotide d(CGATCCCTATTGTC( complementary to the 5' d(CGATCCCTAT) and 3' d(TGTC) borders flanking the intron in the 21S rRNA gene. The oligonucleotide is labelled with 32p at the 5'-end, hybridised to RNA and subsequently subjected to digestion with S1 nuclease. Resistance to digestion will only be observed if the correct splice-junction is made. The petite mutant we have studied contains a 21S rRNA with the same migration behaviour as wildtype 21S rRNA. In RNA blotting experiments, using an intron specific hybridisation probe, the same intermediates in splicing are found both in wild type and petite mutant. Finally the synthetic oligonucleotide hybridises to petite 21S rRNA and its thermal dissociation behaviour is indistinguishable from a hybrid formed with wildtype 21S rRNA. We conclude that expression of the URF, present in the intron of the 21S rRNA gene, is not required for processing and correct splicing of 21S ribosomal precursor RNA.  相似文献   

11.
12.
We have investigated the role in the fold and RNA-binding properties of the KH modules of a hydrophobic to asparagine mutation of clinical importance in the fragile X syndrome. The mutation involves a well-conserved hydrophobic residue close to the N terminus of the second helix of the KH fold (alpha2(3) position). The effect of the mutation has been long debated: Although the mutant has been shown to disrupt the three-dimensional fold of several KH domains, the residue seems also to be directly involved in RNA binding, the main function of the KH module. Here we have used the KH3 of Nova-1, whose structure is known both in isolation and in an RNA complex, to study in detail the role of the alpha2(3) position. A detailed comparison of Nova KH3 structure with its RNA/KH complex and with other KH structures suggests a dual role for the alpha2(3) residue, which is involved both in stabilizing the hydrophobic core and in RNA contacts. We further show by nuclear magnetic resonance (NMR) studies in solution that L447 of Nova-1 in position alpha2(3) is in exchange in the absence of RNA, and becomes locked in a more rigid conformation only upon formation of an RNA complex. This implies that position alpha2(3) functions as a "gate" in the mechanism of RNA recognition of KH motifs based on the rigidification of the fold upon RNA binding.  相似文献   

13.
1. A precursor to small stable RNA, 10Sa RNA, accumulates in large amounts in a temperature sensitive RNase E mutant at non-permissive temperatures, and somewhat in an rnc (RNase III-) mutant, but not in an RNase P- mutant (rnp) or wild type E. coli cells. 2. Since p10Sa RNA was not processed by purified RNase E and III in customary assay conditions, we purified p10Sa RNA processing activity about 700-fold from wild type E. coli cells. 3. Processing of p10Sa RNA by this enzyme shows an absolute requirement for a divalent cation with a strong preference for Mn2+ over Mg2+. Other divalent cations could not replace Mn2+. 4. Monovalent cations (NH+4, Na+, K+) at a concentration of 20 mM stimulated the processing of p10Sa RNA and a temperature of 37 degrees C and pH range of 6.8-8.2 were found to be optimal. 5. The enzyme retained half of its p10Sa RNA processing activity after 30 min incubation at 50 degrees C. 6. Further characterization of this activity indicated that it is RNase III. 7. To further confirm that the p10Sa RNA processing activity is RNase III, we overexpressed the RNase III gene in an E. coli cells that lacks RNase III activity (rnc mutant) and RNase III was purified using one affinity column, agarose.poly(I).poly(C). 8. This RNase III preparation processed p10Sa RNA in a similar way as observed using the p10Sa RNA processing activity purified from wild type E. coli cells, confirming that the first step of p10Sa RNA processing is carried out by RNase III.  相似文献   

14.
Summary Two hundred strains of Saccharomyces cerevisiae temperature sensitive for RNA synthesis were selected and screened in crude extracts for DNA-dependent RNA polymerase activities. One strain was isolated which had only residual in vitro RNA polymerase B activity. In normal growth conditions total RNA, poly A+ RNA and protein synthesis were indistinguishable from those of the wild type strain at 23°C and after shift to 37°C. A temperature sensitive phenotype was detected only when rpoB containing strains were grown in adverse conditions. The mutant character showed mendelian segregation and was coexpressed with the wild type character in heterozygous diploids. Residual enzyme activity was characterised in crude extracts using synthetic polymers and natural templates in different ionic conditions.  相似文献   

15.
The product of an open reading frame (ORF) (called YdbR) identified while analyzing the Bacillus subtilis genome has been classified as an Asp-Glu-Ala-Asp (DEAD) protein, but the biological function and enzymology of YdbR have not been characterized in detail. Here we show that recombinant YdbR-His(6) purified from Escherichia coli is an ATP-independent RNA binding protein. It also possesses RNA-dependent ATPase activity stimulated not only by total RNA from B. subtilis but also by an RNA that is irrelevant to that of B. subtilis. Functional analysis indicated that the growth rate of a DeltaydbR mutant strain of B. subtilis was reduced as compared with that of the wild type not only at 37 degrees C, but more severely at 22 degrees C.  相似文献   

16.
Studies of the RNA-dependent RNA polymerase (RdRp) from poliovirus (PV), 3Dpol, have shown that Asn-297 permits this enzyme to distinguish ribose from 2'-deoxyribose. All animal RNA viruses have Asn at the structurally homologous position of their polymerases, suggesting a conserved function for this residue. However, all prokaryotic RNA viruses have Glu at this position. In the presence of Mg2+, the apparent affinity of Glu-297 3Dpol for 2'-deoxyribonucleotides was decreased by 6-fold relative to wild type without a substantial difference in the fidelity of 2'-dNMP incorporation. The fidelity of ribonucleotide misincorporation for Glu-297 3Dpol was reduced by 14-fold relative to wild type. A 4- to 11-fold reduction in the rate of ribonucleotide incorporation was observed. Glu-297 PV was unable to grow in HeLa cells due to a replication defect equivalent to that observed for a mutant PV encoding an inactive polymerase. Evaluation of the protein-(VPg)-primed initiation reaction showed that only half of the Glu-297 3Dpol initiation complexes were capable of producing VPg-pUpU product and that the overall yield of uridylylated VPg products was reduced by 20-fold relative to wild-type enzyme, a circumstance attributable to a reduced affinity for UTP. These studies identify the first RdRp derivative with a mutator phenotype and provide a mechanistic basis for the elevated mutation frequency of RNA phage relative to animal RNA viruses observed in culture. Although protein-primed initiation and RNA-primed elongation complexes employ the same polymerase active site, the functional differences reported here imply significant structural differences between these complexes.  相似文献   

17.
The K homology module, one of the most common RNA-binding motifs, is present in multiple copies in both prokaryotic and eukaryotic regulatory proteins. Increasing evidence suggests that self-aggregation of KH modules has a functional role. We have used a combination of techniques to characterize the behavior in solution of the third KH domain of Nova-1, a paradigmatic KH protein. The possibility of working on the isolated module allowed us to observe specifically the homodimerization and RNA-binding properties of KH domains. We provide conclusive evidence that self-association of Nova-1 KH3 occurs in solution even in the absence of RNA. Homodimerization involves a specific protein/protein interface. We also studied the dynamical behavior of Nova-1 KH3 in isolation and in complex with RNA. These data provide a model for the mechanism of KH/RNA recognition and suggest functional implications of dimerization in KH complexes. We discuss our findings in the context of the whole KH family and suggest a generalized mode of interaction.  相似文献   

18.
Bicaudal-C (Bic-C) is a multiple KH-domain RNA-binding protein required for Drosophila oogenesis and, maternally, for embryonic patterning. In early oogenesis, Bic-C negatively regulates target mRNAs, including Bic-C, by recruiting the CCR4 deadenylase through a direct association with its NOT3 subunit. Here, we identify a novel function for Bic-C in secretion of the TGF-α homolog Gurken (Grk). In Bic-C mutant egg chambers, Grk is sequestered within actin-coated structures during mid-oogenesis. As a consequence, Egfr signalling is not efficiently activated in the dorsal-anterior follicle cells. This phenotype is strikingly similar to that of trailer hitch (tral) mutants. Consistent with the idea that Bic-C and Tral act together in Grk secretion, Bic-C co-localizes with Tral within cytoplasmic granules, and can be co-purified with multiple protein components of a Tral mRNP complex. Taken together, our results implicate translational regulation by Bic-C and Tral in the secretory pathway.  相似文献   

19.
20.
Summary The translational capacity in vitro in Escherichia coli, using RNA from phage R17 or Q as messenger, is several times higher if the extracts are prepared from cells harvested in early exponential phase or grown under conditions of good aeration compared to if extracts are prepared from cells harvested in a later growth phase or grown under semi-aerobic conditions. In low activity extracts the production of phage replicase protein is preferentially affected. Growth of a wild type strain under semiaerobic conditions has a less pronounced effect on translational capacity in vitro using crude mRNA from normal or T4 infected cells or with poly(U).Mutants were fortuitously found which did not show a lowered translational activity in vitro as a result of entering late phase of growth. Two of these were changed in RNA polymerase.Two different translational inhibitors can be demonstrated in the ribosomal wash fraction obtained from semi-aerobically grown wild type cells, whereas only one was found in the case of aerobically grown cells. The low translational activity of semi-aerobically grown cells in vitro is implied to be dependent on the induction or activation of a translational inhibitor. It behaves like a protein but is not likely to be a protease or RNAse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号