首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Toxoplasma gondii is an obligate intracellular parasite that actively invades mammalian cells using a unique form of gliding motility that critically depends on actin filaments in the parasite. To determine if parasite motility is driven by a myosin motor, we examined the distribution of myosin and tested the effects of specific inhibitors on gliding and host cell invasion. A single 90 kDa isoform of myosin was detected in parasite lysates using an antisera that recognizes a highly conserved myosin peptide. Myosin was localized in T. gondii beneath the plasma membrane in a circumferential pattern that overlapped with the distribution of actin. The myosin ATPase inhibitor, butanedione monoxime (BDM), reversibly inhibited gliding motility across serum-coated slides. The myosin light-chain kinase inhibitor, KT5926, also blocked parasite motility and greatly reduced host cell attachment; however, these effects were primarily caused by its ability to block the secretion of microneme proteins, which are involved in cell attachment. In contrast, while BDM partially reduced cell attachment, it prevented invasion even under conditions in which microneme secretion was not affected, indicating a potential role for myosin in cell entry. Collectively, these results indicate that myosin(s) probably participate(s) in powering gliding motility, a process that is essential for cell invasion by T. gondii .  相似文献   

2.
The invasive forms of apicomplexan parasites share a conserved form of gliding motility that powers parasite migration across biological barriers, host cell invasion and egress from infected cells. Previous studies have established that the duration and direction of gliding motility are determined by actin polymerization; however, regulators of actin dynamics in apicomplexans remain poorly characterized. In the absence of a complete ARP2/3 complex, the formin homology 2 domain containing proteins and the accessory protein profilin are presumed to orchestrate actin polymerization during host cell invasion. Here, we have undertaken the biochemical and functional characterization of two Toxoplasma gondii formins and established that they act in concert as actin nucleators during invasion. The importance of TgFRM1 for parasite motility has been assessed by conditional gene disruption. The contribution of each formin individually and jointly was revealed by an approach based upon the expression of dominant mutants with modified FH2 domains impaired in actin binding but still able to dimerize with their respective endogenous formin. These mutated FH2 domains were fused to the ligand-controlled destabilization domain (DD-FKBP) to achieve conditional expression. This strategy proved unique in identifying the non-redundant and critical roles of both formins in invasion. These findings provide new insights into how controlled actin polymerization drives the directional movement required for productive penetration of parasites into host cells.  相似文献   

3.
Apicomplexan parasites rely on actin-based gliding motility to move across the substratum, cross biological barriers, and invade their host cells. Gliding motility depends on polymerization of parasite actin filaments, yet ~98% of actin is nonfilamentous in resting parasites. Previous studies suggest that the lack of actin filaments in the parasite is due to inherent instability, leaving uncertain the role of actin-binding proteins in controlling dynamics. We have previously shown that the single allele of Toxoplasma gondii actin depolymerizing factor (TgADF) has strong actin monomer-sequestering and weak filament-severing activities in vitro. Here we used a conditional knockout strategy to investigate the role of TgADF in vivo. Suppression of TgADF led to accumulation of actin-rich filaments that were detected by immunofluorescence and electron microscopy. Parasites deficient in TgADF showed reduced speed of motility, increased aberrant patterns of motion, and inhibition of sustained helical gliding. Lack of TgADF also led to severe defects in entry and egress from host cells, thus blocking infection in vitro. These studies establish that the absence of stable actin structures in the parasite are not simply the result of intrinsic instability, but that TgADF is required for the rapid turnover of parasite actin filaments, gliding motility, and cell invasion.  相似文献   

4.
Nutrient sensing and the capacity to respond to starvation is tightly regulated as a means of cell survival. Among the features of the starvation response are induction of both translational repression and autophagy. Despite the fact that intracellular parasite like Toxoplasma gondii within a host cell predicted to be nutrient rich, they encode genes involved in both translational repression and autophagy. We therefore examined the consequence of starvation, a classic trigger of autophagy, on intracellular parasites. As expected, starvation results in the activation of the translational repression system as evidenced by elevation of phosphorylated TgIF2α (TgIF2α-P). Surprisingly, we also observe a rapid and selective fragmentation of the single parasite mitochondrion that leads irreversibly to parasite death. This profound effect was dependent primarily on the limitation of amino acids and involved signalling by the parasite TOR homologue. Notably, the effective blockade of mitochondrial fragmentation by the autophagy inhibitor 3-methyl adenine (3-MA) suggests an autophagic mechanism. In the absence of a documented apoptotic cascade in T. gondii, the data suggest that autophagy is the primary mechanism of programmed cell death in T. gondii and potentially other related parasites.  相似文献   

5.
Heaslip AT  Nishi M  Stein B  Hu K 《PLoS pathogens》2011,7(9):e1002201
Protozoa in the phylum Apicomplexa are a large group of obligate intracellular parasites. Toxoplasma gondii and other apicomplexan parasites, such as Plasmodium falciparum, cause diseases by reiterating their lytic cycle, comprising host cell invasion, parasite replication, and parasite egress. The successful completion of the lytic cycle requires that the parasite senses changes in its environment and switches between the non-motile (for intracellular replication) and motile (for invasion and egress) states appropriately. Although the signaling pathway that regulates the motile state switch is critical to the pathogenesis of the diseases caused by these parasites, it is not well understood. Here we report a previously unknown mechanism of regulating the motility activation in Toxoplasma, mediated by a protein lysine methyltransferase, AKMT (for Apical complex lysine (K) methyltransferase). AKMT depletion greatly inhibits activation of motility, compromises parasite invasion and egress, and thus severely impairs the lytic cycle. Interestingly, AKMT redistributes from the apical complex to the parasite body rapidly in the presence of egress-stimulating signals that increase [Ca2+] in the parasite cytoplasm, suggesting that AKMT regulation of parasite motility might be accomplished by the precise temporal control of its localization in response to environmental changes.  相似文献   

6.
Toxoplasma gondii tachyzoites were quiescent in mouse peritoneal fluid or in K2SO4 buffer at pH 8.2. They became consistently motile when K+ was replaced by other monovalent or divalent cations at a constant pH (pH = 8.2). They also became motile when Cl- was substituted for SO4(2-). Nitrate or SCN-, can also be substituted for Cl- to a certain extent. Tachyzoites showed independent movement for more than 15 min in KCl, and for about 5 min in the other buffers at pH 8.2 after which they were exhausted and stopped. These tachyzoites could not then be further stimulated to motility by renewal of the suspension buffer. Infection of monolayer cells was demonstrated only with parasites which were motile during inoculation. The highest infectivity was thus obtained either with freshly collected tachyzoites or with those preincubated in K2SO4 buffer for 30 min at 37 degrees C at alkaline pH and thus not yet exhausted for motility. Approximately 34 to 38% of these latter organisms were seen to enter cells when they were inoculated into cultures immediately after being resuspended in MEM for 30 min at 37 degrees C. Conversely, those whose motility had been exhausted by the preincubation in buffers other than K2SO4, pH 8.2 could not enter monolayer cells. Additionally, parasites were unable to enter cells when inoculated into cultures in K2SO4 buffer at alkaline pH; instead they remained quiescent on the surface of the monolayer cells, suggesting that Toxoplasma enters the host cells by active invasion.  相似文献   

7.
Saccharomyces cerevisiae cnm67Delta cells lack the spindle pole body (SPB) outer plaque, the main attachment site for astral (cytoplasmic) microtubules, leading to frequent nuclear segregation failure. We monitored dynamics of green fluorescent protein-labeled nuclei and microtubules over several cell cycles. Early nuclear migration steps such as nuclear positioning and spindle orientation were slightly affected, but late phases such as rapid oscillations and insertion of the anaphase nucleus into the bud neck were mostly absent. Analyzes of microtubule dynamics revealed normal behavior of the nuclear spindle but frequent detachment of astral microtubules after SPB separation. Concomitantly, Spc72 protein, the cytoplasmic anchor for the gamma-tubulin complex, was partially lost from the SPB region with dynamics similar to those observed for microtubules. We postulate that in cnm67Delta cells Spc72-gamma-tubulin complex-capped astral microtubules are released from the half-bridge upon SPB separation but fail to be anchored to the cytoplasmic side of the SPB because of the absence of an outer plaque. However, successful nuclear segregation in cnm67Delta cells can still be achieved by elongation forces of spindles that were correctly oriented before astral microtubule detachment by action of Kip3/Kar3 motors. Interestingly, the first nuclear segregation in newborn diploid cells never fails, even though astral microtubule detachment occurs.  相似文献   

8.
This paper describes an adhesion/invasion assay, based on combined pyrrolidine dithiocarbamate (PDTC) and antibody treatment of parasites followed by quantitative real-time PCR. This PDTC-PCR assay can be used to comparatively assess the participation of host cell- and parasite-associated components during host cell adhesion and entry by Neospora caninum and Toxoplasma gondii tachyzoites, respectively, and is potentially applicable to any other apicomplexan parasite. The assay allows to determine the parasite invasion rate in relation to the overall number of parasites which interact with host cells in any given experiment, and thus represents a significant improvement to conventional microscopic assays in terms of accuracy and reproducibility. Using this assay it was possible to show that adhesion and invasion of N. caninum tachyzoites are two distinct and separated events, in that N. caninum tachyzoites preferentially utilise host cell surface chondroitin sulphates for adhesion, but not for the host cell invasion process. Application of the PDTC-PCR assay also demonstrated that N. caninum and T. gondii tachyzoites differ largely with regard to the functional involvement of proteases in adhesion and invasion of host cells. Thus, although phylogenetically closely related, N. caninum and T. gondii are biologically quite different and exhibit distinct dissimilarities with regard to host cell interactions.  相似文献   

9.
Motion is an intrinsic property of all living organisms, and each cell displays a variety of shapes and modes of locomotion. How structural proteins support cellular movement and how cytoskeletal dynamics and motor proteins are harnessed to generate order and movement are among the fundamental and not fully resolved questions in biology today. Protozoan parasites belonging to the Apicomplexa are of enormous medical and veterinary significance, being responsible for a wide variety of diseases in human and animals, including malaria, toxoplasmosis, coccidiosis and cryptosporidiosis. These obligate intracellular parasites exhibit a unique form of actin-based gliding motility, which is essential for host cell invasion and spreading of parasites throughout the infected hosts. A motor complex composed of a small myosin of class XIV associated with a myosin light chain and a plasma membrane-docking protein is present beneath the parasite's plasma membrane. According to the capping model, this complex is connected directly or indirectly to transmembrane adhesin complexes, which are delivered to the parasite surface upon microneme secretion. Together with F-actin and as yet unknown bridging molecules and proteases, these complexes are among the structural and functional components of the 'glideosome'.  相似文献   

10.
Toxoplasma gondii Hsp20 is a pellicle-associated functional chaperone whose biological role is still unknown. Hsp20 is present in different apicomplexan parasites, showing a high degree of conservation across the phylum, with Neospora caninum Hsp20 presenting an 82% identity to that of T. gondii. Hence rabbit anti-T. gondii Hsp20 serum was able to recognize the N. caninum counterpart. Interestingly, both N. caninum and T. gondii Hsp20 localized to the inner membrane complex and to the plasma membrane. Incubation of T. gondii and N. caninum tachyzoites with an anti-TgHsp20 serum reduced parasite invasion at rates of 57.23% and 54.7%, respectively. This anti-serum also reduced T. gondii gliding 48.7%. Together, all this data support a role for Hsp20 in parasite invasion and gliding motility.  相似文献   

11.
Toxoplasma gondii tachyzoites were fractionated by modification of an iodixanol density gradient method previously used for acidocalcisome isolation from Trypanosoma cruzi epimastigotes. Fractions were characterized using electron microscopy, x-ray microanalysis, and enzymatic markers, and it was demonstrated that the heaviest (pellet) fraction contains electron-dense vacuoles rich in phosphorus, calcium, and magnesium, as found before for acidocalcisomes. Staining with 4',6-diamidino-2-phenylindole (DAPI) indicated that poly- phosphate (polyP) was preferentially localized in this fraction together with pyrophosphate (PP(i)). Using an enzyme-based method, millimolar levels (in terms of P(i) residues) of polyP chains of less than 50 residues long and micromolar levels in polyP chains of about 700-800 residues long were found to be preferentially localized in this fraction. The fraction also contained the pyrophosphatase and polyphosphatase activities characteristic of acidocalcisomes. Western blot analysis using antibodies against proteins from micronemes, dense granules, rhoptries, and plasma membrane showed that the acidocalcisomal fraction was not contaminated by these other organelles. T. gondii polyP levels rapidly decreased upon exposure of the parasites to a calcium ionophore (ionomycin), to an inhibitor of the V-H(+)-ATPase (bafilomycin A(1)), or to the alkalinizing agent NH(4)Cl. These changes were in parallel to an increase in intracellular Ca(2+) concentration, suggesting a close association between polyP hydrolysis and Ca(2+) release from the acidocalcisome. These results provide a useful method for the isolation and characterization of acidocalcisomes, showing that they are distinct from other previously recognized organelles present in T. gondii, and provide evidence for the role of polyP metabolism in response to cellular stress.  相似文献   

12.
Toxoplasma gondii is an obligate intracellular protozoan parasite that invades a wide range of host cells. The parasite releases a large variety of proteins from a secretory organelle, microneme, and the secretion is essential for the parasite invasion. We cloned a secreted protein with an altered thrombospondin repeat of Toxoplasma gondii (TgSPATR), which was the homologue of Plasmodium SPATRs. Immunofluorescence double staining experiment revealed that TgSPATR was co-localized with a microneme protein, MIC2, and immuno-electron microscopic (IEM) analysis detected TgSPATR in the microneme-like structure. TgSPATR secretion was induced by ethanol, while an intracellular Ca2+ chelator, 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid, tetraacetoxymethyl ester (BAPTA-AM), suppressed the ethanol-induced secretion, suggesting the secretion was Ca2+-dependent, similarly to known microneme proteins. Furthermore, TgSPATR, existed on outer surface of the parasites, was detected by incomplete membrane permeabilization by saponin and immunofluorescent antibody test (IFAT). Both TgSPATR and MIC2 were detected on outer surface of extracellular parasites, but not of intracellular single parasites, suggesting they were similarly secreted during early stages of parasite invasion. Therefore, TgSPATR is probably new member of microneme protein and maybe involved in parasite invasion.  相似文献   

13.
Actin polymerization and actin-myosin coupling activity most likely provide the driving force that the protozoan parasite Toxoplasma gondii has to exert to propulse itself during gliding and host cell entry. Nevertheless, little information is available on T. gondii tachyzoite actin dynamics, and in particular, the presence of actin filaments remains largely uncharacterized. Here, we report that the marine sponge peptide jasplakinolide, known to bind to filamentous actin, does indeed stabilize a pool of a parasite detergent-insoluble actin. This pool is likely to be formed by a dynamic assembled actin complex: first, it is competent for assembly/disassembly and secondly, it is sensitive to nucleotide phosphate concentration. In addition, T. gondii tachyzoites contain molecules which inhibit actin assembly and destabilize actin filaments. Thus, these activities could account for the remarkably low amount of the myosin-containing F-actin pool we describe here. Furthermore, when parasites are treated with cell-permeant jasplakinolide, they display a significant loss of both motility and host cell invasiveness. These data suggest that in vivo, the detergent-insoluble pool of actin is dynamic.  相似文献   

14.
15.
16.
Rhoptries are specialized secretory organelles that are uniquely present within protozoan parasites of the phylum Apicomplexa. These obligate intracellular parasites comprise some of the most important parasites of humans and animals, including the causative agents of malaria (Plasmodium spp.) and chicken coccidiosis (Eimeria spp.). The contents of the rhoptries are released into the nascent parasitophorous vacuole during invasion into the host cell, and the resulting proteins often represent the literal interface between host and pathogen. We have developed a method for highly efficient purification of rhoptries from one of the best studied Apicomplexa, Toxoplasma gondii, and we carried out a detailed proteomic analysis using mass spectrometry that has identified 38 novel proteins. To confirm their rhoptry origin, antibodies were raised to synthetic peptides and/or recombinant protein. Eleven of 12 of these yielded antibody that showed strong rhoptry staining by immunofluorescence within the rhoptry necks and/or their bulbous base. Hemagglutinin epitope tagging confirmed one additional novel protein as from the rhoptry bulb. Previously identified rhoptry proteins from Toxoplasma and Plasmodium were unique to one or the other organism, but our elucidation of the Toxoplasma rhoptry proteome revealed homologues that are common to both. This study also identified the first Toxoplasma genes encoding rhoptry neck proteins, which we named RONs, demonstrated that toxofilin and Rab11 are rhoptry proteins, and identified novel kinases, phosphatases, and proteases that are likely to play a key role in the ability of the parasite to invade and co-opt the host cell for its own survival and growth.  相似文献   

17.
Adenosine kinase (AK) is a key purine metabolic enzyme from the opportunistic parasitic protozoan Toxoplasma gondii and belongs to the family of carbohydrate kinases that includes ribokinase. To understand the catalytic mechanism of AK, we determined the structures of the T. gondii apo AK, AK:adenosine complex and the AK:adenosine:AMP-PCP complex to 2.55 A, 2.50 A and 1.71 A resolution, respectively. These structures reveal a novel catalytic mechanism that involves an adenosine-induced domain rotation of 30 degrees and a newly described anion hole (DTXGAGD), requiring a helix-to-coil conformational change that is induced by ATP binding. Nucleotide binding also evokes a coil-to-helix transition that completes the formation of the ATP binding pocket. A conserved dipeptide, Gly68-Gly69, which is located at the bottom of the adenosine-binding site, functions as the switch for domain rotation. The synergistic structural changes that occur upon substrate binding sequester the adenosine and the ATP gamma phosphate from solvent and optimally position the substrates for catalysis. Finally, the 1.84 A resolution structure of an AK:7-iodotubercidin:AMP-PCP complex reveals the basis for the higher affinity binding of this prodrug over adenosine and thus provides a scaffold for the design of new inhibitors and subversive substrates that target the T. gondii AK.  相似文献   

18.
Adenosine kinase (AK) is a key purine metabolic enzyme from the opportunistic parasitic protozoan Toxoplasma gondii and belongs to the family of carbohydrate kinases that includes ribokinase. To understand the catalytic mechanism of AK, we determined the structures of the T. gondii apo AK, AK:adenosine complex and the AK:adenosine:AMP-PCP complex to 2.55 A, 2.50 A and 1.71 A resolution, respectively. These structures reveal a novel catalytic mechanism that involves an adenosine-induced domain rotation of 30 degrees and a newly described anion hole (DTXGAGD), requiring a helix-to-coil conformational change that is induced by ATP binding. Nucleotide binding also evokes a coil-to-helix transition that completes the formation of the ATP binding pocket. A conserved dipeptide, Gly68-Gly69, which is located at the bottom of the adenosine-binding site, functions as the switch for domain rotation. The synergistic structural changes that occur upon substrate binding sequester the adenosine and the ATP gi phosphate from solvent and optimally position the substrates for catalysis. Finally, the 1.84 A resolution structure of an AK:7-iodotubercidin:AMP-PCP complex reveals the basis for the higher affinity binding of this prodrug over adenosine and thus provides a scaffold for the design of new inhibitors and subversive substrates that target the T. gondii AK.  相似文献   

19.
20.
The expressed sequence tag (EST) effort in Toxoplasma gondii has generated a substantial amount of gene information. To exploit this valuable resource, we chose to study tgd057, a novel gene identified by a large number of ESTs that otherwise show no significant match to known sequences in the database. Northern analysis showed that tgd057 is transcribed in this tachyzoite. The complete cDNA sequence of tgd057 is 1169 bp in length. Sequence analysis revealed that tgd057 possibly adopts two polyadenylation sites, utilizes the fourth in-frame ATG for translation initiation, and codes for a secretory protein. The longest open reading frame for the tgd057 gene was cloned and expressed as a recombinant protein (rd57) in Escherichia coli. Western analysis revealed that serum against rd57 recognized a molecule of ~21 kDa in the tachyzoite protein extract. This suggests that the tgd057 gene is expressed in vivo in the parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号