首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oxygen and carbon monoxide kinetics of Glycera dibranchiata monomeric hemoglobin have been studied using laser photolysis, air flash, and stopped flow techniques. The reactions of this hemoglobin with both ligands were found to be more rapid than the corresponding reactions involving myoglobin and were also biphasic in nature, the rate constants being approximately an order of magnitude different for the fast and slow phases in each case. No pH or hemoglobin concentration dependence of the pseudo-first order rate constants was apparent between pH 6 and 9 and in the concentration range of 1.25 to 40 muM heme. Both fast and slow pseudo-first order oxygen combination rate constants varied linearly with oxygen concentration between 16 and 1300 muM. A first order slow relaxation was also noted which was linearly dependent on heme concentration and inversely dependent on oxygen concentration. This reaction has been shown to be due to a replacement of oxygen by carbon monoxide. The presence of this reaction is a result of the high affinity of Glycera monomer for carbon monoxide as shown by the partition coefficient Mr = approximately 20,000 ana an equilibrium dissociation constant of the order L = 1.1 X 10(-9) M.  相似文献   

2.
The reaction between ferric Pseudomonas cytochrome c peroxidase and reduced azurin was investigated by static titration, rapid scan, and stopped flow techniques as well as circular dichroism measurements. Kinetics of the reduction of the enzyme under pseudo-first order conditions reveals a biphasic logarithmic curve indicating that the reaction between enzyme and azurin is complex and comprises of two reactions, one rapid and a slower one. The relative portion of the fast phase from the overall reaction increases with increasing azurin concentration. Kinetic results can be explained by postulating the presence of two different enzyme forms which are slowly interconvertible. Both enzymatic forms form a complex with reduced azurin. The electron transfer between proteins occurs within the molecular complex of azurin and the peroxidase.  相似文献   

3.
Measurements are described of the kinetics of nucleic acid strand pair reassociation where the complementary strands are of different lengths and are present in different concentrations. Rate constants for the reaction of labelled fragments ("tracer") with excess complementary strands ("driver") were determined, both for driver fragment length greater than tracer fragment length and for the reverse case. Second order reactions and pseudo-first order reactions utilizing strand separated drivers and tracers were studied. The nucleic acids which served for this investigation were phiX174 DNA and RNA, plasmid RSF2124 DNA and E. coli DNA. Approximate empirical expressions relating driver and tracer fragment lengths with the observed rate constants were obtained for practical use. In long tracer-short driver reactions the observed rate constant for the tracer reaction increases proportionately with tracer length. In long driver-short tracer reactions the rate of tracer reaction is retarded. The latter result is unexpected and appears to represent a departure from standard interpretations of the renaturation reaction.  相似文献   

4.
In an attempt to determine if arginyl residues play a role in sulfate transfer reactions, we studied the effects of 2,3-butanedione and phenylglyoxal, both chemical modifying agents for arginyl residues, on phenol-sulfotransferase. Both reagents produced rapid inactivation of the enzyme, with the inactivation following pseudo-first order kinetics. The rate of inactivation was dependent upon the concentration of the chemical modifier. Competition studies showed that inclusion of 3′-phosphoadenosine-5′-phosphosulfate during the preincubation step protected the enzyme from inactivation. The results suggest a possible role for arginyl residues as anionic recognition sites for sulfate transfer reactions.  相似文献   

5.
The photo-induced transformation of monuron (3-(4-chlorophenyl)-1,1 dimethylurea) was investigated in an aqueous solution containing nitrates and nitrites at 310 nm and 365 nm, respectively. In both NO(3)(-) and NO(2)(-) conditions, the degradation of monuron followed pseudo-first order kinetics. The intermediate products were identified by GC-MS, and the nitration, hydroxylation and coupling reactions were determined. In addition, the oxidation of the N-terminus group, the substitution of chlorine by ˙OH and the nitration by ˙NO(2) radical onto the phenyl ring were observed. The photo-induced transformation of monuron was studied under variable conditions of pH, inducer concentration, substrate concentration, humic acids, oxygen content and salts used as hydroxyl radical scavengers. The photodegradation rates were strongly influenced by all the above parameters. The degradation of monuron was also studied in the dark and in the presence of NO(2)(-) as well as in an aqueous solution with the addition of hydrogen peroxide.  相似文献   

6.
The rates of the oxidized (Eox) and reduced (Ered) (by NAD . H through the ubiquinone pool) succinate dehydrogenase inhibition by N-ethyl-maleimide are equal and obey pseudo-first order kinetics. The protection of the enzyme against irreversible alkylation was used to quantitate the dissociation constants for Eox and Ered complexes with fumarate, succinate and malonate under conditions when no intramolecular redox reactions might occur. the membrane-bound succinate dehydrogenase catalyzes the succinate : phenazine-methosulphate reductase reaction in the presence of thenoyltrifluoroacetone by a Slater-Bonner mechanism. A comparison of the constants measured by the protection with those derived from the steady-state kinetics shows that succinate affinity for Eox is about 10 times higher than that for Ered; the reverse relations were found for fumarate, whereas the affinity for malonate only slightly depends on the redox state of the enzyme. The data obtained suggest that the dicarboxylate binding at the active site induces changes in the enzyme redox potential. The surface charge does not contribute significantly to the energy of the dicarboxylate binding to the active site of the membrane-bound enzyme.  相似文献   

7.
ESR spectra of membrane spin probes are conventionally used to obtain structural information. Here we show, for the first time, that when a membrane-soluble compound undergoes a chemical reaction, time-dependent changes in the ESR spectra of membrane spin probes can yield information about the kinetics of reaction. A benzoic acid ester, analog of the local anesthetic tetracaine, partitions between aqueous and membrane phases, causing changes in membrane structure as monitored by the ESR spectra of a probe. At alkaline pH, the lineshapes are time-dependent and the spectra go back to that in the absence of drug. The changes follow pseudo-first order kinetics. This effect is due to drug hydrolysis leading to water-soluble products, as confirmed by direct spectrophotometric measurements of the reaction. The pseudo-first order rate constants found by the latter method are in very good agreement with those calculated by ESR. The rate of hydrolysis decreases with increasing membrane concentration. This phenomenon accounts in part for the increased potency and toxicity of the more membrane-soluble local anesthetics.  相似文献   

8.
Urea, thiourea and guanidine-HCl greatly inhibit bone Alkaline Phosphatase activity. The inhibition displays saturation kinetics, fitting a model for the reaction sequence in which formation of complexes with increasing affinity occurs. The time dependent inactivation by urea and guanidine follows pseudo-first order kinetics, while thiourea behaviour is better described by a biexponential equation. The pH variation strongly affects the activity, the instantaneous inhibition and the time dependent inactivation. At the pH optimum the three compounds display their strongest effect. Data analysis suggests a three-stage model for the kinetics of Alkaline Phosphatase inhibition by urea and related compounds, involving a consecutive binding process with several sites of the protein and the production of different and interchanging inhibitor-enzyme complexes, leading to irreversibly inactivated forms.  相似文献   

9.
The kinetics of decolorization of an anionic monoazo dye of acid class named C.I. Acid Red 27 (AR27) was investigated in the UV/TiO2 process with nonlinear regression analysis. The experimental results indicated that the kinetics of decolorization of AR27 in this process fit well by pseudo-first order kinetics. With nonlinear regression analysis a model was developed for pseudo-first order rate constant (k(ap,UV/TiO2)) as a function of operational parameters such as TiO2 dosage, initial concentration of AR27, concentration of O2 and UV-light intensity (I0) as following: k(ap,UV/TiO2) = 0.0025 [TiO2](0.65) [AR27]0(-0.96) [O2](0.16)I0. This rate expression can be used for predicting k(ap,UV/TiO2) at different conditions.  相似文献   

10.
The growth behaviour of Schwanniomyces castellii in slurry fermentation systems using untreated potato starch as substrate was studied in order to asses the eventual effect of the initial concentration of substrate (So) on cell growth rate. By applying the elementary balance method in combination with a Monod-type kinetic equation it was possible to formulate not only an unstructured model, but also the stoichiometry for such a yeast fermentation process. From a kinetic viewpoint, the Monod model was found to be redundant with respect to the pseudo-first order one, it being impossible to discriminate the contribution of v M and K S on the overall fermentation kinetics. Whereas the main yield coefficients appeared to be independent of S O, the pseudo-first order rate constant was found to be inversely proportional to S O. Therefore, cell growth appears to be controlled by the initial amount of amylolytic enzymes, that is to some extent proportional to the inoculum size, instead of the initial concentration of potato starch, at least within the experimental range of 3 to 30 g dm3.  相似文献   

11.
The herbicide trifluralin (I)(N,N-di-n-propyl-2,6-dinitro-4-trifluoromethylaniline) decomposes, by the action of UV-Vis light (lambda > 300 nm), to several products, the most important (because they give subsequent photochemical reactions) being N-n-propyl-2,6-dinitro-4-trifluoromethylaniline (VI), 2-ethyl-7-nitro-5-trifluoromethyl-1H-benzimidazole 3-oxide (VII) and 2,6-dinitro-4-trifluoromethylaniline (XII). The time evolution of degradation of trifluralin (I) and the aforementioned three main photoproducts was studied in water and acetonitrile as solvents. The pseudo-first order rate constants allow one to calculate the branching ratios for some of the reactions involved. The preference for either N-dealkylation or cyclization depends on the solvent employed. Dissolved oxygen accelerates the photodegradation, especially the dealkylation.  相似文献   

12.
A chitosan-thioglyceraldehyde Schiff's base cross-linked magnetic resin (CSTG) was prepared and characterized using various instrumental methods. Then, the prepared resin was used for comparative studies on the removal of toxic metal ions like: Hg(2+), Cu(2+) and Zn(2+) from aqueous solutions. The effects of the initial pH value of the solution, contact time, the initial metal ion concentration and temperature on the adsorption capacity of the composite were investigated. The kinetics data were analyzed by pseudo-first order and pseudo-second order equations. The adsorption kinetics was well described by the pseudo-second order equation, and the adsorption isotherms were better fitted by the Langmuir equation. The maximum theoretical adsorption capacities of the CSTG resin for Hg(2+), Cu(2+) and Zn(2+) were found to be 98±2, 76±1 and 52±1 mg g(-1), respectively. The negative values of Gibbs free energy of adsorption (ΔG(ads°) indicated the spontaneity of the adsorption of all metal ions on the novel resin.  相似文献   

13.
The reaction between N-ethylmaleimide and (Na+ + K+)-ATPase, performed under ligand conditions which produce each of the kinetic states of the enzyme and their associated conformational forms, was examined through an analysis of the inhibition of enzymatic activity and the incorporation of radiolabeled reagent into the enzyme. The inactivation reactions displayed pseudo-first order kinetics with respect to the concentration of active enzyme, indicating that the loss of activity is associated with the alkylation of a unique sulfhydryl group. In the absence of enzyme phosphorylation, the nucleophilicity of this sulfhydryl group is affected primarily by the nature of the monovalent cation present and does not correlate with the conformational state. A method for determining the actual concentration and specific radioactivity of radiolabeled N-ethylmaleimide during the reaction with (Na+ + K+)-ATPase was developed, allowing the measurement of the total reactive sulfhydryl groups of native (Na+ + K+)-ATPase under conditions identical with those of the inactivation studies. The labeling of the enzyme complex is associated almost exclusively with the large polypeptide, which contains four sulfhydryl groups which react with this reagent. One of these residues is presumably the sulfhydryl responsible for inactivation of the enzyme. Two react stoichiometrically and rapidly with N-ethylmaleimide under all conditions. The nucleophilicity of the fourth sulfhydryl group is governed by the conformational state of the enzyme, but the alkylation of this residue does not result in loss of enzymatic activity.  相似文献   

14.
Pigeon liver fatty acid synthetase was inactivated by arginine modifying reagent, phenylglyoxal and 2,3-butanedione. The inactivation of overall fatty acid synthetase was accompanied by the loss of beta-ketoacyl reductase and enoyl-CoA reductase activity. The inactivation followed a pseudo-first order kinetics and sum of the second order rate constants for the two reductase reactions equaled that for the synthetase reaction. Inactivation of all three activities was prevented by NADPH or its analogs 2',5'-ADP and 2'-AMP but not by the corresponding nucleotides containing the 5'-phosphate. These results suggest that binding of NADPH to fatty acid synthetase involves specific interaction of the 2'-phosphate with the guanidino group of arginine residues at the active site of the two reductases. pH-Dependent inactivation by phenylglyoxal indicated that a group with a pka 7.5 is involved in the loss of enzyme activity. Stoichiometric results showed that 4 out of 164 arginine residues per enzyme molecule were essential for the enzyme activity.  相似文献   

15.
The activation of bovine prothrombin by prothrombinase (Factor Xa, Factor Va, synthetic phospholipid vesicles, and calcium ion) was studied in the presence of the fluorescent, reversible thrombin inhibitor dansylarginine-N-(3-ethyl-1,5-pentanediyl) amide (DAPA). Recordings of fluorescence intensity during prothrombin activation exhibited maxima that decreased to stable limiting values. These data suggested the transient appearance of the meizothrombin-DAPA complex, which exhibits fluorescence with 1.5-fold greater intensity than the thrombin-DAPA complex. At substrate concentrations well below Km, progress curves could be fitted by equations describing an ordered, sequential conversion of prothrombin to thrombin through the intermediate meizothrombin via two pseudo-first order steps. The pseudo-first order rate constants for both steps varied linearly with enzyme concentration, indicating that both steps are catalyzed by prothrombinase. The progress of the reaction was also monitored by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and densitometry analyses of aliquots removed at intervals spanning the reaction. These analyses confirmed both the existence of meizothrombin and its time course as predicted from the equations used to analyze fluorescence intensity profiles. Meizothrombin levels peaked at about 0.3 mol/mol initial prothrombin under the conditions typically studied. In addition, prethrombin 2, which is the intermediate expected from cleavages occurring in the order opposite that required to form meizothrombin, was not observed under any of the conditions examined. These data indicate that prothrombin activation catalyzed by the fully assembled prothrombinase complex proceeds via an ordered, sequential reaction with meizothrombin as the sole intermediate.  相似文献   

16.
In order to learn whether the kinetics of transient phosphorylation of sodium plus potassium ion transport adenosine triphosphatase was compatible with the hydrolysis of ATP, computer simulation of experimental data was studied. The enzyme mechanism was described in terms of first order and pseudo-first order reactions. The resulting system of linear first order differential equations was solved by a Runge-Kutta method. Phosphorylation kinetics was studied by means of a rapid mixing apparatus at 21 degrees in the presence of 100 micron ATP, 3 mM MgCl2, 120 mM NaCl, and 10 mM KCl. Computer simulation gave a close fit to experimental data with a model of the reaction mechanism which included a sequence of two dephospho forms and two phospho forms of the enzyme. With this model, rate constants obtained by computer simulation were in agreement with constants which had been determined in separate phosphorylation and dephosphorylation experiments. Within experimental limits, the net flux of reaction in each partial step was compatible with the (Na+,K+)-stimulated hydrolysis of ATP (about 324 and 300 nmol-mg-1-min-1, respectively).  相似文献   

17.
The catalytic efficiency (kcat/Km) of Escherichia coli flavin pyruvate oxidase can be stimulated 450-fold either by the addition of lipid activators or by limited proteolytic hydrolysis. Previous studies have shown that a functional lipid binding site is a mandatory prerequisite for the in vivo functioning of this enzyme (Grabau, C., and Cronan, J. E., Jr. (1986) Biochemistry 25, 3748-3751). The effect of activation on the transient state kinetics of partial reactions in the overall oxidative conversion of pyruvate to acetate and CO2 has now been examined. The rate of decarboxylation of pyruvate to form CO2 and hydroxyethylthiamin pyrophosphate for both activated and unactivated forms of the enzyme is identical within experimental error. The decarboxylation step was measured using substrate concentrations of the enzyme in the absence of an electron acceptor. The pseudo-first order rate constant for the decarboxylation step is 60-80 s-1. The rate of oxidation of hydroxyethylthiamin pyrophosphate and concomitant enzyme-bound flavin reduction was analyzed by stopped-flow methods utilizing synthetic hydroxyethylthiamin pyrophosphate. The pseudo-first order rate for this step with unactivated enzyme was 2.85 s-1 and increased 145-fold for lipid-activated enzyme to 413 s-1 and 61-fold for the proteolytically activated enzyme to 173 s-1. The analysis of a third reaction step, the reoxidation of enzyme-bound FADH, was also investigated by stopped-flow techniques utilizing ferricyanide as the electron acceptor. The rate of oxidation of enzyme.FADH is very fast for both unactivated (1041 s-1) and activated enzyme (645 s-1). The data indicate that the FAD reduction step is the rate-limiting step in the overall reaction for unactivated enzyme. Alternatively, the rate-limiting step in the overall reaction with the activated enzyme shifts to one of the partial steps in the decarboxylation reaction.  相似文献   

18.
The kinetics of the reaction of hydroxyurea (HU) with myoglobin (Mb), hemin, sickle cell hemoglobin (HbS), and normal adult hemoglobin (HbA) were determined using optical absorption spectroscopy as a function of time, wavelength, and temperature. Each reaction appeared to follow pseudo-first order kinetics. Electron paramagnetic resonance spectroscopy (EPR) experiments indicated that each reaction produced an FeNO product. Reactions of hemin and the ferric forms of HbA, HbS, and myoglobin with HU also formed the NO adduct. The formation of methemoglobin and nitric oxide-hemoglobin from these reactions may provide further insight into the mechanism of how HU benefits sickle cell patients.  相似文献   

19.
In native nonactivated phosphorylase kinase [14C] iodacetamide interacts with 50 cysteinyl residues per enzyme molecule (alpha beta gamma delta)4. According to their reactivity towards iodacetamide these residues can be classified into 3 groups. The most reactive cysteinyl residues are involved in the enzyme activation caused by modification of SH-groups. The enzyme inhibition is biphasic. The fast and slow inactivation reactions follow the pseudo-first order kinetics. The rate of inactivation is increased by Ca2+. Mg-ATP effectively protects the enzyme against the inactivation and chemical modification of three SH-groups per protomer (apha beta gamma delta). The kinetics of inactivation and of the [14C] iodacetamide label incorporation demonstrate that two cysteinyl residues per enzyme protomer (alpha beta gamma delta) are essential for the enzyme activity. These residues are located near the ATP-binding site of the beta and gamma subunits of phosphorylase kinase.  相似文献   

20.
Modification of ferredoxin-NADP+ reductase from the alga Bumilleriopsis with butanedione (diacetyl) and dansyl chloride results in loss of enzymatic activity. Under pseudo-first order conditions the rate of inactivation by butanedione is directly proportional to the concentration of the modifying reagent with a slope of unity. The protective effect of pyridine nucleotides, as well as their analogs against inactivation by butanedione indicates involvement of arginine in the binding of pyridine nucleotides at the active site. Inactivation by dansyl chloride suggests that a further amino acid is involved, possibly lysine. Amino acid analyses of the butanedione-treated reductase show that the degree of inactivation correlates well with the decrease in arginine. Furthermore, two arginine residues are modified concomitant with complete inactivation of the enzyme, although this does not imply that both residues participate necessarily in the binding of pyridine nucleotides. Fingerprint analysis of the carboxymethylated, trypsin-digested enzyme indicates loss of one arginine-containing peptide when the protein had been modified by butanedione. There was no change in cysteine-containing peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号