首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
Liver stem cells give rise to both hepatocytes and bile duct epithelial cells also known as cholangiocytes. During liver development hepatoblasts emerge from the foregut endoderm and give rise to both cell types. Colony-forming cells are present in the liver primordium and clonally expanded cells differentiate into either hepatocytes or cholangiocytes depending on culture conditions, showing stem cell characteristics. The growth and differentiation of hepatoblasts are regulated by various extrinsic signals. For example, periportal mesenchymal cells provide a cue for bipotential hepatoblasts to become cholangiocytes, and mesothelial cells covering the parenchyma support the expansion of foetal hepatocytes by producing growth factors. The adult liver has an extraordinary capacity to regenerate, and after 70% hepatectomy the liver recovers its original mass by replication of the remaining hepatocytes without the activation of liver stem cells. However, in certain types of liver injury models, liver stem/progenitor-like cells, known as oval cells in rodents, proliferate around the portal vein, while the roles of such cells in liver regeneration remain a matter of debate. Clonogenic and bipotential cells are also present in the normal adult liver. In this minireview we describe recent studies on liver stem/progenitor cells by focusing on extracellular signals.  相似文献   

3.
Clinical and pharmaceutical applications of primary hepatocytes (PHs) are limited due to inadequate number of donated livers and potential challenges in successful maintenance of PHs in culture. Freshly isolated hepatocytes lose their specific features and rapidly de-differentiate in culture. Bipotent hepatoblasts, as liver precursor cells that can differentiate into both hepatocytes and cholangiocytes (Alb- and Ck19-positive cells, respectively), could be used as an alternative and reliable cell source to produce enough PHs for drug discovery or possible clinical applications. In this study, growth factor-free coculture systems of prenatal or postnatal murine liver stromal cells (pre-LSCs or post-LSCs, respectively) were used as feeder cells to support freshly isolated mice hepatoblasts. DLK1-positive hepatoblasts were isolated from mouse fetuses (E14.5) and cocultured with feeder cells under adherent conditions. The hepatoblasts' bipotent features, proliferation rate, and colony formation capacity were assessed on day 5 and 7 post-seeding. Immunofluorescence staining showed that the hepatoblasts remained double positive for Alb and Ck19 on both Pre- and Post-LSCs, after 5 and 7 days of coculture. Moreover, application of pre-LSCs as feeder cells significantly increased the number of DLK1-positive cells and their proliferation rate (ie, increased the number of Ki-67 positive cells) on day 7, compared to Post-LSCs group. Finally, to address our ultimate goal, which was an extension of hepatoblasts ex vivo maintenance, 3D spheres of isolated hepatoblasts were, cultured in conditioned medium (CM) derived from pre-LSCs until day 30. It was observed that the CM derived from Pre-LSCs could successfully prolong the maintenance of hepatic progenitor cells (HPCs) in 3D suspension culture.  相似文献   

4.
Progenitor cells of the biliary epithelial cell lineage   总被引:12,自引:0,他引:12  
Stem-like cells have been identified in liver that are able to differentiate in vivo and in culture to biliary epithelial cells (BEC), hepatocytes and oval cells. The growth factors/cytokines and signal pathways required for the differentiation processes are beginning to be evaluated. There is increasing evidence to suggest that these stem-like cells may originate from both the bone marrow population or from a precursor remnant from liver embryogenesis, as they share many of the same markers (CD34, c-kit, CD45). Most recently, it has been shown that a population of progenitor cells can copurify with mesenchymal bone marrow cells and differentiate under specific culture conditions to form both hepatic epithelial and also endothelial cells. The interaction of haemopoietic and mesenchymal stem cells needs further evaluation. The close association of ductular reactive cells and neovessels in end-stage cholestatic liver diseases and the relation to Jagged/Notch signalling pathway may be important in the regulation of stem cells to form both biliary epithelial and endothelial cells.  相似文献   

5.
6.
Hepatic stem cells: from inside and outside the liver?   总被引:21,自引:0,他引:21  
The liver is normally proliferatively quiescent, but hepatocyte loss through partial hepatectomy, uncomplicated by virus infection or inflammation, invokes a rapid regenerative response from all cell types in the liver to perfectly restore liver mass. Moreover, hepatocyte transplants in animals have shown that a certain proportion of hepatocytes in foetal and adult liver can clonally expand, suggesting that hepatoblasts/hepatocytes are themselves the functional stem cells of the liver. More severe liver injury can activate a potential stem cell compartment located within the intrahepatic biliary tree, giving rise to cords of bipotential transit amplifying cells (oval cells), that can ultimately differentiate into hepatocytes and biliary epithelial cells. A third population of stem cells with hepatic potential resides in the bone marrow; these haematopoietic stem cells may contribute to the albeit low renewal rate of hepatocytes, but can make a more significant contribution to regeneration under a very strong positive selection pressure. In such instances, cell fusion rather than transdifferentiation appears to be the underlying mechanism by which the haematopoietic genome becomes reprogrammed.  相似文献   

7.
8.
Wnt/β‐catenin pathway plays an important role in regulating embryonic development. Hepatocytes differentiate from endoderm during development. Hepatic progenitor cells (HPCs) have been isolated from fetal liver and extrahepatic tissues. Most current studies in liver development and hepatic differentiation have been focused on Wnts, β‐catenin, and their receptors. Here, we sought to determine the role of Wnt antagonists in regulating hepatic differentiation of fetal liver‐derived HPCs. Using mouse liver tissues derived from embryonic day E12.5 to postnatal day (PD) 28, we found that 13 of the 19 Wnt genes and almost all of Wnt receptors/co‐receptors were expressed in most stages. However, Wnt antagonists SFRP2, SFRP3, and Dkk2 were only detected in the early stages. We established and characterized the reversible stable HPCs derived from E14.5 mouse fetal liver (HP14.5). HP14.5 cells were shown to express high levels of early liver progenitor cell markers, but low levels or none of late liver markers. HP14.5 cells were shown to differentiate into mature hepatocytes upon dexamethasone (Dex) stimulation. Dex‐induced late marker expression and albumin promoter activity in HP14.5 cells were inhibited by exogenous expression of SFRP3. Furthermore, Dex‐induced glycogen synthesis of PAS‐positive HP14.5 cells was significantly inhibited by SFRP3. Therefore, our results have demonstrated that the expression of Wnt antagonists decreases as hepatic differentiation progresses, suggesting that a balanced Wnt signaling may be critical during mouse liver development and hepatic differentiation. J. Cell. Biochem. 108: 295–303, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
10.
Hepatic differentiation of mouse ES cells into BE cells in vitro   总被引:1,自引:0,他引:1  
  相似文献   

11.
The liver is believed to contain stem cells that can differentiate into either hepatocytes or biliary epithelial cells. In the present study, we established a nonhepatocytic epithelial cell line from the normal livers of adult rats. The established cells, designated HSL cells, were immunoreactive against alpha-fetoprotein, but neither albumin nor cytokeratin 19. To demonstrate the differentiation potential of HSL cells in vitro, the cells were cocultured with hepatic stellate cells as a mixture or separately using insert wells. Consequently, although coculture with hepatic stellate cells rendered HSL cells able to produce albumin, the mixed coculture system mimicking the hepatic environment elicited this phenomenon more effectively than the separated coculture system. In conclusion, HSL cells have immature properties and the potential to differentiate into mature cells. Not only the extracellular matrices but also soluble factors, which are produced by hepatic stellate cells, induce this maturation, demonstrating the importance of the hepatic environment for hepatocyte differentiation.  相似文献   

12.
13.
14.
Avoiding the limitations of the adult liver niche, transplantation of hepatic stem/progenitor cells into fetal liver is desirable to analyze immature cells in a hepatic developmental environment. Here, we established a new monitor tool for cell fate of hepatic progenitor cells transplanted into the mouse fetal liver by using ex utero surgery. When embryonic day (ED) 14.5 hepatoblasts were injected into the ED14.5 fetal liver, the transplanted cells expressed albumin abundantly or α-fetoprotein weakly, and contained glycogen in the neonatal liver, indicating that transplanted hepatoblasts can proliferate and differentiate in concord with surrounding recipient parenchymal cells. The transplanted cells became mature in the liver of 6-week-old mice. Furthermore, this method was applicable to transplantation of hepatoblast-like cells derived from mouse embryonic stem cells. These data indicate that this unique technique will provide a new in vivo experimental system for studying cell fate of hepatic stem/progenitor cells and liver organogenesis.  相似文献   

15.
The development of alcoholic liver diseases depends on the ability of hepatocyte to proliferate and differentiate in the case of alcohol-induced injury. Our previous work showed an inhibitory effect of alcohol on hepatocyte proliferation. However, the effect of alcohol on hepatocyte differentiation has not yet been precisely characterized. In the present study, we evaluated the effect of alcohol on hepatocyte differentiation in relationship with changes of iron metabolism in HepaRG cells. This unique bipotent human cell line can differentiate into hepatocytes and biliary epithelial cells, paralleling liver development. Results showed that alcohol reduced cell viability, total protein level and enhanced hepatic enzymes leakage in differentiated HepaRG cells. Moreover, it caused cell enlargement, decreased number of hepatocyte and expression of C/EBPα as well as bile canaliculi F-actin. Alcohol increased expression of hepatic cell-specific markers and alcohol-metabolizing enzymes (ADH2, CYP2E1). This was associated with a lipid peroxidation and an iron excess expressed by an increase in total iron content, ferritin level, iron uptake as well as an overexpression of genes involved in iron transport and storage. Alcohol-induced hepatoxicity was amplified by exogenous iron via exceeding iron overload. Taken together, our data demonstrate that in differentiated hepatocytes, alcohol reduces proliferation while increasing expression of hepatic cell-specific markers. Moreover, iron overload could be one of the underlying mechanisms of effect of alcohol on the whole differentiation process of hepatocytes.  相似文献   

16.
A simple, rapid, and reproducible method of fetal hepatoblast purification was established to investigate mechanisms controlling interactions between hepatoblasts and nonparenchymal cells during liver development. Because E-cadherin is exclusively expressed on the cell membrane of hepatoblasts, magnetic beads coated with monoclonal antibodies to an extracellular epitope of its molecule were used to purify hepatoblasts from a cell suspension prepared from 12.5-day fetal mouse livers. The purity and yield in the hepatoblast fraction prepared in our protocol were more than 90% and approximately 30%, respectively. The nonparenchymal fraction rarely contained hepatoblasts; the rate of hepatoblast contamination in this fraction was less than 1%. Separate cultures of these two fractions were compared with cocultures of both fractions. In culture of the hepatoblast fraction, hepatoblasts formed aggregates similar to a bunch of grapes via their loose adhesion, floating in the medium after 24 h, and dissociated into single cells from the aggregates after 120 h of culture. By contrast, in the mixed culture, the majority of hepatoblasts formed multicellular spheroids after 24 h, and these spheroids changed into monolayer cell sheets after 120 h of culture. The cells comprising these monolayer sheets abundantly expressed albumin and carbamoylphosphate synthase I. In the mixed culture, fibroblastic cells also proliferated extensively with spreading on glass slides and surrounded the hepatoblast or hepatocyte colonies. On the other hand, fibroblastic cells spreading on glass slides decreased gradually in cultures of the nonparenchymal cell fraction alone. These findings indicated that the coexistence of hepatoblasts and nonparenchymal cells may be essential for their mutual survival, proliferation, differentiation, and morphogenesis. The conditioned medium of fetal liver cell cultures could partially replace the effects of the nonparenchymal cells on hepatoblasts in vitro. Our isolation protocol for fetal mouse hepatoblasts using immunobeads can greatly facilitate studies on mechanisms of cell-cell interactions during liver development.  相似文献   

17.
对肝干细胞的可塑性、多向分化潜能、分化机理及其与肝癌发病机制的关系等方面进行综述.肝干细胞是一类具有自我更新能力和多向分化潜能的细胞. 在不同的条件下,肝干细胞可分化为肝细胞、胆上皮细胞、胰腺细胞和肠上皮细胞. 肝干细胞的分化涉及微环境、细胞因子和细胞外基质等多种调控因素. 肝干细胞分化为成熟肝细胞受多种转录因子和信号通路的调节,其分化异常有可能诱发形成肝细胞癌.  相似文献   

18.
19.
Cell–cell interactions among cell types constituting the fetal liver such as hepatoblasts, stellate cells and endothelial cells lead to functional lobule development. The present study was undertaken to investigate hepatic histogenesis in the primary culture of E12.5 mouse livers, including cell–cell and cell–matrix interactions. Fetal livers were dispersed with protease treatment and cultured for 5 days. Cellular adhesion of each hepatic cell type, gene expression and extracellular matrix deposition were analyzed by immunohistochemistry and immunoblotting. Immunohistochemical analysis demonstrated that the primary culture of fetal liver cells contained at least hepatoblasts, mesenchymal cells, endothelial cells, hemopoietic cells and Kupffer cells. Although hepatoblasts, mesenchymal cells, and endothelial cells aggregated separately in the initial step, they then formed a spheroid together, adhering to the glass slide, which led to the formation of flattened hepatic organoids. Hepatoblasts more preferentially adhered to mesenchymal cells than endothelial cells. Several extracellular matrix depositions were seen in aggregates consisting of at least hepatoblasts and mesenchymal cells within 12 h, but were poor in those lacking hepatoblasts. These data show that the primary culture of fetal liver cells contains most cell types constituting fetal livers, and may be useful for studying cell–cell interactions during liver development.  相似文献   

20.
Hepatoblasts are hepatic progenitor cells that expand and give rise to either hepatocyte or cholangiocytes during liver development. We previously reported that delta-like 1 homolog (DLK1) is expressed in the mouse liver primordium at embryonic day (E) 10.5 and that DLK1+ cells in E14.5 liver contain high proliferative and bipotential hepatoblasts. While the expression of epithelial cell adhesion molecule (EpCAM) in hepatic stem/progenitor cells has been reported, its expression profile at an early stage of liver development remains unknown. In this study, we show that EpCAM is expressed in mouse liver bud at E9.5 and that EpCAM+DLK1+ hepatoblasts form hepatic cords at the early stage of hepatogenesis. DLK1+ cells of E11.5 liver were fractionated into EpCAM+ and EpCAM cells; one forth of EpCAM+DLK1+ cells formed a colony in vitro whereas EpCAMDLK1+ cells rarely did it. Moreover, EpCAM+DLK1+ cells contained cells capable of forming a large colony, indicating that EpCAM+DLK1+ cells in E11.5 liver contain early hepatoblasts with high proliferation potential. Interestingly, EpCAM expression in hepatoblasts was dramatically reduced along with liver development and the colony-forming capacities of both EpCAM+DLK1+ and EpCAMDLK1+ cells were comparable in E14.5 liver. It strongly suggested that most of mouse hepatoblasts are losing EpCAM expression at this stage. Moreover, we provide evidence that EpCAM+DLK1+ cells in E11.5 liver contain extrahepatic bile duct cells as well as hepatoblasts, while EpCAMDLK1+ cells contain mesothelial cell precursors. Thus, the expression of EpCAM and DLK1 suggests the developmental pathways of mouse liver progenitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号