首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple, rapid, and reproducible method of fetal hepatoblast purification was established to investigate mechanisms controlling interactions between hepatoblasts and nonparenchymal cells during liver development. Because E-cadherin is exclusively expressed on the cell membrane of hepatoblasts, magnetic beads coated with monoclonal antibodies to an extracellular epitope of its molecule were used to purify hepatoblasts from a cell suspension prepared from 12.5-day fetal mouse livers. The purity and yield in the hepatoblast fraction prepared in our protocol were more than 90% and approximately 30%, respectively. The nonparenchymal fraction rarely contained hepatoblasts; the rate of hepatoblast contamination in this fraction was less than 1%. Separate cultures of these two fractions were compared with cocultures of both fractions. In culture of the hepatoblast fraction, hepatoblasts formed aggregates similar to a bunch of grapes via their loose adhesion, floating in the medium after 24 h, and dissociated into single cells from the aggregates after 120 h of culture. By contrast, in the mixed culture, the majority of hepatoblasts formed multicellular spheroids after 24 h, and these spheroids changed into monolayer cell sheets after 120 h of culture. The cells comprising these monolayer sheets abundantly expressed albumin and carbamoylphosphate synthase I. In the mixed culture, fibroblastic cells also proliferated extensively with spreading on glass slides and surrounded the hepatoblast or hepatocyte colonies. On the other hand, fibroblastic cells spreading on glass slides decreased gradually in cultures of the nonparenchymal cell fraction alone. These findings indicated that the coexistence of hepatoblasts and nonparenchymal cells may be essential for their mutual survival, proliferation, differentiation, and morphogenesis. The conditioned medium of fetal liver cell cultures could partially replace the effects of the nonparenchymal cells on hepatoblasts in vitro. Our isolation protocol for fetal mouse hepatoblasts using immunobeads can greatly facilitate studies on mechanisms of cell-cell interactions during liver development.  相似文献   

2.
The relationships between cell proliferation and cell differentiation during thymus ontogeny were studied by labeling DNA-synthesizing thymocytes with bromodeoxyuridine and staining with antibodies against CD4, CD8, J11d, phagocytic glycoprotein 1, TCR V beta 8 chain, Thy-1, and IL-2R surface proteins. The development of the thymus was discontinuous, with two well defined growth periods from 13 days to 18 days of fetal life and from 3 days to 6 days after birth, and more progressive growth from day 8 to 2 wk. Cell proliferation started on fetal day 12, 1 day after the arrival of hemopoietic stem cells in the third branchial pouch. These cells were phagocytic glycoprotein 1-positive but IL-2R and Thy-1 negative. Thus, cell proliferation preceded IL-2R expression. Until day 15, CD4-8- thymocytes expanded without differentiation. Then CD4-8+ and CD4+8+ cells appeared; this induction was proliferation dependent and occurred on cells which had already lost IL-2R, but just after maximum expression of this receptor. During several days, the thymus remained of constant size (around 10(7) cells) and behaved like the steady state thymus. On day 3 after birth, expansion started again and was correlated with an increase in CD4-8- proliferation index and IL-2R expression. At the same time, the thymic subset capable of expansion without differentiation was again, transiently, detectable. These results suggest that the inflow of precursor cells into the thymus is permanent but transiently increased at several times during ontogeny. Moreover, the behavior of fetal CD4-8- cells does not appear radically different from that of adult precursors, but the actual difference resides in the variation of the relative proportion of CD4-8- cells at different maturation stages, as revealed by striking variations of IL-2R expression by cycling cells.  相似文献   

3.
The epidermal cell suspensions of the neonatal dorsal skin derived from wild type mouse at the pink-eyed dilution (p) locus (black, C57BL/10JHir-P/P) and their congenic mutant mouse (pink-eyed dilution, C57BL/10JHir-p/p) were cultured with a serum-free melanocyte growth medium supplemented with additional L-tyrosine (Tyr) from initiation of the primary culture. L-Tyr inhibited the proliferation of P/Pmelanocytes in a dose-dependent manner, whereas L-Tyr stimulated the proliferation of p/p melanoblasts and melanocytes regardless of dose. On the other hand, L-Tyr stimulated (P/P) or induced (p/p) the differentiation of epidermal melanocytes in a dose-dependent manner. In both P/P and p/p melanoblasts and melanocytes cultured with 2.0 mM L-Tyr for 14 days, slight increases in contents of eumelanin marker, pyrrole-2,3,5-tricarboxylic acid (PTCA) and pheomelanin marker, aminohydroxyphenylalanine (AHP) were observed. The average number of total melanosomes (stages I, II, III, and IV) per P/P melanocyte was not changed by L-Tyr treatment, but the proportion of stage IV melanosomes in the total melanosomes was increased. On the contrary, in p/p melanoblasts and melanocytes L-Tyr increased dramatically the number of stage II, III, and IV melanosomes as well as the proportion of stage III melanosomes. Contents of PTCA and eumelanin precursor, 5,6-dihydroxyindole-2-carboxylic acid (DHICA) of cultured media in p/p melanocytes were much more greatly increased than in P/P melanocytes. However, contents of AHP and pheomelanin precursor, 5-S-cysteinyldopa (5-S-CD) of cultured media in p/p melanocytes were increased in a similar tendency to P/Pmelanocytes. These results suggest that p/p melanocytes in the primary culture are induced to synthesize eumelanin by excess L-Tyr, but difficult to accumulate them in melanosomes.  相似文献   

4.
5.
6.
Mouse epidermal melanoblasts and melanocytes preferentially proliferated from disaggregated epidermal cell suspensions derived from newborn mouse skin in a serum-free melanocyte-proliferation medium (MDMD) and melanoblast-proliferation medium (MDMDF) supplemented with dibutyryl adenosine 3':5'-cyclic monophosphate (DBcAMP) and/or basic fibroblast growth factor (bFGF). Pure cultured primary melanoblasts and melanocytes were then further cultured with MDMD/MDMDF supplemented with steel factor (SLF) (keratinocyte depletion). SLF increased the number of melanoblasts and melanocytes as well as the proportion of differentiated melanocytes in the absence of keratinocytes. Flow cytometric analysis showed that melanoblasts and melanocytes in the S and G2/M phases of the cell cycle were increased by treatment with SLF. Moreover, an anti-SLF antibody added to MDMD/MDMDF from the initiation of the primary culture (in the presence of keratinocytes) inhibited the proliferation of melanoblasts and melanocytes as well as the differentiation of melanocytes. These results suggest that SLF is one of the keratinocyte-derived factors involved in regulating the proliferation and differentiation of neonatal mouse epidermal melanocytes in culture in cooperation with cAMP elevator and bFGF.  相似文献   

7.
The tumour promoter, phorbol myristate acetate (PMA) at concentrations of 5–50 ng/ml substantially affected 2-, 4-, 8-cell and morula mouse embryos cultured in vitro. PMA evoked a delay of cell growth and caused premature cell differentiation. In the former there was a formation of binuclear blastomeres, in the latter of giant cell formation in trophectoderm of blastocyst and premature cavitation. PMA-mediated delay of growth rate was completely reversible in 8-cell embryos, partially reversible in 4-cell embryos and poorly reversible, if at all, in 2-cell embryos. In the presence of PMA, nuclear DNA synthesis proceeded although the rate of nuclear labelling with [3H]thymidine was lower than in the control. Blastomeres of some 2-cell embryos treated with PMA fused, resulting in the formation of 1-cell embryos.  相似文献   

8.
Serum-free culture of epidermal cell suspensions from neonatal skin of mice of strain C57BL/10JHir (B10) showed that alpha-melanocyte-stimulating hormone (alpha-MSH) was involved in regulating the differentiation of melanocytes by inducing tyrosinase activity, melanosome formation, and dendritogenesis. Dibutyryl adenosine 3':5'-cyclic monophosphate (DBcAMP) similarly induced the differentiation of melanocytes. On the other hand, DBcAMP induced the proliferation of epidermal melanocytes in culture in the presence of keratinocytes. Basic fibroblast growth factor (bFGF) was also shown to stimulate the sustained proliferation of undifferentiated melanoblasts in the presence of DBcAMP and keratinocytes. These results suggest that the proliferation and differentiation of mouse epidermal melanoblasts and melanocytes in culture are regulated by the three factors; namely, cAMP, bFGF, and keratinocyte-derived factors. Moreover, serum-free primary culture of mouse epidermal melanocytes derived from B10 congenic mice, which carry various coat color genes, showed that the coat color genes were involved in regulating the proliferation and differentiation of mouse epidermal melanocytes by controlling the proliferative rate, melanosome formation and maturation, and melanosome distribution.  相似文献   

9.
The proximal third of the small intestine of 15-day-old mouse embryo can be cultured for 72 h at 37 degrees C. When Trowell-T8 medium is used, the integrity of the explants is maintained, but villi do not form and absorptive cells are poorly differentiated. However, when Leibovitz L-15 or RPMI-1640 medium is used, one can observe the formation of medium-sized villi, and absorptive cells in the explants are more differentiated. Since the chemical composition of T8 medium is quite different from that of the other two media, we decided to test the importance of two major differences, i.e., three amino acids and five vitamins, in order to find out which element(s) is necessary to permit the formation of intestinal villi. Subsequent testing demonstrated that the three amino acids are responsible for the effect on differentiation, and that glutamine is the only critical difference between T8 and the two other media. The results show that the addition of L-glutamine to T8 medium permits the formation of villi, the initiation of absorptive cell differentiation, an increase in DNA synthesis, and finally, an increase in the number of epithelial cells. These findings indicate that undifferentiated fetal mouse small intestine is able to express its phenotype in organ culture, even without any extrinsic regulatory influences, provided that L-glutamine is present at a sufficient level in the culture medium. The use of inhibitors indicated that L-glutamine may be essential as an energetic substrate and/or a precursor for glucosamine.  相似文献   

10.
11.
Epidermal growth factor (EGF) is one of growth factors that are thought to mediate the stimulatory effects of estrogen on the proliferation of uterine epithelial cells. The present study was attempted to obtain direct evidence for the mitogenic effects of EGF on uterine epithelial cells, and to prove that EGF and EGF receptors are expressed in these cells. Mouse uterine epithelial cells were isolated from immature female mice and cultured with or without EGF for 5 days. EGF (1 to 100 ng/ml) significantly increased the number of uterine epithelial cells, and the maximal growth (141.9+/- 8.3% of controls) was obtained at a dose of 10 ng/ml. In addition, EGF (0.1 to 100 ng/ml) increased the number of DNA-synthesizing cells immunocytochemically detected by bromodeoxyuridine uptake to the nucleus. Northern blot analysis revealed that the uterine epithelial cells expressed both EGF mRNA (4.7 kb) and EGF receptor mRNAs (10.5, 6.6, and 2.7 kb) These results suggest that the proliferation of uterine epithelial cells is regulated by the paracrine and/or autocrine action of EGF. Our previous study demonstrated the mitogenic effect of IGF-I on uterine epithelial cells. To examine whether the EGF- and IGF-I signaling act at the same level in the regulation of the proliferation of uterine epithelial cells, the cultured cells were simultaneously treated with IGF-I and EGF. IGF-I was found to additively stimulate the mitogenic effects of EGF, suggesting that the EGF-induced growth of uterine epithelial cells is distinct from IGF-I-induced growth.  相似文献   

12.
Short-term primary culture of Leydig cells were prepared from 18 day old fetal mouse testes. The cells were cultured in a defined medium supplemented with 1% fetal calf serum, EGF and Insulin. The cells rapidly attached to the plastic culture dish. Seventy to eighty percent of the firmly attached cells stained positively for 3β-HSD activity and gradually assumed a flattened epitheloid appearance. The functional activity of these cells in terms of testosterone production and hCG-responsiveness was maintained for 2 days. There was a significant effect of plating density. Pre-culture (24 h) of fetal Leydig cells in the presence of 100 mIU hCG desensitized these cells to a subsequent stimulation by hCG. This is the first report of a short-term primary culture of fetal Leydig cells which demonstrates the maintenance of androgenic activity of these cells in vitro.  相似文献   

13.
Growth, expression of functional differentiation (as characterized by synthesis and secretion of milk proteins), and primary metabolism were studied for a mouse mammary epithelial cell line, COMMA-1D, in extended-batch and hollow-fiber reactor cultures. Batch cultures were performed on Costar polycarbonate membrane inserts, allowing basal and apical exposure to medium. Protein production was induced in both batch and hollow-fiber cultures in hormonesupplemented medium. In batch cultures, high levels of protein production and secretion were maintained for 18 days. Once differentiation was induced, the rate of deinduction was low, even in medium containing epidermal growth factor (EGF) and serum; cells continued to express and secrete proteins for at least 12 days after prolactin and hydrocortisone were removed. Cells in both batch and hollow-fiber cultures were highly glycolytic and exhibited low rates of glutaminolysis. In batch culture on membrane inserts, cells showed polarized metabolism between the apical and basal side, maintaining significant gradients of glucose and lactate. Medium hormonal composition and subsequent differentiation affected both glucose uptake and lactate yield for COMMA-1D in batch culture. (c) 1992 John Wiley & Sons, Inc.  相似文献   

14.
Guinea-pig uterine glandular epithelial cells were grown in primary culture. During the 4-day initial culture period, a 6.7 fold increase in DNA synthesis and a doubling time of approximately 30 hours were observed. Then the cells were submitted to serum depletion (60 hours) and the quiescent cells were stimulated with 15% fetal calf serum (FCS). The control cells were submitted to 1% heated and dextran-coated charcoal stripped FCS. In stimulated cells, the DNA synthesis increased and peaked between the 12th and 24th hour. In these cells, c-fos mRNAs increased rapidly, within 30 min., peaked at 75 min. (ratio to the control = 2.5), and returned to basal level within 90 min. These results prove that uterine epithelial cells in primary culture are able to respond to unspecific mitogen by both rapid expression of c-fos gene and DNA synthesis, suggesting that this cell culture system will be useful in studying the growth regulation in endometrium.  相似文献   

15.
Explants of small intestinal tissue have been cultured from fetal and young rats (from 13-day fetuses to 3-week-old rats). Growth of morphologically typical epithelial cells was obtained from explants of tissue from 14–20 day fetuses. Optimal growth was obtained using tissue from 17-day fetuses with outgrowth from the explant being observed 1-day after explant. Eighty per cent of explants developed epithelial growth by 11 days in culture. Initially, the epithelial outgrowth showed no morphological evidence of differentiation but after 5–10 days in culture differentiation into goblet or elongated cells with alkaline phosphatase activity occurred. Cells with brush borders and goblet cells were identified using electron microscopy. No differentiation occurred if the explant was removed even though growth continued.It was very difficult to culture tissue from fetuses older than 20 days' gestation, and when small intestine of 18–20-day fetuses was divided into two parts (proximal and distal) and cultured separately, growth of epithelial cells from explants of the proximal segment was less successful than that of the distal segment, indicating that the growth ability of these epithelial cells in vitro was closely related to tissue maturation in vivo. In contrast to the apparent relationship between fetal age and successful growth of intestinal epithelial cells, squamous epithelial cells of the esophagus could be grown from explants of 14-day fetus through newborn and 3-week-old rats.  相似文献   

16.
Mouse epidermal melanoblasts/melanocytes preferentially proliferated from disaggregated epidermal cell suspensions derived from newborn mouse skin in a serum-free melanoblast/melanocyte-proliferation medium supplemented with dibutyryl adenosine 3':5'-cyclic monophosphate (DBcAMP) and/or basic fibroblast growth factor (bFGF). Leukemia inhibitory factor (LIF) supplemented to the medium from initiation of primary culture increased the proliferation of melanoblasts or melanocytes as well as the differentiation of melanocytes. Pure cultured primary melanoblasts or melanocytes were further cultured with the medium supplemented with LIF from 14 days (keratinocyte depletion). LIF stimulated the proliferation of melanoblasts or melanocytes as well as the differentiation of melanocytes in the absence of keratinocytes. Moreover, anti-LIF antibody supplemented to the medium from initiation of primary culture inhibited the proliferation of melanoblasts or melanocytes as well as the differentiation of melanocytes. These results suggest that LIF is one of the keratinocyte-derived factors involved in regulating the proliferation and differentiation of neonatal mouse epidermal melanocytes in culture in cooperation with cAMP elevator and bFGF.  相似文献   

17.
In this study, in the primary cell culture of human fetal cardiomyocytes proliferation of myocytes combines with their differentiation. The cells were isolated enzymatically from 19-22 week-old human fetuses and cultured for 14 days. DNA synthesis, ultrastructure and presence of atrial natriuretic peptide (ANP) were examined. In 7 day-old culture, the myocytes make about 60%, in 14 day-old culture--about 50%. Myocytes synthesize DNA and divide mitotically. After a 24 h incubation with 3H-thymidine in 7 day-old culture 1.8 +/- 0.5% of muscle and 25.2 +/- 11.7% of non-muscle cells are labeled, in 14 day-old culture--2.5 +/- 0.5 and 8.1 +/- 1.7% of cells are labeled, respectively. In 7 and 14 day-old cultures the degree of redifferentiation of contractile apparatus in myocytes varies from scattered actin and myosin filaments surrounded by ribosomes to differentiating myofibrils with distinct sarcomeres and Z-discs. Single electron-dense granules, morphologically similar to secretory atrial granules, display ANP-immunoreactivity. Thus, human fetal ventricular cardiomyocytes in cell culture proliferate, differentiate and synthesize ANP for 14 days; this is indicative of vitality of these cells.  相似文献   

18.
19.
20.
Explanted palates of day 12 and day 13 mouse fetuses were cultured in a chemically defined serumless medium for 48-72 h by a suspension culture technique. The palate of day 12 fetuses closed successfully within 72 h and that of day 13 fetuses within 48 h. Both macroscopically and histologically, the in vitro fusion of palatal shelves simulated the palatogenetic process in vivo. This novel technique for culturing the fetal mouse palate may be of potential use for the study of palatogenesis and in developmental toxicology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号