首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The entomopathogenic nematode Heterorhabditis bacteriophora is commercially used in biological control of soil dwelling insect pests. It reproduces by autogamy (hermaphrodites) enabling the production of inbred lines, but also by amphimixis (through mating of male and female) which allows cross-breeding. When H. bacteriophora is produced in liquid culture, copulation of male and female is prevented and reproduction is solely by self-fertilisation of hermaphrodites. When reared in insects, crosses are possible resulting in heterozygous offspring. Heat and desiccation tolerance of these nematodes have been successfully improved by selective breeding. Trait deterioration was prevented by producing homozygous inbreds through consecutive reproduction in liquid culture, the method also used for commercial mass production. In this study, we investigated possible heterosis effects in desiccation and heat tolerance after cross-breeding of homozygous inbred lines of H. bacteriophora. Increased desiccation tolerance of the heterozygous progeny in comparison to homozygous inbred lines was recorded indicating that heterosis is a possible means for further improvement of this trait. In contrast, the heat tolerance of the heterozygous offspring was lower than that of the homozygous population. The results provide evidence for the tremendous potential of classical genetics to improve beneficial traits of a biological control agent and carry domestication of H. bacteriophora a significant step forward.  相似文献   

2.
The entomopathogenic nematode (EPN) Heterorhabditis bacteriophora is used in biological plant protection to control pest insects. In the past, several attempts targeted at an enhancement of the desiccation tolerance of EPN by genetic selection in order to improve their storage stability. The subsequent loss of improved beneficial traits after release of selection pressure has often been reported. In order to stabilize progress of selective breeding, selection during liquid culturing was tested against propagation in host insects. After release of the selection pressure, the tolerance was monitored over additional reproductive cycles in vivo and in vitro to compare the stability of the trait. Furthermore, it was tested whether the virulence of the selected strains would be impaired. Exposure to desiccation stress prior to propagation, in vivo or in vitro, both resulted in increasing desiccation tolerance. When selection pressure was released, the gained tolerance was lost again during in vivo production, whereas the tolerance was maintained at a high level when EPNs were cultured in liquid culture. In Heterorhabditis sp., liquid culture conditions produce highly homozygous, genetically stable inbred lines. The investigation provides easily applicable methods to improve and stabilize beneficial traits of heterorhabditid EPNs through selective breeding in liquid culture. Compared to nematodes from in vivo propagation, production in liquid media yielded EPN of higher virulence.  相似文献   

3.
Genetic selection can be a powerful tool to increase beneficial traits in biological control agents. In this study the heat and desiccation tolerance of the entomopathogenic nematode Heterorhabditis bacteriophora Poinar (Rhabditidomorpha: Strongyloidea) were significantly increased by cross breeding tolerant parental strains and successive genetic selection. These strains originated from a prior screening among 60 strains for increased stress tolerance. During genetic selection, the selection pressure was constantly increased and only the most tolerant 10% of the nematode populations were propagated for further selection steps. Assessment of tolerance and selection for both traits was performed with and without prior adaptation to the stress conditions. Eleven selection steps were performed to increase heat tolerance. A final overall increase in mean heat tolerance of 5.5°C was achieved when nematodes had been adapted to heat stress. For non-adapted tolerance an increase of 3.0°C from 40.1°C to 43.1°C was recorded. For comparison, a commercial strain had a mean tolerated temperature after adaptation of 38.2°C and of 36.5°C without adaptation. For assessment of the desiccation tolerance the mean tolerated water activity (aw-value) of a population was measured. Cross-breeding most tolerant strains reduced the aw-value from 0.67 to 0.65 after adaptation and from 0.9 to 0.7 without prior adaptation. The following six selection steps could not increase the tolerance whether nematodes had been adapted to stress or not. In comparison, the commercial strain tolerated a mean aw-value of 0.985 after adaptation and 0.951 without adaptation. Further investigation will have to assess trait stability and possible trade-off effects. This study is a first important step on the road towards domestication of the entomopathogenic nematode H. bacteriophora.  相似文献   

4.
Quality of biological control products based on entomopathogenic nematodes can be severely damaged due to exposure to high temperature surpassing 40°C. The study screened 36 natural populations and 18 hybrid or inbred strains of Heterorhabditis bacteriophora for their response to high temperature. Nematodes were tested with or without prior adaptation to heat at 35°C for 3 h. Five strains of H. indica and one of H. megidis were also included. Molecular identification using nuclear ribosomal DNA sequences confirmed the designation to the three Heterorhabditis spp. The mean tolerated temperature ranged from 33.3°C to 40.1°C for non-adapted and from 34.8°C to 39.2°C for adapted strain populations. H. indica was the most tolerant, followed by H. bacteriophora and H. megidis. No correlation was recorded between tolerance assessed with and without adaptation to heat, implying that different genes are involved. Correlation between heat tolerance and mean annual temperature at place of origin of the strains was weak. A high variability in tolerance among strains and the relatively high heritability (h2 = 0.68) for the adapted heat tolerance recorded for H. bacteriophora provide an excellent foundation for future selective breeding with the objective to enhance heat tolerance of H. bacteriophora.  相似文献   

5.
The nematode Steinernema carpocapsae infects and kills many pest insects in agro-ecosystems and is commonly used in biocontrol of these pests. Growth of the nematodes prior to distribution for biocontrol commonly results in deterioration of traits that are essential for nematode persistence in field applications. To better understand the mechanisms underlying trait deterioration of the efficacy of natural parasitism in entomopathogenic nematodes, we explored the maintenance of fitness related traits including reproductive capacity, heat tolerance, virulence to insects and ‘tail standing’ (formerly called nictation) among laboratory-cultured lines derived from natural, randomly mating populations of S. carpocapsae. Laboratory cultured nematode lines with fitness-related trait values below wild-type levels regained wild-type levels of reproductive and heat tolerance traits when outcrossed with a non-deteriorated line, while virulence and ‘tail standing’ did not deteriorate in our experiments. Crossbreeding two trait-deteriorated lines with each other also resulted in restoration of trait means to wild-type levels in most crossbred lines. Our results implicate inbreeding depression as the primary cause of trait deterioration in the laboratory cultured S. carpocapsae. We further suggest the possibility of creating inbred lines purged of deleterious alleles as founders in commercial nematode growth.  相似文献   

6.
Out of some isolated Heterorhabditis bacteriophora from Korea, ecological study on two isolates which had different geographical features was investigated. That is, effects of temperature and dose on the pathogenicity and reproduction of two Korean isolates of H. bacteriophora were investigated using Galleria mellonella larvae in the laboratory. The median lethal dose (LD50) decreased with increasing temperature, but increased at 35 °C. The optimal temperatures for infection were 30 °C for H. bacteriophora Jeju strain and 24 °C for H. bacteriophora Hamyang strain. The median lethal time, LT50 of H. bacteriophora Hamyang strain was recorded at 13 °C to 35 °C and that of H. bacteriophora Jeju strain was recorded at 18 °C to 30 °C. The number of established nematodes in G. mellonella larvae was significantly different depending on temperature and dose. When G. mellonella larvae were exposed to 300 infective juveniles (IJs), mortality of G. mellonella gradually increased with exposure time with H. bacteriophora Jeju strain but not with H. bacteriophora Hamyang strain. 87.5% mortality of G. mellonella was recorded by H. bacteriophora Hamyang strain after 1440 min whereas 100% mortality was recorded by H. bacteriophora Jeju strain after 4320 min. The time from infection to the first emergence of nematodes decreased with increasing temperature. Duration of emergence of the two strains in the White traps also decreased with increasing temperature. The highest progeny numbers of H. bacteriophora Jeju strain were 264,602 while those of H. bacteriophora Hamyang strain were 275,744 at the rate of 160 IJs at 24 °C.  相似文献   

7.
The entomopathogenic nematode–bacterium complex Heterorhabditis bacteriophoraPhotorhabdus luminescens is used in commercial biocontrol of insect pests. Tolerance and activity of the nematodes at extreme environmental conditions can limit the shelf life, quality and field performance of nematode-based products. To overcome these limitations, the potential for genetic improvement of the heat tolerance and the activity at low temperature was investigated. Heat tolerance and cold activity are quantitative traits, influenced by several genes and environmental factors. The breeding success for such traits depends on the genetic proportion on the phenotypic variability, the heritability, which was determined by recording the variability within and between homozygous inbred lines. The heritability for heat tolerance was 0.68 and for activity at low temperature 0.38. To increase heat tolerance, 4 selection steps were carried out, which increased the mean tolerated temperature from 38.5 to 39.2 °C. The mean temperature at which the dauer juveniles of H. bacteriophora were active, could be reduced from 7.3 to 6.1 °C during the first 5 selection steps. However, for unknown reasons, it increased during the following 5 steps to 7.1 °C. A screening among different P. luminescens isolates for growth at low temperature resulted in several cold-adapted strains from North America, which reached considerable cell density at 6 °C.  相似文献   

8.
The efficacy of soil treatments of three native entomopathogenic nematodes (Steinernema carpocapsae, S. feltiae and Heterorhabditis bacteriophora) against Tuta absoluta larvae, pupae and adults was determined under laboratory conditions. The effect of three insecticides commonly used against T. absoluta, in the survival, infectivity and reproduction of these nematode strains was also evaluated. When dropped into soil to pupate, soil application of nematodes resulted in a high mortality of larvae: 100, 52.3 and 96.7 % efficacy for S. carpocapsae, S. feltiae and H. bacteriophora respectively. No mortality of pupae was observed and mortality of adults emerging from soil was 79.1 % for S. carpocapsae and 0.5 % for S. feltiae. The insecticides tested had a negligible effect on nematode survival, infectivity and reproduction. No sublethal effects were observed. Infective juveniles that survived to insecticide exposition were able to infect Galleria larvae with no significant differences from the control. The Galleria larvae affected by the three insecticides tested served as suitable hosts for the infection and reproduction of the nematodes. These results suggest that larvae of T. absoluta, falling from leaves following insecticide application, could be suitable hosts for nematodes, thereby increasing their concentration and persistence in the soil.  相似文献   

9.
Genotypic variation among infective juveniles of Heterorhabditis bacteriophora (strain HP88) in heat, desiccation, ultraviolet tolerance, and host-finding ability was assessed by comparing the performance of inbred lines of this entomopathogenic nematode in laboratory assays. Each line consisted of highly homozygous offspring originating from one individual obtained from a natural population. Considerable variation in all four traits was detected among the different inbred lines. The heritability values for heat or ultraviolet tolerance and for host-finding ability were high, indicating that selection should be an efficient way for improving these traits in the population. The results for desiccation tolerance varied considerably within each line. Heritability value was low, indicating that the results were influenced mainly by environmental variation and suggesting that selective breeding for higher desiccation tolerance would be inefficient. Improvement through induction of mutations may be a better alternative in this population.  相似文献   

10.
Entomopathogenic nematodes are used for biological control of insect pests. A method for improved cryopreservation of infective juvenile stage nematodes has been developed using Steinernema carpocapsae and Heterorhabditis bacteriophora. Optimum survival for both species was achieved with 12,000 infective juveniles/ml in glycerol and 7,500/ml in Ringer''s solution. For S. carpocapsae, maximum survival also was observed with 60,000 infective juveniles/ml in glycerol and 25,000/ml in Ringer''s solution. These concentrations resulted in 100% post-cryopreservation survival of S. carpocapsae and 100% retention of original virulence to Galleria mellonella larvae. This is the first report of achieving 100% survival of an entomopathogenic nematode after preservation in liquid nitrogen. Maximum survival of H. bacteriophora following cryopreservation was 87%.  相似文献   

11.
Improving cold tolerance in maize (Zea mays L.) is an important breeding objective, allowing early sowings which result in many agronomic advantages. Using as source the F2 population of B73 × IABO78 single cross, we previously conducted four cycles of divergent recurrent selection for high (H) and low (L) cold tolerance level, evaluated as the difference (DG) between germination at 9.5 °C and at 25 °C in the germinator. Then, we pursued the divergent selection in inbreeding from S1 to S4. This research was conducted to study (1) the direct response to selection (by testing ten S4 L and ten S4 H lines), (2) the trait inheritance (in a complete diallel scheme involving four L and four H lines), (3) the associated responses for cold tolerance in the field (at early and delayed sowings) and (4) the responses for other traits, by testing the ten L and the ten H lines at usual sowing. Selection was effective, leading to appreciable and symmetric responses for DG. Variation among crosses was mainly due to additive effects and the ability to predict hybrid DG based on parental lines DG was appreciable. Associated responses for cold tolerance traits in the field were noticeable, though the relationship between DG and these traits was not outstanding. High tolerance was also associated with early flowering, short plants, less leaves, low kernel moisture, red and thin cob, and flint kernels. These divergently selected lines can represent valuable materials for undertaking basic studies and breeding works concerning cold tolerance.  相似文献   

12.
The ability of entomopathogenic nematodes to tolerate environmental stress such as desiccating or freezing conditions, can contribute significantly to biocontrol efficacy. Thus, in selecting which nematode to use in a particular biocontrol program, it is important to be able to predict which strain or species to use in target areas where environmental stress is expected. Our objectives were to (i) compare inter- and intraspecific variation in freeze and desiccation tolerance among a broad array of entomopathogenic nematodes, and (ii) determine if freeze and desiccation tolerance are correlated. In laboratory studies we compared nematodes at two levels of relative humidity (RH) (97% and 85%) and exposure periods (24 and 48 h), and nematodes were exposed to freezing temperatures (-2°C) for 6 or 24 h. To assess interspecific variation, we compared ten species including seven that are of current or recent commercial interest: Heterorhabditis bacteriophora (VS), H. floridensis, H. georgiana, (Kesha), H. indica (HOM1), H. megidis (UK211), Steinernema carpocapsae (All), S. feltiae (SN), S. glaseri (VS), S. rarum (17C&E), and S. riobrave (355). To assess intraspecific variation we compared five strains of H. bacteriophora (Baine, Fl1-1, Hb, Oswego, and VS) and four strains of S. carpocapsae (All, Cxrd, DD136, and Sal), and S. riobrave (355, 38b, 7-12, and TP). S. carpocapsae exhibited the highest level of desiccation tolerance among species followed by S. feltiae and S. rarum; the heterorhabditid species exhibited the least desiccation tolerance and S. riobrave and S. glaseri were intermediate. No intraspecific variation was observed in desiccation tolerance; S. carpocapsae strains showed higher tolerance than all H. bacteriophora or S. riobrave strains yet there was no difference detected within species. In interspecies comparisons, poor freeze tolerance was observed in H. indica, and S. glaseri, S. rarum, and S. riobrave whereas H. georgiana and S. feltiae exhibited the highest freeze tolerance, particularly in the 24-h exposure period. Unlike desiccation tolerance, substantial intraspecies variation in freeze tolerance was observed among H. bacteriophora and S. riobrave strains, yet within species variation was not detected among S. carpocapsae strains. Correlation analysis did not detect a relationship between freezing and desiccation tolerance.  相似文献   

13.
The free-living, bacterial-feeding nematode Panagrolaimus sp. (strain NFS 24-5) has potential for use as live food for marine shrimp and fish larvae. Mass production in liquid culture is a prerequisite for its commercial exploitation. Panagrolaimus sp. was propagated in monoxenic liquid culture on Escherichia coli and parameters, like nematode density, population dynamics and biomass were recorded and compared with life history table data. A mean maximum nematode density of 174,278 mL?1 and a maximum of 251,000 mL?1 were recorded on day 17 after inoculation. Highest average biomass was 40 g L?1 at day 13. The comparison with life history table data indicated that the hypothetical potential of liquid culture is much higher than documented during this investigation. Nematode development is delayed in liquid culture and egg production per female is more than five times lower than reported from life history trait analysis. The latter assessed a nematode generation time of 7.1 days, whereas the process time at maximum nematode density in liquid culture was 16 days indicating that a reduction of the process time can be achieved by further investigating the influence of nematode inoculum density on population development. The results challenge future research to reduce process time and variability and improve population dynamics also during scale-up of the liquid culture process.  相似文献   

14.
Heterorhabditis bacteriophora are entomopathogenic nematodes that have evolved a mutualism with Photorhabdus luminescens bacteria to function as highly virulent insect pathogens. The nematode provides a safe harbor for intestinal symbionts in soil and delivers the symbiotic bacteria into the insect blood. The symbiont provides virulence and toxins, metabolites essential for nematode reproduction, and antibiotic preservation of the insect cadaver. Approximately half of the 21,250 putative protein coding genes identified in the 77 Mbp high quality draft H. bacteriophora genome sequence were novel proteins of unknown function lacking homologs in Caenorhabditis elegans or any other sequenced organisms. Similarly, 317 of the 603 predicted secreted proteins are novel with unknown function in addition to 19 putative peptidases, 9 peptidase inhibitors and 7 C-type lectins that may function in interactions with insect hosts or bacterial symbionts. The 134 proteins contained mariner transposase domains, of which there are none in C. elegans, suggesting an invasion and expansion of mariner transposons in H. bacteriophora. Fewer Kyoto Encyclopedia of Genes and Genomes Orthologies in almost all metabolic categories were detected in the genome compared with 9 other sequenced nematode genomes, which may reflect dependence on the symbiont or insect host for these functions. The H. bacteriophora genome sequence will greatly facilitate genetics, genomics and evolutionary studies to gain fundamental knowledge of nematode parasitism and mutualism. It also elevates the utility of H. bacteriophora as a bridge species between vertebrate parasitic nematodes and the C. elegans model.  相似文献   

15.
A method for the cryopreservation of third-stage infective juveniles (IJ) of Steinernema carpocapsae and Heterorhabiditis bacteriophora was developed. Cryoprotection was achieved by incubating the nematodes in 22% glycerol (S. carpocapsae) or 14% glycerol (H. bacteriophora) for 24 hours, followed by 70% methanol at 0 C for 10 minutes. The viability of S. carpocapsae frozen in liquid nitrogen as 20 μl volumes spread over cover slip glass was > 80%. Survival of H. bacteriophora frozen on glass varied from 10 to 60% but was improved to > 80% by replacing the glass with filter paper. Cryopreservation and storage of 1-ml aliqots of S. carpocapsae IJ resulted in > 50% survival after 8 months; pathogenicity was retained and normal in vitro development took place. Trehalose and glycerol levels increased and glycogen levels decreased during incubation of S. carpocapsae IJ in glycerol. Normal levels of trehalose, glycerol and glycogen were restored during post freezing rehydration.  相似文献   

16.
Entomopathogenic nematodes in the families Steinernematidae and Heterorhabditidae were isolated from stone-fruit orchards in two Mediterranean regions of Spain. A total of 630 soil samples (210 sites) from Catalonia and 90 soil samples (30 sites) from Murcia were evaluated resulting in 5.2% and 20% of the soils testing positive for nematodes, respectively. Ten steinernematid isolates and three heterorhabditid isolates were recovered using the Galleria mellonella baiting method. Based on morphometric data, molecular data, and cross-breeding experiments the nematode species were identified as Steinernemafeltiae and Heterorhabditis bacteriophora. Environmental tolerance to heat, desiccation and hypoxia, the effect of temperature on infectivity and reproduction and nematode migration in sand columns were compared among isolates and one Steinernema carpocapsae strain. Results showed differences among species and a great variability within species. Beneficial traits for each strain were added up to identify a superior candidate to control Mediterranean flat-headed rootborer, Capnodis tenebrionis. When all analyzed factors were considered, three S. feltiae isolates (Bpa, Sor and M116) obtained the best scores, and when hypoxia was removed, two of the strains (Bpa and Sor) continued ranking superior to other strains.  相似文献   

17.
The entomopathogenic nematode–bacteria complexes Heterorhabditis bacteriophora/Photorhabdus luminescens and Steinernema carpocapsae/Xenorhabdus nematophila are mass produced for use as biological insecticides. Stability of the bacterial partner in culture is essential for maintaining traits important for both biological control and production. Two geographically distinct strains of each bacterial species were isolated from their nematode partners and serially subcultured on in vitro media to assess trait stability. Subculturing resulted in a shift to secondary cell production in one P. luminescens strain and both X. nematophila strains within ten in vitro culture cycles. However, when cell phenotypic variation was controlled in X. nematophila strains by regular selection for primary variants, no trait change was detected in the primary variant after prolonged subculture. When P. luminescens cell phenotypic variation was controlled by selection for primary variants, changes in the primary variant of both strains were noted including reductions in cell and inclusion body size and inclusion body prevalence. Bacterial ability to cause lethal infections following injection into the hemocoel of Tenebrio molitor larvae declined by more than half in primary variants of one P. luminescens strain. Conversely, yield was enhanced, with the subcultured P. luminescens strains showing 53.5 and 75.8% increases in primary cell density. Field adapted traits of primary variant P. luminescens strains tend to deteriorate during in vitro culture as tradeoffs for gains in yield. In vitro producers of the P. luminescens/H. bacteriophora complex must weigh the need for superior bacterial yield against the need to preserve traits important for biological control.  相似文献   

18.
The infective stage of entomopathogenic nematodes ( Heterorhabditis spp.) is the mobile, but developmentally arrested dauer juvenile (DJ). For commercial application, nematodes are produced in liquid culture. Prior to the inoculation of the DJ, their symbiotic bacterium Photorhabdus luminescens is cultured. The DJ exit from the arrested stage (recovery) and develop to reproductive adults. Recovery is a response to bacterial food signals. In liquid culture the percentage of DJs recovering from the DJ stage is highly variable, which significantly influences the number of reproducing hermaphrodites and the final DJ yields. The liquid culture yield is defined by the number of DJ mL -1 harvested from the medium. The heritability of the disposition to recover from the DJ stage and of the final DJ yield in liquid culture has been evaluated. From a hybrid strain of H. bacteriophora 30 homozygous inbred lines were established by inbreeding over seven generations. These inbred lines were propagated in liquid culture and DJ recovery and yields were recorded. The calculated heritability for the DJ recovery was low ( h 2 = 0.38). No significant genetic variability could be detected for this trait. In contrast, a high heritability ( h 2 = 0.90) was found for the total number of DJs produced in the liquid medium.  相似文献   

19.
The current work investigated the immune response of Spodoptera exigua Hübner (Lepidoptera: Noctuidae) when challenged with two entomopathogenic nematodes (EPNs), Steinernema carpocapsae (Weiser) and Heterorhabditis bacteriophora (Poinar). The cellular and humoral defences were considered in this study. The haemocytes were observed around H. bacteriophora, but no haemocyte was found around S. carpocapsae. In larvae treated with H. bacteriophora and S. carpocapsae, total haemocyte counts (THCs) reached maximum levels at 4 and 12 hours post-injection (hpi), respectively, but decreased with the proliferation of symbiotic bacteria. In the humoral defence, there was no significant difference between EPNs on phenoloxidase (PO) activity. Phospholipase A2 (PLA2) and protease activity levels in the initial time post-injection were higher in the larvae treated with S. carpocapsae than in H. bacteriophora. In the following, the roles of symbiotic bacteria and axenic infective juveniles (IJs) in suppressing the immune system were studied separately. Maximum THC levels were observed in larvae treated with axenic nematodes and minimum THC levels were recorded in the live Xenorhabdus nematophila treatment. In the humoral defence, PLA2 activity with axenic S. carpocapsae was suppressed at 4 hpi, while in monoxenic S. carpocapsae the PLA2 level was increased to the maximum amount at 8 hpi. PO activity with monoxenic S. carpocapsae decreased gradually by 4 hpi; in live X. nematophila, it decreased from 0.5 to 16 hpi, while in axenic S. carpocapsae, it increased slowly from 0.5 to 16 hpi. The current work showed the synergistic effect of nematode and its bacterium in the suppression of the immune system and highlighted the role of the symbiont in inhibition of immune responses.  相似文献   

20.
Biological characteristics of two strains of the entomopathogenic nematode, Heterorhabditis floridensis (332 isolated in Florida and K22 isolated in Georgia) were described. The identity of the nematode’s symbiotic bacteria was elucidated and found to be Photorhabdus luminescens subsp. luminescens. Beneficial traits pertinent to biocontrol (environmental tolerance and virulence) were characterized. The range of temperature tolerance in the H. floridensis strains was broad and showed a high level of heat tolerance. The H. floridensis strains caused higher mortality or infection in G. mellonella at 30°C and 35°C compared with S. riobrave (355), a strain widely known to be heat tolerant, and the H. floridensis strains were also capable of infecting at 17°C whereas S. riobrave (355) was not. However, at higher temperatures (37°C and 39°C), though H. floridensis readily infected G. mellonella, S. riobrave strains caused higher levels of mortality. Desiccation tolerance in H. floridensis was similar to Heterorhabditis indica (Hom1) and S. riobrave (355) and superior to S. feltiae (SN). H. bacteriophora (Oswego) and S. carpocapsae (All) exhibited higher desiccation tolerance than the H. floridensis strains. The virulence of H. floridensis to four insect pests (Aethina tumida, Conotrachelus nenuphar, Diaprepes abbreviatus, and Tenebrio molitor) was determined relative to seven other nematodes: H. bacteriophora (Oswego), H. indica (Hom1), S. carpocapsae (All), S. feltiae (SN), S. glaseri (4-8 and Vs strains), and S. riobrave (355). Virulence to A. tumida was similar among the H. floridensis strains and other nematodes except S. glaseri (Vs), S. feltiae, and S. riobrave failed to cause higher mortality than the control. Only H. bacteriophora, H. indica, S. feltiae, S. riobrave, and S. glaseri (4-8) caused higher mortality than the control in C. nenuphar. All nematodes were pathogenic to D. abbreviatus though S. glaseri (4-8) and S. riobrave (355) were the most virulent. S. carpocapsae was the most virulent to T. molitor. In summary, the H. floridensis strains possess a wide niche breadth in temperature tolerance and have virulence and desiccation levels that are similar to a number of other entomopathogenic nematodes. The strains may be useful for biocontrol purposes in environments where temperature extremes occur within short durations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号