首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have established the integrase of the Streptomyces phage ϕBT1 as a tool for eukaryotic genome manipulation. We show that the ϕBT1 integrase promotes efficient reciprocal and conservative site-specific recombination in vertebrate cells and in Schizosaccharomyces pombe, thus establishing the utility of this protein for genome manipulation in a wide range of eukaryotes. We show that the ϕBT1 integrase can be used in conjunction with Cre recombinase to promote the iterative integration of transgenic DNA. We describe five cycles of iterative integration of a candidate mouse centromeric sequence 80 kb in length into a human mini-chromosome within a human-Chinese hamster hybrid cell line. These results establish the generality of the iterative site-specific integration technique.  相似文献   

2.
Phage R4 integrase mediates site-specific integration in human cells.   总被引:7,自引:0,他引:7  
E C Olivares  R P Hollis  M P Calos 《Gene》2001,278(1-2):167-176
The R4 integrase is a site-specific, unidirectional recombinase derived from the genome of phage R4 of Streptomyces parvulus. Here we define compact attB and attP recognition sites for the R4 integrase and express the enzyme in mammalian cells. We demonstrate that R4 integrase functions in human cells, performing efficient and precise recombination between R4 attB and attP sites cloned on an extrachromosomal vector. We also provide evidence that the enzyme can mediate integration of an incoming plasmid bearing an attB or attP site into endogenous sequences in the human genome. Furthermore, when R4 attB and attP sites are placed into the human genome, either by random integration or at a specific sequence by using the phi C31 integrase, they act as targets for integration of incoming plasmids bearing R4 att sites. The R4 integrase has immediate utility as a site-specific integration tool for genome engineering, as well as potential for further development.  相似文献   

3.
Qu L  Ma Q  Zhou Z  Ma H  Huang Y  Huang S  Zeng F  Zeng Y 《遗传学报》2012,39(5):217-224
The Streptomyces phage φC31 integrase can efficiently target attB-bearing transgenes to endogenous pseudo attP sites within mammalian genomes.To better understand the activity ofφC31 integrase in the bovine genome,DNA sequences of 44 integration events were analyzed,and 32 pseudo attP sites were identified.The majority of these sites share a sequence motif that contains inverted repeats and has similarities to wild-type attP site.Genomic DNA flanking these sites typically contained repetitive sequence elements,such as short and long interspersed repetitive elements.These sequence features indicate that DNA sequence recognition plays an important role in guidingφC31-mediated site-specific integration.In addition,BF27 integration hotspot sites were identified in the bovine genome, which accounted for 13.6%of all isolated integration events and mapped to an intron of the deleted in liver cancer 1(DLC1) gene.Also we found that the pseudo attP sites in the bovine genome had other features in common with those in the human genome.This study represents the first time that the sequence features of pseudo attP sites in the bovine genome were analyzed.We conclude that this site-specific integrase system has great potential for applied modifications of the bovine genome.  相似文献   

4.
Groth AC  Fish M  Nusse R  Calos MP 《Genetics》2004,166(4):1775-1782
The phiC31 integrase functions efficiently in vitro and in Escherichia coli, yeast, and mammalian cells, mediating unidirectional site-specific recombination between its attB and attP recognition sites. Here we show that this site-specific integration system also functions efficiently in Drosophila melanogaster in cultured cells and in embryos. Intramolecular recombination in S2 cells on transfected plasmid DNA carrying the attB and attP recognition sites occurred at a frequency of 47%. In addition, several endogenous pseudo attP sites were identified in the fly genome that were recognized by the integrase and used as substrates for integration in S2 cells. Two lines of Drosophila were created by integrating an attP site into the genome with a P element. phiC31 integrase injected into embryos as mRNA functioned to promote integration of an attB-containing plasmid into the attP site, resulting in up to 55% of fertile adults producing transgenic offspring. A total of 100% of these progeny carried a precise integration event at the genomic attP site. These experiments demonstrate the potential for precise genetic engineering of the Drosophila genome with the phiC31 integrase system and will likely benefit research in Drosophila and other insects.  相似文献   

5.
Despite extensive similarities between the genomes of the Streptomyces temperate phages phiC31 and phiBT1, the attP-int loci are poorly conserved. Here we demonstrate that phiBT1 integrates into a different attachment site than phiC31. phiBT1 attB lies within SCO4848 encoding a 79-amino-acid putative integral membrane protein. Integration vectors based on phiBT1 integrase were shown to have a broad host range and are fully compatible with those based on the phiC31 attP-int locus.  相似文献   

6.
Phage integrases catalyze site-specific, unidirectional recombination between two short att recognition sites. Recombination results in integration when the att sites are present on two different DNA molecules and deletion or inversion when the att sites are on the same molecule. Here we demonstrate the ability of the φC31 integrase to integrate DNA into endogenous sequences in the mouse genome following microinjection of donor plasmid and integrase mRNA into mouse single-cell embryos. Transgenic early embryos and a mid-gestation mouse are reported. We also demonstrate the ability of the φC31, R4, and TP901-1 phage integrases to recombine two introduced att sites on the same chromosome in human cells, resulting in deletion of the intervening material. We compare the frequencies of mammalian chromosomal deletion catalyzed by these three integrases in different chromosomal locations. The results reviewed here introduce these bacteriophage integrases as tools for site-specific modification of the genome for the creation and manipulation of transgenic mammals.  相似文献   

7.
Transgenic silkworms can be useful for investigating the functions of genes in the post-genomic era. However, the common method of using a transposon as an insertion tool may result in the random integration of a foreign gene into the genome and suffer from a strong position effect. To overcome these problems, it is necessary to develop a site-specific integration system. It is known that phiC31 integrase has the capacity to mediate recombination between the target sequences attP and attB. To test the availability of site-specific integration in the silkworm, we first examined the efficiency of recombination between the target sites of the two plasmids in silkworm embryos and found that the frequency of recombination was very high. Then we constructed a host strain that possessed the target sequence attP using the common method. We injected the donor plasmid together with the phiC31 integrase mRNA into the embryos of the host strain and obtained positive lines. Structural analysis of the lines showed that site-specific integration occurred by recombination between the genomic attP site and the attB site of the donor plasmid. We can conclude from the results that phiC31 integrase has the ability to mediate the site-specific integration of transgenes into the silkworm chromosome.  相似文献   

8.
SSV1 is a virus infecting the extremely thermophilic archaeon Sulfolobus shibatae. The viral-encoded integrase is responsible for site-specific integration of SSV1 into its host genome. The recombinant enzyme was expressed in Escherichia coli, purified to homogeneity, and its biochemical properties investigated in vitro. We show that the SSV1 integrase belongs to the tyrosine recombinases family and that Tyr(314) is involved in the formation of a 3'-phosphotyrosine intermediate. The integrase cleaves both strands of a synthetic substrate in a temperature-dependent reaction, the cleavage efficiency increasing with temperature. A discontinuity was observed in the Arrhenius plot above 50 degrees C, suggesting that a conformational transition may occur in the integrase at this temperature. Analysis of cleavage time course suggested that noncovalent binding of the integrase to its substrate is rate-limiting in the cleavage reaction. The cleavage positions were localized on each side of the anticodon loop of the tRNA gene where SSV1 integration takes place. Finally, the SSV1 integrase is able to cut substrates harboring mismatches in the binding site. For the cleavage step, the chemical nature of the base in position -1 of cleavage seems to be more important than its pairing to the opposite strand.  相似文献   

9.
Temperate phages have the ability to maintain their genome in their host, a process called lysogeny. For most, passive replication of the phage genome relies on integration into the host''s chromosome and becoming a prophage. Prophages remain silent in the absence of stress and replicate passively within their host genome. However, when stressful conditions occur, a prophage excises itself and resumes the viral cycle. Integration and excision of phage genomes are mediated by regulated site-specific recombination catalyzed by tyrosine and serine recombinases. In the KplE1 prophage, site-specific recombination is mediated by the IntS integrase and the TorI recombination directionality factor (RDF). We previously described a sub-family of temperate phages that is characterized by an unusual organization of the recombination module. Consequently, the attL recombination region overlaps with the integrase promoter, and the integrase and RDF genes do not share a common activated promoter upon lytic induction as in the lambda prophage. In this study, we show that the intS gene is tightly regulated by its own product as well as by the TorI RDF protein. In silico analysis revealed that overlap of the attL region with the integrase promoter is widely encountered in prophages present in prokaryotic genomes, suggesting a general occurrence of negatively autoregulated integrase genes. The prediction that these integrase genes are negatively autoregulated was biologically assessed by studying the regulation of several integrase genes from two different Escherichia coli strains. Our results suggest that the majority of tRNA-associated integrase genes in prokaryotic genomes could be autoregulated and that this might be correlated with the recombination efficiency as in KplE1. The consequences of this unprecedented regulation for excisive recombination are discussed.  相似文献   

10.
Streptomyces phage phiC31 integrase was found to mediate site-specific integration of foreign genes at pseudo attP sites of genomes in human, mouse, rat, and Drosophila. This paper reports that phiC31 integrase can also mediate homologous recombination between attB and pseudo attP sites in bovine cells and foreign gene integration was increased at least 2-fold in bovine fibroblasts or Madin-Darby bovine kidney (MDBK) cells. Two intrinsic pseudo attP sites named BpsF1 and BpsM1 located in the inter-gene regions on chromosome 28 and 19, respectively, were identified in bovine genome. These pseudo attP sites shared similar characteristics with those from other species as previously described. Our study demonstrated that the phiC31 integrase system provides a new potential for genetic engineering of the bovine genome and might be beneficial for the research on ruminant.  相似文献   

11.
The nucleotide sequence of the leftmost 2,363 base pairs of the HP1 genome, which includes the attachment site (attP) and the integration region, was determined. This sequence contained an open reading frame encoding a 337-residue polypeptide, which is a member of the integrase family of site-specific recombination proteins as judged by sequence comparison. The open reading frame was located immediately adjacent to the att site and was oriented so that initiation of translation would begin distal to the att site and end in its immediate vicinity. Expression of this DNA segment in Escherichia coli provided extracts which promoted site-specific recombination between plasmids containing cloned HP1 attP and Haemophilus influenzae attB sites. This recombination was directional, since no reaction was observed between plasmids containing attR and attL sites. The reaction was stimulated by the accessory protein integration host factor of E. coli. Evidence was also obtained that the integration host factor influenced the levels of HP1 integrase expression. The deduced amino acid sequence of HP1 integrase has remarkable similarity to that deduced for the integrase of coliphage 186.  相似文献   

12.
Mutant lambda integrases catalyze site-specific recombination reactions inside mammalian cells. Here we demonstrate that the integrase system can be used to eliminate resistance marker genes from the genome of mouse embryonic stem cells. So-called integrative and excisive recombination pathways led to the precise deletion of the neomycin gene, which was inserted together with a flanking pair of directly repeated recombination sites into the ROSA26 locus by standard targeting techniques. The excision of the resistance gene led to the expression of enhanced green fluorescence protein, which served as a means to sort out cells that had undergone site-specific recombination. Southern analysis and DNA sequencing confirmed that strand exchange reactions had occurred in the genome as expected. Hence, the integrase system may be used in conjunction with other site-specific recombinases as a tool in genome manipulation protocols.  相似文献   

13.
Mycobacteriophage L5, a temperate phage of the mycobacteria, forms stable lysogens in Mycobacterium smegmatis via site-specific integration of the phage genome. Recombination occurs within specific phage and bacterial attachment sites and is catalyzed by the phage-encoded integrase protein in vivo. We describe here the overexpression and purification of L5 integrase and its ability to mediate integrative recombination in vitro. We find that L5 integrase-mediated recombination is greatly stimulated by extracts of M. smegmatis but not by Escherichia coli extracts, purified E. coli integration host factor, or purified HU, indicating the presence of a novel mycobacterial integration host factor.  相似文献   

14.
Current techniques for genetic engineering of the silkworm Bombyx mori genome utilize transposable elements, which result in positional effects and insertional mutagenesis through random insertion of exogenous DNA. New methods for introducing transgenes at specific positions are therefore needed to overcome the limitations of transposon-based strategies. Although site-specific recombination systems have proven powerful tools for genome manipulation in many organisms, their use has not yet been well established for the integration of transgenes in the silkworm. We describe a method for integrating target genes at pre-defined chromosomal sites in the silkworm via phiC31/att site-specific recombination system-mediated cassette exchange. Successful recombinase-mediated cassette exchange (RMCE) was observed in the two transgenic target strains with an estimated transformation efficiency of 3.84–7.01%. Our results suggest that RMCE events between chromosomal attP/attP target sites and incoming attB/attB sites were more frequent than those in the reciprocal direction. This is the first report of in vivo RMCE via phiC31 integrase in the silkworm, and thus represents a key step toward establishing genome manipulation technologies in silkworms and other lepidopteran species.  相似文献   

15.
The Mycobacterium tuberculosis prophage-like element phiRv1 encodes a site-specific recombination system utilizing an integrase of the serine recombinase family. Recombination occurs between a putative attP site and the host chromosome, but is unusual in that the attB site lies within a redundant repetitive element (REP13E12) of which there are seven copies in the M. tuberculosis genome; four of these elements contain attB sites suitable for phiRv1 integration in vivo. Although the mechanism of directional control of large serine integrases is poorly understood, a recombination directionality factor (RDF) has been identified that is required for phiRv1 integrase-mediated excisive recombination in vivo. Here we describe defined in vitro recombination reactions for both phiRv1 integrase-mediated integration and excision and show that the phiRv1 RDF is not only required for excision but inhibits integrative recombination; neither reaction requires DNA supercoiling, host factors, or high-energy cofactors. Integration, excision and excise-mediated inhibition of integration require simple substrates sites, indicating that the control of directionality does not involve the manipulation of higher-order protein-DNA architectures as described for the tyrosine integrases.  相似文献   

16.
The int gene of bacteriophage HK022, coding for the integrase protein, was cloned in a mammalian expression vector downstream of the human cytomegalovirus (CMV) promoter. Green monkey kidney cells (COS-1) and mouse embryo fibroblast cells (NIH3T3) transiently transfected with the recombinant plasmid express the integrase protein. Co-transfection of this plasmid with reporter plasmids for site-specific recombination and PCR analyses show that the integrase promotes site-specific integration as well as excision. These reactions occurred without the need to supply integration host factor and excisionase, the accessory proteins that are required for integrase-promoted site-specific recombination in vitro as well as in the natural host Escherichia coli.  相似文献   

17.
链霉菌噬菌体fC31整合酶是一种位点特异性重组酶(Site-specific recombinase, SSR), 可介导链霉菌噬菌体attP位点(Phage attachment site)和链霉菌基因组attB位点(Bacterial attachment site)间的单向重组。为探讨它能否应用于卵母细胞特定基因的重组, 文章采用卵巢针刺取卵法采集生发泡(GV)期小鼠卵母细胞, 将卵透明带糖蛋白3(ZP3)启动子驱动的fC31整合酶表达载体pZP3-INT和检测fC31整合酶位点特异性重组功能的重组质粒载体pBCPB+, 通过显微注射导入到小鼠卵母细胞中。培养48 h后, RT-PCR检测fC31整合酶mRNA表达以及PCR检测pBCPB+载体发生重组的情况。结果表明: 载体pZP3-INT在卵母细胞中表达fC31 整合酶mRNA; 并且pBCPB+载体发生了位点特异性重组, 提示fC31整合酶在卵母细胞中可以介导位点特异性重组反应。  相似文献   

18.
The site-specific integrase of actinophage R4 belongs to the serine recombinase family. During the lysogenization process, it catalyzes site-specific recombination between the phage genome and the chromosome of Streptomyces parvulus 2297. An in vivo assay using Escherichia coli cells revealed that the minimum lengths of the recombination sites attB and attP are 50-bp and 49-bp, respectively, for efficient intramolecular recombination. The in vitro assay using overproduced R4 integrases as a hexahistidine (His(6))-glutathione-S-transferase (GST)-R4 integrase fusion protein, showed that the purified protein preparation retains the site-specific recombination activity which catalyzes the site-specific recombination between attP and attB in the intermolecular reaction. It also revealed that the inverted repeat within attP is essential for efficient in vitro intermolecular recombination. In addition, a gel shift assay showed that His(6)-GST-R4 integrase bound to the 50-bp attB and 49-bp attP specifically. Moreover, based on a detailed comparison analysis of amino acid sequences of serine integrases, we found the DNA binding region that is conserved in the serine recombinase containing the large C-terminal domain. Based on the results presented on this report, attachment sites needed in vitro and in vivo for site-specific recombination by the R4 integrase have been defined more precisely. This knowledge is useful for developing new genetic manipulation tools in the future.  相似文献   

19.
We previously established that the phage phiC31 integrase, a site-specific recombinase, mediates efficient integration in the human cell environment at attB and attP phage attachment sites on extrachromosomal vectors. We show here that phage attP sites inserted at various locations in human and mouse chromosomes serve as efficient targets for precise site-specific integration. Moreover, we characterize native "pseudo" attP sites in the human and mouse genomes that also mediate efficient integrase-mediated integration. These sites have partial sequence identity to attP. Such sites form naturally occurring targets for integration. This phage integrase-mediated reaction represents an effective site-specific integration system for higher cells and may be of value in gene therapy and other chromosome engineering strategies.  相似文献   

20.
Phage integrases are enzymes that catalyze unidirectional site-specific recombination between the attachment sites of phage and host bacteria, attP and attB, respectively. We recently developed an in vivo intra-molecular site-specific recombination system based on actinophage TG1 serine-type integrase that efficiently acts between attP and attB on a single plasmid DNA in heterologous Escherichia coli cells. Here, we developed an in vivo inter-molecular site-specific recombination system that efficiently acted between the att site on exogenous non-replicative plasmid DNA and the corresponding att site on endogenous plasmid or genomic DNA in E. coli cells, and the recombination efficiencies increased by a factor of ~101–3 in cells expressing TG1 integrase over those without. Moreover, integration of attB-containing incoming plasmid DNA into attP-inserted E. coli genome was more efficient than that of the reverse substrate configuration. Together with our previous result that purified TG1 integrase functions efficiently without auxiliary host factors in vitro, these in vivo results indicate that TG1 integrase may be able to introduce attB-containing circular DNAs efficiently into attP-inserted genomes of many bacterial species in a site-specific and unidirectional manner. This system thus may be beneficial to genome engineering for a wide variety of bacterial species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号