首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In order to establish the synaptic relationship between the primary afferent terminals and the cuneothalamic relay neurons in the cuneate nucleus, the combined retrograde transport of horseradish peroxidase (HRP) and experimental degeneration have been applied in the young adult albino rats. 10 to 30% HRP was injected contralaterally (0.5 microliter) in the ventrobasal thalamic nucleus and multiple dorsal rhizotomies (C5 to T1) in the cervicothoracic dorsal roots were performed on the side ipsilateral to the cuneate nucleus. The results showed that: The cuneo-thalamic relay (CTN) neurons were the major neuronal type of the nucleus. More than 55% of neurons have been labelled. These neurons were 18-30 micron X 15-25 micron in sizes. They distributed in the whole rostrocaudal extent of the nucleus, particularly dense in the middle portion. The cells varied from round, oval, spindle to multipolar in shapes. They were rich in cytoplasmic organelles and had well-developed roughed endoplasmic reticulum. Their nucleus was either centrally or eccentrically located and was rather regular. The HRP-positive granules were randomly distribute in the perikaryon, dendrites and initial segment of the axons; At least three types of the experimental degeneration of the primary afferent terminals (PAT) were observed in the cuneate nucleus two to three days after dorsal rhizotomy, namely, electron-dense, granular and neurofilamentous. These PAT were mostly large and contained round vesicles. They were commonly found within synaptic complex, in which they were presynaptic to dendrites of various sizes, and were themselves postsynaptic to smaller axon terminals containing flattened vesicles. Degenerating PAT forming isolated synapses were less commonly seen; The PAT in the synaptic complex were directly presynaptic to the dendrites originating from the CTN neurons. The dendrites forming PAT-CTN synases were of large and medium-sized. The PAT did not form direct axo-somatic synapses with the somata of CTN or of any other cell types in the cuneate nucleus.  相似文献   

2.
The origin of the axon was studied in Golgi-Kopsch impregnated specimens prepared from the spinal cord and brain of adult rats. Five types of neurons were sampled: large ventral horn neurons, neurons in the intermediate zone and ventral horn of the spinal cord, antenna-type neurons in the spinal dorsal horn, neurons in the thalamus, and neurons in the hypothalamus. The axon originated from the perikaryon in 76% of the large ventral horn neurons and in 64% of the neurons in the thalamus. In contrast, the axon emerged from one of the dendrites in 75% of the neurons in the intermediate zone and the ventral horn of the spinal cord and in 68% of the neurons in the hypothalamus. In the case of the antenna-type neurons in the spinal dorsal horn, the axon often originated from one of the dendrites, but never from a dorsally oriented dendrite. The mean distance of the axon hillock of dendritic origin was the longest in the neurons in the intermediate zone and the ventral horn of the spinal cord. The size of the axon hillock was proportional to the size of the perikaryon. The impregnated portion of the axon was longest in the large ventral horn neurons.  相似文献   

3.
Wang  B.  Gonzalo-Ruiz  A.  Sanz  J.M.  Campbell  G.  Lieberman  A.R. 《Brain Cell Biology》2002,30(5):427-441
The ultrastructural characteristics, distribution and synaptic relationships of identified, glutamate-enriched thalamocortical axon terminals and cell bodies in the retrosplenial granular cortex of adult rats is described and compared with GABA-containing terminals and cell bodies, using postembedding immunogold immunohistochemistry and transmission electron microscopy in animals with injections of cholera toxin- horseradish peroxidase (CT-HRP) into the anterior thalamic nuclei. Anterogradely labelled terminals, identified by semi-crystalline deposits of HRP reaction product, were approximately 1 μm in diameter, contained round, clear synaptic vesicles, and established asymmetric (Gray type I) synaptic contacts with dendritic spines and small dendrites, some containing HRP reaction product, identifying them as dendrites of corticothalamic projection neurons. The highest densities of immunogold particles following glutamate immunostaining were found over such axon terminals and over similar axon terminals devoid of HRP reaction product. In serial sections immunoreacted for GABA, these axon terminals were unlabelled, whereas other axon terminals, establishing symmetric (Gray type II) synapses were heavily labelled. Cell bodies of putative pyramidal neurons, containing retrograde HRP label, were numerous in layers V–VI; some were also present in layers I–III. Most were overlain by high densities of gold particles in glutamate but not in GABA immunoreacted sections. These findings provide evidence that the terminals of projection neurons make synaptic contact with dendrites and dendritic spines in the ipsilateral retrosplenial granular cortex and that their targets include the dendrites of presumptive glutamatergic corticothalamic projection neurons.  相似文献   

4.
A mouse monoclonal antibody (JD1) to Hydra attenuata using the peroxidase-antiperoxidase (PAP) method revealed unipolar, bipolar, and multipolar sensory and ganglion cells in the head region of H. littoralis. Neurons isolated from macerated hypostomes and tentacles were classified according to the number of their cytoplasmic processes and the position of the cilium, when present, relative to the perikaryon. PAP-stained sensory cells had an apical ciliary cone, whereas ganglion cells did not. Neurons with cytoplasmic processes longer than 50 microns stained faintly, whereas those with processes shorter than 50 microns in length stained mainly dense brown. Unipolar neurons had an oval, crescent, round, or elliptic perikaryon with a single short axon. The perikaryal shape of bipolar neurons varied from round to tall triangular, short triangular, crescent, oval, or elliptic with two oppositely directed symmetric or asymmetric processes. Asymmetric processes were present in a bipolar sensory cell with a long apical cilium typical of gastrodermal sensory cells. One type of bipolar ganglion cell had a short perikaryal cilium. Another type had neurites longer than 50 microns. We found seven morphological variations of multipolar neurons, including one with an apical knob, two with a short perikaryal cilium, two with cytoplasmic loops near the perikaryon, one with perpendicular processes projecting from the major neurites, and one with a branched process longer than 50 microns opposite a tangled mass of neurites.  相似文献   

5.
A Golgi study of the isthmic nuclei in the pigeon (Columba Iivia)   总被引:1,自引:0,他引:1  
Summary The isthmic nuclei of the pigeon were studied with the use of three different Golgi techniques. The nucleus isthmo-opticus (IO) consists of a single cell type in which all dendrites of one neuron take the same direction and ramify at identical distances from the perikaryon to form dense dendritic arborizations. The cell bodies of the IO neurons form two parallel layers. The dendrites of these neurons always extend to the area between the two layers so that the dendritic arborizations of opposite neurons overlap. A model of the cellular organization of the IO was constructed based upon these morphological characteristics. The neurons of the n. isthmi/pars parvocellularis (Ipc) have oval perikarya and long, smooth, infrequently branching dendrites. All neurons except those at the borders of the nucleus show the same dorsoventral orientation in their dendritic arborizations and together with their afferents seem to have a columnar organization. The dendrites of the neurons located at the margin of the nucleus ramify within the Ipc along its border. The n. semilunaris (Slu) consists of neurons with round somata that have on an average three dendrites with small spines. The axons leave the nucleus from the medial side and join the lemniscus lateralis. The neurons of the n. isthmi/pars magnocellularis (Imc) comprise a generalized isodendritic type resembling the cells of the reticular formation. Axons from the tectum penetrate the nucleus, making numerous en-passant contacts with several neurons.  相似文献   

6.
The geometric and subcellular organization of axon arbors distributes and regulates electrical signaling in neurons and networks, but the underlying mechanisms have remained elusive. In rodent cerebellar cortex, stellate interneurons elaborate characteristic axon arbors that selectively innervate Purkinje cell dendrites and likely regulate dendritic integration. We used GFP BAC transgenic reporter mice to examine the cellular processes and molecular mechanisms underlying the development of stellate cell axons and their innervation pattern. We show that stellate axons are organized and guided towards Purkinje cell dendrites by an intermediate scaffold of Bergmann glial (BG) fibers. The L1 family immunoglobulin protein Close Homologue of L1 (CHL1) is localized to apical BG fibers and stellate cells during the development of stellate axon arbors. In the absence of CHL1, stellate axons deviate from BG fibers and show aberrant branching and orientation. Furthermore, synapse formation between aberrant stellate axons and Purkinje dendrites is reduced and cannot be maintained, leading to progressive atrophy of axon terminals. These results establish BG fibers as a guiding scaffold and CHL1 a molecular signal in the organization of stellate axon arbors and in directing their dendritic innervation.  相似文献   

7.
The Golgi morphology of the neurons in the human interthalamic adhesion (IA, which is not present in every human brain) is very variable. Four types of Golgi-impregnated neurons were found in the adult human IA: (1) fusiform neurons (most characteristic of the human IA); (2) neurons with an oval perikaryon; (3) triangular neurons (rarely found), and (4) multipolar neurons (polygonal perikaryon and at least 4 primary dendrites). Fusiform neurons, as well as triangular and multipolar ones, belong to the isodendritic type, but the neurons with oval perikarya do not.  相似文献   

8.
The slowly adapting abdominal stretch receptors of Orconectes limosus (RAF) have been investigated morphologically; 1. Despite their variety of size and shape all slowly adapting receptor neurons show common characteristic features which in addition distinguish them clearly from the fast adapting receptor neuron type SN2. The slightly globular cells have always several dendrites (often 4-6). They originate apical or lateral to the neuron, are oriented mainly longitudinal to the muscle fibres and are brodly ramified. The fine dendrites form a 3-dimensional fibrilar network. 2. The structure and distribution of the connective tissue in the "intertendon" of the muscle receptor organ correspond to the dendrite ramification; In this area, some muscle fibres end direktly at tendon-like connective tissue structures, but a number of different fibres run uninerruptedly through the whole muscular fascicle. 3. The perikaryon of every sensory neuron shows 2 "cytoplasm types" which are clearly distinguishable one against the other. A characteristic feature of the granular-lamellar neuroplasm that closely surrounds the nucleus are many flat vesicles of the granular endoplasmatic reticulum, accumulations of free ribosomes, numerous mitochondria and Golgi fields. The fibril-rich neuroplasm on the contrary contains only few mitochondria, but very many neurofilaments, here and there also neurotubuli. It projects directly into the dendrites and neuritek. Cell bodies, axon and dendrites are surrounded alternatingly by sheath cells and connective tissue of collagenous nature. The innermost layer of the coat cells borders directly on the neuron membrane. Finer dendrites are enclosed by nothing more but a thin layer of sheath cell plasm and intercellular substance. The dendrite terminals are either stored directly in connective tissue ground substance or border immediately on the sarcoplasm. 5. The axo-dendritic or axo-somatic synapses, respectively, contain numerous ellipsoidal (250-350 X 400-500 A), but also many spherical, vesicles. Some vesicles have a slightly larger diameter (700-900 A) and contain an electron-dense core. The synaptic gap measures 150 to 200 A. The neuromuscular (supposedly excitatory) synapses are filled much lighter with vesicles as compared with those just mentioned, which show a relatively unique form and size (nearly all spherical, phi 400-500 A). There are less vesicles with an electron-dense centre. On the average, the synaptic gap is broader (200-250 A) and the contact zone is larger. Apart from these, terminals could be observed in the dendritic ramification area, too, resembling the axo-dendritic and axo-somatic ones, respectively. 6. Finer dendrite branches contain vesicles differing slightly from those mentioned above as far as shape and size are concerned. Their diameters vary between 500 and 1 000 A. "Dense bodies" could be observed sporadically in these vesicles.  相似文献   

9.
We have carried out an electron microscopic investigation of retrogradely HRP-labeled nonpyramidal neurons in layers V and VI of the primary auditory cortex (AI), which are sources of transcallosal projections. We have established that on average 15.8±1.7% of the perikaryon surface of these cells is occupied by axo-somatic synapses. We detected in ultrathin sections from two to nine synapses on the profiles of the perikaryon of callosal neurons. All of these axo-somatic synapses are formed by axon terminals containing small flat synaptic vesicles and are characterized by symmetrical contacts. The length of the cross section of the contacts was on average 1.6±0.1 µm. The axon terminals of callosal fibers, antegradely labeled by the enzyme, form in the deep layers of the cortex asymmetrical synapses on the spines and stems of the dendrites. A possible functional significance of the axo-somatic synapses in the production of the impulse activity of callosal neurons in the deep layers of the AI region, is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 5, pp. 549–556, May, 1991.  相似文献   

10.
Summary Using histochemical procedures to reveal the presence, of nucleoside diphosphatase (NDPase), thiamine pyrophosphatase (TPPase) and acid phosphatase (AcPase), we investigated the appcarance, distribution and ultrastructure of amoeboid and microglial cells in the cerebral hemispheres of chick embryos and young chicks, in order to clucidate the relationship between these two cell populations. On day 6 of incubation, a few round cells exhibiting NDPase, TPPase and AcPase activity were first detected in the thin mantle layer of the cerebral hemisphere. In the corpus striatum, these round cells increased rapidly in abundance until day 13 of incubation, after which their numbers gradually decreased, so that, on day 19 of incubation, they had entirely disappeared. Between day 10 and day 17 or 18 of incubation, round cells were located mainly in the zone of the mantle layer closest to the lumen. On day 10 of incubation, NDPase-, TPPase-and AcPase-positive cells that had a few short cytoplasmic processes (poorly ramified cells) were detected in the intermediate, and basal zones of mantle layer. They increased in abundance until day 17 or 18 of incubation and thereafter rapidly decreased in number. Round and poorly ramified cells exhibited NDPase activity on their plasma membranes and in their cytoplasmic vacuoles, with TPPase and AcPase activity being localized within their vacuoles. On day 19 of incubation, NDPase-and TPPase-positive cells with long, well-ramified cytoplasmic processes (well-ramified cells) were observed in the corpus striatum, these being mainly localized in the basal zone. After hatching, these cells increased rapidly in abundance and were distributed throughout the corpus striatum. These cells displayed NDPase and TPPase activity on their plasma membranes. These findings suggest that the round, the poorly ramified and the well-ramified cells belong to a single cell population.  相似文献   

11.
Contralateral cerebellectomy can induce hypertrophy of olivary neurons in cat. In the present study we examined the ultrastructure of the cat hypertrophic inferior olive following GABA-, dopamine- and serotonin-immunocytochemistry, anterograde tracing from the mesodiencephalic junction, and intracellular labeling with HRP. Compared to normal olivary neurons the hypertrophic cells showed larger cell bodies, more and longer somatic spines which were linked by gap junctions, and longer distal dendrites with relatively few spines. The hypertrophic olivary neurons received less GABAergic boutons on their dendrites but an equal percentage was apposed to their somata as compared to normal cells. Relatively many mesodiencephalic terminals, a similar serotoninergic, and a slightly increased dopaminergic input were found. The axon of one intracellularly labeled hypertrophic cell gave off recurrent collaterals bearing varicosities filled with vesicles. These results indicated that 1) hypertrophic olivary cells are affected by trophic factors not only at the cell body but also at the level of the somatic spines, dendrites, and axon, 2) the ratio of excitatory to inhibitory terminals is increased in the hypertrophic neuropil, whereas the monoaminergic input remains stationary, and 3) the electronic coupling between hypertrophic olivary neurons has shifted from a dendritic to a more somatic location due to a relatively high number of gap junctions between the somatic spines.  相似文献   

12.
The regeneration of the axons of leech Retzius cells was compared following two different methods of axonal severing: (1) a crush of the whole connective that includes the Retzius axon; and (2) photoablation of a small segment of only the Retzius axon. The photoablation was carried out after filling the Retzius cell with Lucifer Yellow (LY). Several tests were carried out to determine whether the photoablation actually severed the axon. These included (1) using the lipophilic membrane probe DiI as an indicator of membrane severance (2) electron microscopic examination of the photoablated axon after filling it with horseradish peroxidase (HRP); and (3) filling the Retzius cell first with HRP, then photoablating, and looking for the disappearance of the HRP in the photoablated region. These and other observations indicated that the photoablated axon was actually severed. Two differences were seen in the regeneration of the Retzius axon after crush versus after photoablation. First, the sprouting following crush was far more disorganized, and included significantly more lateral spread. Second, after photoablation, over 70% of the axons, upon refilling with LY after 3 days or more, showed the newly introduced LY suddenly extending far down the distal segment, indicating that the proximal and distal segments had become reconnected. This was never seen following a crush. The photoablated axons did not pass HRP into the distal segment, suggesting that the reconnection was not by fusion, but perhaps by a gap junction. The results show that axonal regeneration can take a dramatically different form than it does following a standard crush procedure if, instead, the axon is severed in a way that preserves the structural integrity of the surrounding tissue.  相似文献   

13.
M Gioia  R Bianchi 《Acta anatomica》1992,144(2):127-134
A morphoquantitative analysis was carried out to clarify the cytoarchitectural organization of the paramedian pontine reticular formation (PPRF) which is considered to be an important site in the control of eye movements. The study was carried out on the cat, using the Golgi staining method. The topographic position and detailed structure of the neurons were demonstrated using morphoquantitative methods. On the basis of their neuronal arborization, fusiform neurons and two types of multipolar cells were identified. Fusiform neurons show dendrites which are given off from the two poles of the small- to medium-sized cell body. The arborization generally runs caudorostrally, ending inside the PPRF. These neurons are ubiquitous. Type 1 multipolar neurons, the most frequent elements of the neuronal population (60%), have a small- to large-sized cell body from which 2 or 3 primary spiny dendrites and the axon emerge. Their dendritic field is oval and generally oriented in the vertical plane. These neurons are scattered everywhere in the PPRF. Type 2 multipolar cells are large neurons endowed with numerous primary spiny dendrites constituting a wide round dendritic field and with a thick axon. They are located almost exclusively at the boundaries of the PPRF and preferentially in the caudal region. The characteristics of the neurons suggest that the fusiform cells may play an interneuronal role, while the multipolar neurons could have both a projective function and an important receptive role for the afferent fibers to the PPRF. The lack of homogeneity found among the multipolar neurons is in agreement with the variety of projective elements shown by functional investigations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Summary Horseradish peroxidase (HRP) applied to lesioned neurons in the retina and thoracic ganglia of the flies Musca, Calliphora and Drosophila labeled axon terminals, dendrites and perikarya of the severed neurons after anterograde or retrograde passage. In addition, HRP reaction product secondarily labeled intact neurons that are contiguous with injured nerve cells. In many cases labeling of optic lobe neurons remote from primarily filled ones was also seen (here called tertiary labeling). HRP labeling was extensive and both primarily and transneuronally filled neurons could be resolved in almost as much detail as Golgi-impregnated or cobalt-silver-labeled cells. Electron microscopy showed that in both primarily and secondarily filled neurons, reaction product was distributed diffusely in the cytoplasm.Transneuronal uptake of HRP was specific to certain types of neurons in the brain and thus displayed certain pathways. The pathways resolved by transneuronal labeling with HRP extend from the optic lobes to the thoracic ganglia and include visual neurons previously identified electrophysiologically and anatomically.Transneuronal HRP uptake, although believed to occur in vivo, could not be shown to be dependent on synaptic activity. Three other heme peptides tested were taken up by injured neurons, but showed no transneuronal labeling: lactoperoxidase, cytochrome c, and microperoxidase.  相似文献   

15.
Laser-scanning confocal microscopy (LSCM), electron microcopy (EM), and cellular electrophysiology were used in combination to study the structural basis of an inhibitory synapse between two identified neurons of the same network. To achieve this, we examined the chemical inhibitory synapse between identified neurons belonging to the lobster (Homarus gammarus) pyloric network: the pyloric dilator (PD) and the lateral pyloric (LP) neurons. In order to visualize simultaneously these two neurons, we used intrasomatic injection of Lucifer Yellow (LY) in one and rhodamine/horseradish peroxydase (HRP) in the other. Under LSCM, we found only two zones of close apposition in a restricted part of the neuritic tree of the two network neurons. Then, within these two zones, the synaptic release sites were searched using EM. To this end, photoconversion of LY with immunogold and development of HRP with DAB were performed on the previously observed preparations. Structural evidence was found for only one release site per zone. To confirm this result, and because the zones of contact were always segregated in a restricted part of the dendrites, we used laser photoablation to selectively delete, either pre- or postsynaptically, the branches on which the release sites were located. In both cases, such restrictive ablation completely abolished the functional interaction between these neurons. Our results therefore demonstrate that an inhibitory synapse that is essential for the operation of a neural network relies on only very few sites of contact localized in a highly restricted part of each neuron's dendritic arbor.  相似文献   

16.
In newborn mouse neocortex, the so-called Cajal-Retzius cells (CRc), which are usually considered as neurons due to their polarity, located exclusively in the first cortical layer, were visualized using local application of horseradish peroxidase (HRP) on the neocortex followed by its tangential sectioning. Close to the application site, the exogenous enzyme, taken up by some of the CRc, was revealed with 3,3' diaminobenzidin (DAB) according to the Graham and Karnovsky technique. The brown reaction product was seen to fill almost completely some of these cells giving a "Golgi like" picture. They had a fusiform bipolar pericaryon and processes extending only into the first cortical layer. A single thick process whose length reached 300 to 400 microns, almost rectilinear and tapering progressively at its end was a dendrite which bore thin expansions reaching the cortical surface where they sometimes ramified between the endfeet of the radial glia. The dendrite sometimes showed symmetrical synapses with an afferent axon of unknown origin. The CRc axon was very thin (0.5 microns in diameter) and gave off at random numerous collaterals whose number and trajectories varied greatly from one cell to the other. The axonal processes could often be followed over a millimeter. They ended either abruptly because HRP had not diffused far enough into the process or terminated with large growth cones bearing numerous digitiform filopodia. The presence of growth cones thus suggested that the processes were exploring the cellular environment of the first cortical layer. In the newborn, CRcs appeared as still immature neurons.  相似文献   

17.
Summary The ultrastructure of nerve cells and the finestructural organization of synaptic contacts have been investigated in the intestinal nerve in the snail Helix pomatia. Three types of nerve cells, occurring singly or in groups, can be distinguished on the basis of the ultrastructure of their perikaryon and content of granules. The peripheral output of these nerve cells has been verified by retrograde CoCl2 and NiCl2 staining. Both axosomatic and axo-axonic specialized synaptic contacts occur in the intestinal nerve. Presynaptic elements of these synaptic contacts contain 100–120 nm granular vesicles or 120–200 nm neurosecretory-like granules. Following intracellular horseradish peroxidase (HRP) labelling of identified central neurons responsible for peripheral regulatory processes, several labelled axons running toward the periphery can be followed throughout the branches of the intestinal nerve. These labelled axon processes (either primary axon or small collaterals) form specialized synaptic contacts, inside the intestinal nerve, and are always in a postsynaptic position. The occurrence of peripheral axo-somatic and axo-axonic synapses provides a morphological basis for integrative processes taking place in the intestinal nerve (peripheral nervous system) of Helix pomatia.  相似文献   

18.
To study the relationship between the catecholamine (CA) nerve endings and the enkephalinergic cell bodies in the magnocellular dorsal nucleus (MDN) of guinea pig hypothalamus, double-labeling experiments were performed on the same tissue section at the electron microscopic level. An in vitro autoradiographic (ARG) method for [3H]-norepinephrine (NE) or [3H]-dopamine (DA) was combined with a post-embedding immunogold cytochemical technique for Met-enkephalin (Met-enk) in colchicine-treated animals. Hypothalamic slices (450 micrograms) were perfused with [3H]-NE or [3H]-DA at the fluid-gas interface, then fixed by immersion with glutaraldehyde and osmic acid. Semi-thin sections processed from the thickness of the slices showed adequate penetration of the tracers to all parts of the tissue. Frontal sections permitted visualization of some CA-uptake structures distributed around the cells. At the ultrastructural level, preservation appeared good on about 60% of the thickness of slices, and [3H]-CA structures were easily distinguished. Ultra-thin sections were successively incubated with Met-enk and colloidal gold-labeled antisera, followed by ARG processing. At the electron microscopic level, the good integrity of the tissue made possible visualization of [3H]-CA nerve terminals making synaptic contacts with enkephalinergic perikarya. These results provide morphological evidence for direct catecholaminergic control of enkephalinergic neurons of the MDN.  相似文献   

19.
This paper develops a model of nanoparticle transport in neurons. It is assumed that nanoparticles are transported inside endocytic vesicles by a combined effect of dynein-driven transport and diffusion. It is further assumed that in axons nanoparticles are internalised only at axon terminals, whereas in dendrites nanoparticles can enter through the entire plasma membrane. This causes differences in transport of nanoparticles in axons and dendrites; these differences are investigated in this paper. Another difference is microtubule (MT) orientation in axons and dendrites; in axons, all MTs have their plus-ends oriented towards the axon terminal; in a proximal region of a dendrite, MTs have mixed orientation, whereas in a distal dendritic region the MT orientation is similar to that in an axon. It is shown that if molecular-motor-driven transport were powered by dynein alone, such MT orientation in a dendrite would result in a region of nanoparticle accumulation located at the border between the proximal and distal dendritic regions.  相似文献   

20.
This paper develops a model of nanoparticle transport in neurons. It is assumed that nanoparticles are transported inside endocytic vesicles by a combined effect of dynein-driven transport and diffusion. It is further assumed that in axons nanoparticles are internalised only at axon terminals, whereas in dendrites nanoparticles can enter through the entire plasma membrane. This causes differences in transport of nanoparticles in axons and dendrites; these differences are investigated in this paper. Another difference is microtubule (MT) orientation in axons and dendrites; in axons, all MTs have their plus-ends oriented towards the axon terminal; in a proximal region of a dendrite, MTs have mixed orientation, whereas in a distal dendritic region the MT orientation is similar to that in an axon. It is shown that if molecular-motor-driven transport were powered by dynein alone, such MT orientation in a dendrite would result in a region of nanoparticle accumulation located at the border between the proximal and distal dendritic regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号