首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
2.
3.
4.
Fifteen-week-old rats were subjected to unloading induced by hindlimb suspension for 3 weeks. The peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and forkhead box-containing protein O1 (FOXO1) mRNA levels and fiber profiles of the soleus and plantaris muscles in rats subjected to unloading (unloaded group) were determined and compared with those of age-matched control rats (control group). The body weight and both the soleus and plantaris muscle weights were lower in the unloaded group than in the control group. The PGC-1α mRNA was downregulated in the soleus, but not in the plantaris muscle of the unloaded group. The FOXO1 mRNA was upregulated in both the soleus and plantaris muscles of the unloaded group. The oxidative enzyme activity was reduced in the soleus, but not in the plantaris muscle of the unloaded group. The percentage of type I fibers was decreased and the percentages of type IIA and IIC fibers were increased in the soleus muscle of the unloaded group, whereas there was no change in fiber type distribution in the plantaris muscle of the unloaded group. Atrophy of all types of fibers was observed in both the soleus and plantaris muscles of the unloaded group. We conclude that decreased oxidative capacity and fiber atrophy in unloaded skeletal muscles are associated with decreased PGC-1α and increased FOXO1 mRNA levels.  相似文献   

5.
6.
7.
Skeletal muscle adaptations to microgravity exposure in the mouse.   总被引:4,自引:0,他引:4  
To investigate the effects of microgravity on murine skeletal muscle fiber size, muscle contractile protein, and enzymatic activity, female C57BL/6J mice, aged 64 days, were divided into animal enclosure module (AEM) ground control and spaceflight (SF) treatment groups. SF animals were flown on the space shuttle Endeavour (STS-108/UF-1) and subjected to approximately 11 days and 19 h of microgravity. Immunohistochemical analysis of muscle fiber cross-sectional area revealed that, in each of the muscles analyzed, mean muscle fiber cross-sectional area was significantly reduced (P < 0.0001) for all fiber types for SF vs. AEM control. In the soleus, immunohistochemical analysis of myosin heavy chain (MHC) isoform expression revealed a significant increase in the percentage of muscle fibers expressing MHC IIx and MHC IIb (P < 0.05). For the gastrocnemius and plantaris, no significant changes in MHC isoform expression were observed. For the muscles analyzed, no alterations in MHC I or MHC IIa protein expression were observed. Enzymatic analysis of the gastrocnemius revealed a significant decrease in citrate synthase activity in SF vs. AEM control.  相似文献   

8.
Talmadge, Robert J., Roland R. Roy, and V. Reggie Edgerton.Distribution of myosin heavy chain isoforms in non-weight-bearing rat soleus muscle fibers. J. Appl.Physiol. 81(6): 2540-2546, 1996.The effects of14 days of spaceflight (SF) or hindlimb suspension (HS) (Cosmos 2044)on myosin heavy chain (MHC) isoform content of the rat soleus muscleand single muscle fibers were determined. On the basis ofelectrophoretic analyses, there was a de novo synthesis of type IIx MHCbut no change in either type I or IIa MHC isoform proportions aftereither SF or HS compared with controls. The percentage of fiberscontaining only type I MHC decreased by 26 and 23%, and the percentageof fibers with multiple MHCs increased from 6% in controls to 32% inHS and 34% in SF rats. Type IIx MHC was always found in combinationwith another MHC or combination of MHCs; i.e., no fibers contained typeIIx MHC exclusively. These data suggest that the expression of thenormal complement of MHC isoforms in the adult rat soleus muscle isdependent, in part, on normal weight bearing and that the absence ofweight bearing induces a shift toward type IIx MHC protein expression in the preexisting type I and IIa fibers of the soleus.

  相似文献   

9.
10.
11.
Rat soleus muscle consists predominantly of slow type I fibers. We have shown previously through deletion analysis that the highest level of reporter activity that we measure when injecting type I myosin heavy chain (MHC) promoter (MHC(1))-linked luciferase plasmid into soleus muscles depends on the presence of a 550-bp upstream enhancer (3,450-2,900) region of the promoter. Because the calcineurin-nuclear factor of activated T cells (NFAT) pathway has been implicated in the regulation of the slow muscle gene program, particularly the MHC(1) isoform, and the MHC(1) promoter contains several putative NFAT sites, we examined via deletion and mutation analyses whether this pathway is involved in the regulation of promoter activity in soleus. Nine days of treatment with the calcineurin inhibitor cyclosporin A (CsA) caused a significant decrease in activity of the -3,500- and -3,450-bp promoters compared with vehicle-treated rats. Truncation of the promoter to -2,900 bp or smaller reduced the activity and also eliminated the CsA responsiveness, thus implying that the enhancer region is required for CsA responsiveness. Surprisingly, mutating the two NFAT elements within the enhancer region had no obvious effect on promoter activity. CsA treatment resulted in an increase in the mRNA levels of fast-type IIa and IIx MHC isoforms, but RT-PCR analysis of MHC(1) pre-mRNA and mature mRNA expression in soleus muscles revealed no differences between vehicle- and CsA-treated rats. Although CsA affects the activity of the MHC(1) promoter, it appears that its effect is not through direct binding of NFAT to sites on the promoter.  相似文献   

12.
The involvement of calcineurin (CaN) and heat shock protein (Hsp) 72 in the regulation of fiber size and/or phenotype in response to functional overload (FO) was investigated. In one FO group, the plantaris muscle was overloaded by cutting the distal tendons (5-10 mm length) of the soleus and gastrocnemius of 3-week-old male Wistar rats. Cyclosporin A (CsA), a CaN inhibitor, was injected daily (5 mg/kg body weight, i.p.) in a second group of FO rats (FO+CsA group) for a 2-week period. Compared to age-matched controls (Con), the absolute and relative plantaris weights were increased in both FO groups: the hypertrophic response was attenuated in FO+CsA rats. The mean cross-sectional area of each fiber type was increased (approximately 2.0-fold) in the plantaris of FO rats: CsA treatment attenuated this effect, although the fibers were still larger than in Con rats. The percent composition of myosin heavy chain (MHC) IIb decreased from 54% in Con to 19% in FO rats, whereas types I, IIa, and IIx MHC increased in the FO rats. CsA treatment blunted the shifts in MHC isoforms: the FO+CsA group showed a smaller decrease in type IIb and a smaller increase in type IIx MHC than the FO group. The levels of CaN-A and -B proteins were higher (approximately 2.5-fold) in FO than Con rats, whereas these values were similar in Con and FO+CsA rats. Hsp72 protein levels were higher in FO (3.6-fold) and FO+CsA (5.2-fold) than Con rats, with the values being significantly higher in the FO+CsA than FO rats. CsA treatment in Con rats had no effects on muscle mass, fiber size, MHC composition, and Hsp72 or CaN levels. Combined, these results suggest that CaN levels are related to changes in both fiber size and phenotype, and that Hsp72 levels are more related to the levels of stress added to the muscle rather than to increases in the slow fiber phenotype in functionally overloaded rat plantaris muscles.  相似文献   

13.
14.
We supposed that the triglyceride content might be used as a cellular marker of muscle fiber activity and for the first time analyzed the triglyceride content in the fast- and slow-twitch muscle fibers of m. soleus and m. tibialis anterior under conditions of 7-day rat hindlimb suspension. Although the hindlimb suspension led to decrease of triglyceride content in the fast-twitch fibers of m. soleus and slow-twitch fibers of m. tibialis anterior, these differences were not significant. In spite of this the obtained data do not contradict our initial hypothesis.  相似文献   

15.
16.
The aim of this project was to develop a method to assess fiber type specific protein content across the continuum of human skeletal muscle fibers. Individual vastus lateralis muscle fibers (n = 264) were clipped into two portions: one for sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) fiber typing and one for Western blot protein identification. Following fiber type determination, fiber segments were combined into fiber type specific pools (~20 fibers/pool) and measured for total protein quantity, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), citrate synthase (CS), and total p38 content. GAPDH content was 64, 54, 160, and 138% more abundant in myosin heavy chain (MHC) I/IIa, MHC IIa, MHC IIa/IIx, and MHC IIx fibers, respectively, when compared with MHC I. Inversely, CS content was 528, 472, 242, and 47% more abundant in MHC I, MHC I/IIa, MHC IIa, and MHC IIa/IIx fibers, respectively, when compared with MHC IIx. Total p38 content was 87% greater in MHC IIa versus MHC I fibers. These data and this approach establish a reliable method for human skeletal muscle fiber type specific protein analysis. Initial results show that particular proteins exist in a hierarchal fashion throughout the continuum of human skeletal muscle fiber types, further highlighting the necessity of fiber type specific analysis.  相似文献   

17.
α-Actinins are actin-binding proteins, and two isoforms (α-actinin-2 and -3) are major structural components of the sarcomeric Z line in mammalian skeletal muscle. Based on human and knockout mice studies, α-actinin-3 is thought to be associated with muscle force output and high contraction velocities. However, fiber-type specific expression of α-actinin isoforms is not well understood and may vary among species. In this study, we investigated the expression of α-actinin isoforms and the difference between fiber types in rat skeletal muscle and compared it with those of humans and mice from previous reports. Soleus and plantaris muscles were analyzed immunohistochemically to identify muscle fiber types and α-actinin protein expression. α-Actinin-2 was stained in all muscle fibers in both the soleus and plantaris muscles; i.e., all α-actinin-3 co-expressed with α-actinin-2 in rat skeletal muscles. The proportions of α-actinin-3 expression, regardless of fiber type, were significantly higher in the plantaris (75.8 ± 0.6%) than the soleus (8.0 ± 1.7%). No α-actinin-3 expression was observed in type I fibers, whereas all type IIx+b fibers expressed α-actinin-3. α-Actinin-3 was also expressed in type IIa fibers; however, approximately 75% of type IIa fibers were not stained by α-actinin-3, and the proportion varied between muscles. The proportion of α-actinin-3 expression in type IIa fibers was significantly higher in the soleus muscle than the plantaris muscle. Our results showed that fiber-type specific expression of α-actinin isoforms in rats is more similar to that in humans compared to that of the mouse, whereas the proportion of α-actinin-3 protein varied between muscles.  相似文献   

18.
The myosin heavy chain (MHC) IIB gene is selectively expressedin skeletal muscles, imparting fast contractile kinetics. Why the MHCIIB gene product is expressed in muscles like the tibialis anterior(TA) and not expressed in muscles like the soleus is currently unclear.It is shown here that the mutation of an E-box within the MHC IIBpromoter decreased reporter gene activity in the fast-twitch TA muscle90-fold as compared with the wild-type promoter. Reporter geneexpression within the TA required this E-box for activation of aheterologous construct containing upstream regulatory regions of theMHC IIB promoter linked to the basal 70-kDa heat shock protein TATApromoter. Electrophoretic mobility shift assays demonstrated thatmutation of the E-box prevented the binding of both MyoD and myogeninto this element. In cotransfected C2C12myotubes and Hep G2 cells, MyoD preferentially activated the MHC IIBpromoter in an E-box-dependent manner, whereas myogenin activated theMHC IIB promoter to a lesser extent, and in an E-box-independent manner. A time course analysis of hindlimb suspension demonstrated thatthe unweighted soleus muscle activated expression of MyoD mRNA beforethe de novo expression of MHC IIB mRNA. These data suggest a possiblecausative role for MyoD in the observed upregulation of MHC IIB in theunweighted soleus muscle.  相似文献   

19.
The effects of prolonged hypokinesia on the contractile properties and myosin isozymes of single fibers from the synergistic fast-twitch plantaris (PL) and slow-twitch soleus (SOL) skeletal muscles of adult rats were studied after 28 days of hindlimb suspension. There was a 31% increase in the mean maximal velocity of unloaded shortening (Vmax) among fibers from SOL with no change in the mean Vmax of fibers from PL after suspension. The myosin heavy and light chain (MHC and MLC) composition of bundles and the MHC composition of single fibers from control and suspended muscles were examined using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. There was a marked increase in the relative amount of fast-type MHC's in hypokinetic SOL and a smaller increase in the amount of fast-type MHC's in the PL. Relatively minor changes occurred in the MLC's during hypokinesia. As Vmax increased among individual fibers from control and suspended muscles, the relative amount of fast-type MHC's increased. The results demonstrate that the myosin isozyme composition of skeletal muscle, especially the heavy chains, is altered during hypokinesia, and this finding provides an explanation for changes in Vmax of rat single muscle fibers under the same conditions.  相似文献   

20.
Changes in sarcomeric cytoskeletal proteins of rat m. soleus fibers upon the chronic stretching against the background of gravitational unloading were analyzed and compared with changes in fiber size and myosin phenotype. For rats exposed to gravitational unloading in the usual microgravity-simulating experimental model (hindlimb suspension (HS) according to Morey-Holten), a considerable reduction in the mass of m. soleus (by 54%) and the area of its fibers of both slow-twitch (by 47%) and fast-twitch (37%) types compared with control animals was revealed. Moreover, the percent of fibers containing only slow isoforms of myosin heavy chains (MHC) for suspended animals was slightly smaller and the portion of fibers interacting only with antibodies against fast myosin isoforms was significantly higher than for control animals. For hindlimb-suspended rats, the titin/MHC and nebulin/MHC ratios appeared to be reduced almost by two times as compared with those for the contriol group of animals. Chronic immobilization of m. soleus in stretched state against the background of suspension leads to a partial or complete prevention of the reduction in muscle fiber sizes, the transformation of the myosin phenotype into fast one, and a decrease in relative content of sarcomeric cytoskeletal proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号