首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The superoxide dismutase (SOD) enzymes are important antioxidant agents that protect cells from reactive oxygen species. The SOD family is responsible for catalyzing the disproportionation of superoxide radical to oxygen and hydrogen peroxide. Manganese- and iron-containing SOD exhibit product inhibition whereas Cu/ZnSOD does not. Here, we report the crystal structure of Escherichia coli MnSOD with hydrogen peroxide cryotrapped in the active site. Crystallographic refinement to 1.55 Å and close inspection revealed electron density for hydrogen peroxide in three of the four active sites in the asymmetric unit. The hydrogen peroxide molecules are in the position opposite His26 that is normally assumed by water in the trigonal bipyramidal resting state of the enzyme. Hydrogen peroxide is present in active sites B, C, and D and is side-on coordinated to the active-site manganese. In chains B and D, the peroxide is oriented in the plane formed by manganese and ligands Asp167 and His26. In chain C, the peroxide is bound, making a 70° angle to the plane. Comparison of the peroxide-bound active site with the hydroxide-bound octahedral form shows a shifting of residue Tyr34 towards the active site when peroxide is bound. Comparison with peroxide-soaked Cu/ZnSOD indicates end-on binding of peroxide when the SOD does not exhibit inhibition by peroxide and side-on binding of peroxide in the product-inhibited state of MnSOD.  相似文献   

2.
3.
Bovine pulmonary artery endothelial cells (BPAEC) are extremely sensitive to oxygen, mediated by superoxide production. Ionizing radiation is known to generate superoxide in oxygenated aqueous media; however, at systemic oxygen levels (3%), no oxygen enhancement is observed after irradiation. A number of markers (cell growth, alamarBlue, mitochondrial membrane polarization) for metabolic activity indicate that BPAEC maintained under 20% oxygen grow and metabolize more slowly than cells maintained under 3% oxygen. BPAEC cultured in 20% oxygen grow better when they are transiently transfected with either manganese superoxide dismutase (MnSOD) or copper zinc superoxide dismutase (CuZnSOD) and exhibit improved survival after irradiation (0.5-10 Gy). Furthermore, X irradiation of BPAEC grown in 20% oxygen results in very diffuse colony formation, which is completely ameliorated by either growth in 3% oxygen or overexpression of MnSOD. However, MnSOD overexpression in BPAEC grown in 3% oxygen provides no further radioprotection, as judged by clonogenic survival curves. Radiation does not increase apoptosis in BPAEC but inhibits cell growth and up-regulates p53 and p21 at either 3% or 20% oxygen.  相似文献   

4.
The 2.9 A resolution structure of iron superoxide dismutase (FeSOD) (EC 1.15.1.1) from Pseudomonas ovalis complexed with the inhibitor azide was solved. Comparison of this structure with free enzyme shows that the inhibitor is bound at the open coordination position of the iron, with a bond length of 2.0 A. The metal moves by 0.4 A into the trigonal plane to produce an orthogonal geometry at the iron. Binding of the inhibitor also causes a movement of the axial ligand (histidine 26) away from the metal, a lengthening of the iron-histidine bond, and a rotation of the histidine 74 ring. The inhibitor possesses contacts in the binding pocket with a pair of conserved tryptophan residues and with the side chains of tyrosine 34 and glutamine 70. This glutamine is conserved between all FeSODs, but is absent in MnSOD. Comparisons with MnSOD show that a different glutamine which possesses the same interactions in the active site as Gln70 in FeSOD is conserved at position 154 in the overall SOD sequence, implying that while manganese and FeSODs are structural homologues in a global sense, their functional and evolutionary relationship is that of second-site mutation revertants.  相似文献   

5.
Superoxide dismutase (SOD) acts as first line of defense against oxidative and genetic stress. Manganese superoxide dismutase (MnSOD), found in mitochondria or peroxisomes, contains Mn(III) at the active site. Therefore, it is of interest to study MnSOD from bread wheat (a grain crop). However, a structure model is not yet solved for bread wheat MnSOD. Hence, we describe the structure model of bread wheat MnSOD developed using homology model. The model provides molecular insight to metal binding molecular function towards the understanding of oxidative stress resistance in plants. The distinction of bread wheat (a monocot) MnSOD from dicots is also shown using phylogenetic analysis.  相似文献   

6.
Manganese superoxide dismutase (MnSOD) cycles between the Mn(II) and Mn(III) states during the catalyzed disproportionation of O(2)(*-), a catalysis that is limited at micromolar levels of superoxide by a peroxide-inhibited complex with the metal. We have investigated the role in catalysis and inhibition of the conserved residue Trp161 which forms a hydrophobic side of the active site cavity of MnSOD. Crystal structures of mutants of human MnSOD in which Trp161 was replaced with Ala or Phe showed significant conformational changes on adjacent residues near the active site, particularly Gln143 and Tyr34 which in wild-type MnSOD participate in a hydrogen bond network believed to support proton transfer during catalysis. Using pulse radiolysis and observing the UV absorbance of superoxide, we have determined rate constants for the catalytic dismutation of superoxide. In addition, the rates of formation and dissociation of the product-inhibited complex of these mutants were determined by direct observation of the characteristic visible absorption of the oxidized and inhibited states. Catalysis by W161A and W161F MnSOD was associated with a decrease of at least 100-fold in the catalytic rate of reduction of superoxide, which then promotes a competing pathway leading to product inhibition. The structural changes caused by the mutations at position 161 led to small changes, at most a 6-fold decrease, in the rate constant for formation of the inhibited complex. Solvent hydrogen isotope effects support a mechanism in which formation of this complex, presumably the peroxide dianion bound to the manganese, involves no rate-contributing proton transfer; however, the dissociation of the complex requires proton transfer to generate HO(2)(-) or H2O2.  相似文献   

7.
锰超氧化物歧化酶(MnSOD)催化两分子超氧自由基歧化为分子氧和过氧化氢。超氧自由基被Mn3+SOD氧化成分子氧的反应以扩散的方式进行。超氧自由基被Mn2+SOD还原为过氧化氢的反应以快循环和慢循环两条途径平行进行。在慢循环途径中,Mn2+SOD与超氧自由基形成产物抑制复合物,然后该复合物被质子化而缓慢释放出过氧化氢。在快循环途径中,超氧自由基直接被Mn2+SOD转化为产物过氧化氢,快速循环有利于酶的复活与周转。本文提出温度是调节锰超氧化物歧化酶进入慢速或者快速循环催化途径的关键因素。随着在生理温度范围内的温度升高,慢速循环成为整个催化反应的主流,因而生理范围内的温度升高反而抑制该酶的活性。锰超氧化物歧化酶的双相酶促动力学特性可以用该酶保守活性中心的温度依赖性配位模型进行合理化解释。当温度降低时,1个水分子(或者OH-)接近Mn、甚至与Mn形成配位键,从而干扰超氧自由基与Mn形成配位键而避免形成产物抑制。因此在低温下该酶促反应主要在快循环通路中进行。最后阐述了几种化学修饰模式对...  相似文献   

8.
Catalysis of the disproportionation of superoxide by human manganese superoxide dismutase (MnSOD) is characterized by an initial burst of catalysis followed by a much slower region that is zero order in superoxide and due to a product inhibition by peroxide anion. We have prepared site-specific mutants with replacements at His30, the side chain of which lies along the substrate access channel and is about 5.8 A from the metal. Using pulse radiolysis to generate superoxide, we have determined that kcat/K(m) was decreased and product inhibition increased for H30V MnSOD, both by 1-2 orders of magnitude, compared with wild type, H30N, and H30Q MnSOD. These effects are not attributed to the redox potentials, which are similar for all of these variants. An investigation of the crystal structure of H30V Mn(III)SOD compared with wild type, H30Q, and H30N Mn(III)SOD showed the positions of two gamma carbons of Val30 in the active site; Cgamma1 overlaps Cgamma of His30 in wild type, and Cgamma2 extends into the substrate access channel and occupies the approximate position of a water molecule in the wild type. The data suggest that Cgamma2 of the Val side chain has significantly interrupted catalysis by this overlap into the access channel with possible overlap with the substrate-product binding site. This is supported by comparison of the crystal structure of H30V MnSOD with that of azide bound to Mn(III)SOD from Thermus thermophilus and by visible absorption spectra showing that azide binding to the metal in H30V Mn(III)SOD is abolished. Moreover, the presence of Val30 caused a 100-fold decrease in the rate constant for dissociation of the product-inhibited complex compared with wild type.  相似文献   

9.
A cellular consequence of the reaction of superoxide and nitric oxide is enhanced peroxynitrite levels. Reaction of peroxynitrite with manganese superoxide dismutase (MnSOD) causes nitration of the active-site residue Tyr34 and nearly complete inhibition of catalysis. We report the crystal structures at 2.4 A resolution of human MnSOD nitrated by peroxynitrite and the unmodified MnSOD. A comparison of these structures showed no significant conformational changes of active-site residues or solvent displacement. The side chain of 3-nitrotyrosine 34 had a single conformation that extended toward the manganese with O1 of the nitro group within hydrogen-bonding distance (3.1 A) of Nepsilon2 of the second-shell ligand Gln143. Also, nitration of Tyr34 caused a weakening, as evidenced by the lengthening, of a hydrogen bond between its phenolic OH and Gln143, part of an extensive hydrogen-bond network in the active site. Inhibition of catalysis can be attributed to a steric effect of 3-nitrotyrosine 34 that impedes substrate access and binding, and alteration of the hydrogen-bond network that supports proton transfer in catalysis. It is also possible that an electrostatic effect of the nitro group has altered the finely tuned redox potential necessary for efficient catalysis, although the redox potential of nitrated MnSOD has not been measured.  相似文献   

10.
The most frequent genetic causes of amyotrophic lateral sclerosis (ALS) determined so far are mutations occurring in the gene for copper/zinc superoxide dismutase (CuZnSOD). The mechanism may involve inappropriate formation of hyroxyl radicals, peroxynitrite or malfunctioning of the SOD protein. We hypothesized that undiscovered genetic causes of sporadically occurring amyotrophic lateral sclerosis might be found in the mechanisms that create and destroy oxygen free radicals within the cell. After determining that there were no CuZnSOD mutations present, we measured superoxide production from mitochondria and manganese superoxide dismutase (MnSOD), glutathione peroxidase, NFkappaB, Bcl-2 and Bax by immunoblot. Of the ten sporadic patients we tested we found three patients with significantly increased concentrations of MnSOD. These patients also had lower levels of superoxide production from mitochondria and decreased expression of Bcl-2. No mutations were found in the cDNA sequence of either MnSOD in any of the sporadic patients. A patient with a CuZnSOD mutation (G82R) used as a positive control showed none of these abnormalities. The patients displaying the MnSOD aberrations showed no specific distinguishing features. This result suggests that the cause of ALS in a subgroup of ALS patients (30%) is genetic in origin and can be identified by these markers. The alteration in MnSOD and Bcl-2 are likely epiphenomena resulting from the primary genetic defect. It suggests also that the oxygen free radicals are part of the cause in this subgroup and that dysregulation of MnSOD or increased endogenous superoxide production might be responsible.  相似文献   

11.
Among manganese superoxide dismutases, residues His30 and Tyr174 are highly conserved, forming part of the substrate access funnel in the active site. These two residues are structurally linked by a strong hydrogen bond between His30 NE2 from one subunit and Tyr174 OH from the other subunit of the dimer, forming an important element that bridges the dimer interface. Mutation of either His30 or Tyr174 in Escherichia coli MnSOD reduces the superoxide dismutase activity to 30--40% of that of the wt enzyme, which is surprising, since Y174 is quite remote from the active site metal center. The 2.2 A resolution X-ray structure of H30A-MnSOD shows that removing the Tyr174-->His30 hydrogen bond from the acceptor side results in a significant displacement of the main-chain segment containing the Y174 residue, with local rearrangement of the protein. The 1.35 A resolution structure of Y174F-MnSOD shows that disruption of the same hydrogen bond from the donor side has much greater consequences, with reorientation of F174 having a domino effect on the neighboring residues, resulting in a major rearrangement of the dimer interface and flipping of the His30 ring. Spectroscopic studies on H30A, H30N, and Y174F mutants show that (like the previously characterized Y34F mutant of E. coli MnSOD) all lack the high pH transition of the wt enzyme. This observation supports assignment of the pH sensitivity of MnSOD to coordination of hydroxide ion at high pH rather than to ionization of the phenolic group of Y34. Thus, mutations near the active site, as in the Y34F mutant, as well as at remote positions, as in Y174F, similarly affect the metal reactivity and alter the effective pK(a) for hydroxide ion binding. These results imply that hydrogen bonding of the H30 imidazole N--H group plays a key role in substrate binding and catalysis.  相似文献   

12.
Hypertension caused by angiotensin II is characterized by an increase in tissue oxidant stress as evidenced by increased quantities of reactive oxygen and nitrogen species. Manganese superoxide dismutase (MnSOD) is a key mitochondrial antioxidant enzyme that is inactivated in conditions of oxidant stress by reacting with peroxynitrite to form 3-nitrotyrosine in its active site. The increase in 3-nitrotyrosine content in MnSOD in the kidney of angiotensin II-infused rats was assessed in this study by immunohistochemistry, Western blotting, immunoprecipitation, and HPLC with UV detection (HPLC-UV). MnSOD activity decreased approximately 50% in angiotensin II-infused rat kidneys (24 +/- 4.6 vs. 11 +/- 5.2 U/mg) without a change in protein expression. Immunohistochemical staining showed 3-nitrotyrosine predominantly in distal tubules and collecting duct cells in the angiotensin II-infused rat kidneys. By two-photon microscopy, 3-nitrotyrosine colocalized with MnSOD. Total 3-nitrotyrosine content in kidney homogenates was increased in angiotensin II-infused rat kidney [3.2 +/- 1.9 (sham treated) vs. 9.5 +/- 2.3 ng/mg protein by HPLC-UV detection]. With tracer amounts of tyrosine-nitrated recombinant MnSOD, the most sensitive technique to detect tyrosine nitration of MnSOD was immunoprecipitation from tissue with anti-MnSOD antibody, followed by detection of 3-nitrotyrosine by Western blotting or HPLC. By HPLC, 3-nitrotyrosine content of kidney MnSOD increased 13-fold after angiotensin II infusion, representing an increase from approximately one-twentieth to one-fifth of the total 3-nitrotyrosine content in sham-treated and angiotensin II-infused rat kidney, respectively. Angiotensin II-induced hypertension is accompanied by increased tyrosine nitration of MnSOD, which, because it inactivates the enzyme, may contribute to increased oxidant stress in the kidney.  相似文献   

13.
We have demonstrated that tumor necrosis factor-alpha (TNF-alpha) pretreatment protected the rat heart from ischemia-reperfusion injury. This effect was monitored by assaying for lactate dehydrogenase (LDH), an enzyme whose release correlates with loss of cell membrane integrity. Intact hearts removed from rats pretreated with TNF-released significantly lower amounts of LDH compared to control hearts after 20 min. of total global ischemia followed by reperfusion. Hearts from TNF-alpha-pretreated animals contained higher levels of manganous superoxide dismutase (MnSOD) mRNA than hearts from untreated rats. Because oxygen free radicals have been implicated as a major cause of reperfusion damage and the function of MnSOD is to detoxify superoxide anions in the mitochondria, a possible protective mechanism for TNF-alpha may be to induce expression of MnSOD in the heart and thus confer resistance to oxygen free radicals generated during reperfusion.  相似文献   

14.
Three forms of the dimeric manganese superoxide dismutase (MnSOD) were isolated from aerobically grown Escherichia coli which contained 2 Mn, 1 Mn and 1 Fe, or 2 Fe, respectively. These are designated Mn2-MnSOD, Mn,Fe-MnSOD, and Fe2-MnSOD. Substitution of iron in place of manganese, eliminated catalytic activity, decreased the isoelectric point, and increased the native electrophoretic anodic mobility, although circular dichroism, high performance liquid chromatography gel exclusion chromatography, and sedimentation equilibrium revealed no gross changes in conformation. Moreover, replacement of iron by manganese restored enzymatic activity. Fe2-MnSOD and the iron-superoxide (FeSOD) of E. coli exhibit distinct optical absorption spectra. These data indicate that the active site environments of E. coli MnSOD and FeSOD must differ. They also indicate that competition between iron and manganese for nascent MnSOD polypeptide chains occurs in vivo, and copurification of these variably substituted MnSODs can explain the substoichiometric manganese contents and the variable specific activities which have been reported for this enzyme.  相似文献   

15.
In this study, the hypothesis that oxygen free radicals act as intracellular messengers is examined. Treatment of human oral carcinoma SCC-25 cells with 200 ng/ml human TNF-alpha for 6 h greatly increased manganese superoxide dismutase (MnSOD) gene expression as detected by western blotting, RT-PCR, and nuclear run-on experiments. In the presence of the oxygen free radical spin trapping reagent, 5,5-dimethyl pyrroline-N-oxide (DMPO), the induction of MnSOD gene expression by TNF-alpha was significantly reduced. Electron paramagnetic resonance experiments showed that the production of oxygen free radicals was enhanced in TNF-alpha treated cells. Taken together, these observations suggest that the induction of MnSOD expression by TNF-alpha is at least partially mediated by intracellular formation of oxygen free radicals, and that superoxide is most likely the initiating species involved in the mediation of MnSOD gene expression by TNF-alpha.  相似文献   

16.
Escherichia coli growing anaerobically respond to NO3- with a 3-fold induction of the iron-containing superoxide dismutase. Mutants lacking nitrate reductase do not show this response. Anaerobically grown cells also contain an inactive form of the manganese-containing superoxide dismutase (MnSOD) which can be activated by addition of Mn(II) salts in the presence of acidic guanidinium chloride, followed by dialysis against neutral buffer. Direct addition of Mn(II) to a neutral solution of the inactive MnSOD does not impart activity. This inactive MnSOD thus behaves as would the apoenzyme or the enzyme bearing a metal other than Mn(II) at its active sites. Terminal electron acceptors, such as NO3- or trimethylamine N-oxide, increase the amount of inactive MnSOD produced by anaerobic E. coli. Paraquat, which is itself ineffective in this regard, markedly augments the effect of these terminal electron acceptors. It appears that flow of electrons to sinks such as NO3- or trimethylamine N-oxide, facilitated by paraquat, is sufficient to elicit biosynthesis of the MnSOD protein and that O2- is not needed for this process. Yet, oxygenation and concomitant O2- production do appear important for the insertion of manganese into the growing MnSOD polypeptide, possibly because O-2 oxidizes Mn(II) to Mn(III), and the latter is the valence state most effective in combining with the apoenzyme.  相似文献   

17.
In this review, we focus on understanding the structure–function relationships of numerous manganese superoxide dismutase (MnSOD) mutants to investigate the role that various amino acids play to maintain enzyme quaternary structure or the active site structure, catalytic potential and metal homeostasis in MnSOD, which is essential to maintain enzyme activity. We also observe how polymorphisms of MnSOD are linked to pathologies and how post-translational modifications affect the antioxidant properties of MnSOD. Understanding how modified forms of MnSOD may act as tumor promoters or suppressors by altering the redox status in the body, ultimately aid in generating novel therapies that exploit the therapeutic potential of mutant MnSODs or pave the way for the development of synthetic SOD mimics.  相似文献   

18.
Incorporation of 3-fluorotyrosine and site-specific mutagenesis has been utilized with Fourier transform infrared (FTIR) spectroscopy and x-ray crystallography to elucidate active-site structure and the role of an active-site residue Tyr34 in human manganese superoxide dismutase (MnSOD). Calculated harmonic frequencies at the B3LYP/6-31G** level of theory for L-tyrosine and its 3-fluorine substituted analog are compared to experimental frequencies for vibrational mode assignments. Each of the nine tyrosine residues in each of the four subunits of the homotetramer of human MnSOD was replaced with 3-fluorotyrosine. The crystal structures of the unfluorinated and fluorinated wild-type MnSOD are nearly superimposable with the root mean-square deviation for 198 alpha-carbon atoms at 0.3 A. The FTIR data show distinct vibrational modes arising from 3-fluorotyrosine in MnSOD. Comparison of spectra for wild-type and Y34F MnSOD showed that the phenolic hydroxyl of Tyr34 is hydrogen bonded, acting as a proton donor in the active site. Comparison with crystal structures demonstrates that the hydroxyl of Tyr34 is a hydrogen bond donor to an adjacent water molecule; this confirms the participation of Tyr34 in a network of residues and water molecules that extends from the active site to the adjacent subunit.  相似文献   

19.
In evaluating the relative expression of copper-zinc and manganese superoxide dismutase (CuZnSOD and MnSOD) in vivo in states like Down syndrome in which one dismutase is present at increased levels, we measured activities of both enzymes, in tissues of control and transgenic mice constitutively expressing increased levels of CuZnSOD, during exposure to normal and elevated oxygen tensions. Using SOD gel electrophoresis assay, CuZnSOD and MnSOD activities of brain, lung, heart, kidney, and liver from mice exposed to either normal (21%) or elevated (>99% oxygen, 630 torr) oxygen tensions for 120 h were compared. Whereas CuZnSOD activity was elevated in tissues of transgenic relative to control mice under both normoxic or hyperoxic conditions, MnSOD activities in organs of transgenic mice were remarkably similar to those of controls under both conditions. To confirm the accuracy of this method in quantitating MnSOD relative to CuZnSOD expression, two other methods were utilized. In lung, which is the organ exposed to the highest oxygen tension during ambient hyperoxia, a sensitive, specific ELISA for MnSOD was used. Again, MnSOD protein was not different in transgenic relative to control mice during exposure to air or hyperoxia. In addition, lung MnSOD protein was not changed significantly by exposure to hyperoxia in either group. In kidney, a mitochondrion-rich organ, SOD assay, before and after inactivation of CuZnSOD with diethyldithiocarbamate, was used. MnSOD activity was not different in organs from air-exposed transgenic relative to control mice. The data indicated that expression of MnSOD in vivo was not affected by overexpression of the CuZnSOD and, therefore, the two enzymes are probably regulated independently.  相似文献   

20.
The three-dimensional structure of the manganese-dependent superoxide dismutase (MnSOD) from Escherichia coli has been determined by X-ray crystallography at 2.1?Å resolution. The protein crystallizes with two homodimers in the asymmetric unit, and a model comprising 6528 protein atoms (residues 1–205 of all four monomers), four manganese ions and 415 water molecules has been refined to an R factor of 0.188 (R free 0.218). The structure shows a high degree of similarity with other MnSOD and FeSOD enzymes. The Mn centres are 5-coordinate, trigonal bipyramidal, with His26 and a solvent molecule, probably a hydroxide ion, as apical ligands, and His81, Asp167 and His171 as equatorial ligands. The coordinated solvent molecule is linked to a network of hydrogen bonds involving the non-coordinated carboxylate oxygen of Asp167 and a conserved glutamine residue, Gln146. The MnSOD dimer is notable for the way in which the two active sites are interconnected and a "bridge" comprising His171 of one monomer and Glu170 of the other offers a route for inter-site communication. Comparison of E. coli MnSOD and FeSOD (a) reveals some differences in the dimer interface, (b) yields no obvious explanation for their metal specificities, and (c) provides a structural basis for differences in DNA binding, where for MnSOD the groove formed by dimerization is complementary in charge and surface contour to B-DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号