首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For most cultivated mammalian cells, glutamine is an essential medium component. However, glutamine consumption results in the production of ammonia, a cytotoxic byproduct. Here we investigated the effect of glutamine reduction on recombinant protein production and ammonia accumulation in transiently transfected CHO and HEK-293E cells maintained under conditions of growth arrest. Maximum transient recombinant protein yields were observed in HEK-293E cultures without glutamine and in CHO cultures with 2 mM glutamine. The initial concentration of glutamine correlated with the level of ammonia accumulation in each culture. For both a stable CHO-derived cell line and a polyclonal population of recombinant CHO cells grown under conditions of mild hypothermia, the highest volumetric protein productivity was observed in cultures without glutamine. Here, the level of ammonia accumulation also corresponded to the initial glutamine concentration. Our data demonstrate that reduction of glutamine in the medium is an effective approach to improve protein production in both transiently and stably transfected mammalian cells when applying conditions that reduce or arrest the growth of these cells.  相似文献   

2.
Establishing stable cell lines are useful tools to study the function of various genes and silence or induce the expression of a gene of interest. Nonviral gene transfer is generally preferred to generate stable cell lines in the manufacturing of recombinant proteins. In this study, we aimed to establish stable recombinant HEK-293 cell lines by transfection of chitosan complexes preparing with pDNA which contain LacZ and GFP genes. Chitosan which is a cationic polymer was used as gene delivery system. Stable HEK-293 cell lines were established by transfection of cells with complexes which were prepared with chitosan and pVitro-2 plasmid vector that contains neomycin drug resistance gene, beta gal and GFP genes. The transfection efficiency was shown with GFP expression in the cells using fluorescence microscopy. Beta gal protein expression in stable cells was examined by beta-galactosidase assay as enzymatically and X-gal staining method as histochemically. Full complexation was shown in the above of 1/1 ratio in the chitosan/pDNA complexes. The highest beta-galactosidase activity was obtained with transfection of chitosan complexes. Beta gal gene expression was 15.17 ng/ml in the stable cells generated by chitosan complexes. In addition, intensive blue color was observed depending on beta gal protein expression in the stable cell line with X-gal staining. We established a stable HEK-293 cell line that can be used for recombinant protein production or gene expression studies by transfecting the gene of interest.  相似文献   

3.
At early stages of the exponential growth phase in HEK293 cell cultures, the tricarboxylic acid cycle is unable to process all the amount of NADH generated in the glycolysis pathway, being lactate the main by-product. However, HEK293 cells are also able to metabolize lactate depending on the environmental conditions. It has been recently observed that one of the most important modes of lactate metabolization is the cometabolism of lactate and glucose, observed even during the exponential growth phase. Extracellular lactate concentration and pH appear to be the key factors triggering the metabolic shift from glucose consumption and lactate production to lactate and glucose concomitant consumption. The hypothesis proposed for triggering this metabolic shift to lactate and glucose concomitant consumption is that HEK293 cells metabolize extracellular lactate as a response to both extracellular protons and lactate accumulation, by means of cotransporting them (extracellular protons and lactate) into the cytosol. At this point, there exists a considerable controversy about how lactate reaches the mitochondrial matrix: the first hypothesis proposes that lactate is converted into pyruvate in the cytosol, and afterward, pyruvate enters into the mitochondria; the second alternative considers that lactate enters first into the mitochondria, and then, is converted into pyruvate. In this study, lactate transport and metabolization into mitochondria is shown to be feasible, as evidenced by means of respirometry tests with isolated active mitochondria, including the depletion of lactate concentration of the respirometry assay. Although the capability of lactate metabolization by isolated mitochondria is demonstrated, the possibility of lactate being converted into pyruvate in the cytosol cannot be excluded from the discussion. For this reason, the calculation of the metabolic fluxes for an HEK293 cell line was performed for the different metabolic phases observed in batch cultures under pH controlled and noncontrolled conditions, considering both hypotheses. The main objective of this study is to evaluate the redistribution of cellular metabolism and compare the differences or similarities between the phases before and after the metabolic shift of HEK293 cells (shift observed when pH is not controlled). That is from a glucose consumption/lactate production phase to a glucose-lactate coconsumption phase. Interestingly, switching to a glucose and lactate cometabolization results in a better-balanced cell metabolism, with decreased glucose and amino acids uptake rates, affecting minimally cell growth. This behavior could be applied to further develop new approaches in terms of cell engineering and to develop improved cell culture strategies in the field of animal cell technology.  相似文献   

4.
The expression of three human metallothionein genes, MT-IIA, MT-IF, and MT-IG was studied in the human hepatoblastoma (HepG2), the hepatocarcinoma (Hep3B2), the embryonic kidney (Hek 293), and the lymphoblastoid-derived (Wi-L2) cell lines. The pattern of expression of each specific MT gene in response to various heavy metals was different among the four cell lines studied indicating differential regulation of MT gene expression. The MT-IF or MT-IG and the MT-IIA genes were regulated in a cell-type specific manner in response to heavy metals and dexamethasone, respectively. DNA methylation was shown to be correlated to cell-type specific regulation of MT gene expression since 5-azacytidine treatment resulted in the expression of the MT-IF and MT-IG genes in response to cadmium and zinc in Wi-L2 cells, of the MT-IIA gene in response to dexamethasone in Wi-L2 cells, and of the MT-IG in response to zinc and copper in Hek 293 cells. Furthermore, transfection studies indicated that all the trans-acting factors necessary for the expression of these genes were present and functional in Wi-L2 and Hek 293 cells. The differential level of expression of the MT-IF and MT-IG genes in response to heavy metals in the Hek 293 cell line was shown to be correlated to their chromatin structure.  相似文献   

5.
Apoptosis is a major problem in animal cell cultures during production of biopharmaceuticals, such as recombinant proteins or viral vectors. A 293 cell line constitutively expressing vMIA (viral mitochondria-localized inhibitor of apoptosis) was constructed and examined on production of a model recombinant protein, green fluorescent protein (GFP) in the adenovirus-293 expression system, and on production of a model infectious adenoviral vector. vMIA-293 cells were more resistant than the parental 293 cells to apoptosis induced by either oxidative stress, or by adenovirus infection. The yield of GFP produced in vMIA-293 cell cultures was consistently higher (140%) compared to that in the parental cells. vMIA reduced production of adenovirus infectious particles, which was not due to a decline of adenovirus replication, since adenoviral DNA replication rate in vMIA-293 cells was higher than that in the parental cells.In conclusion, introduction of the vMIA gene into the 293 cell line is a promising strategy to improve recombinant protein production in the adenovirus-293 expression system.  相似文献   

6.
7.
8.
Three insect cell lines, Sf9, Sf21 and Tn5B1-4, and four different kinds of serum free media (SFM), Sf 900 II, EX-CELL 420, EX-CELL 405 and Express Five, were used to compare the nutrient consumption, byproduct formation, production of recombinant protein and protease activity in suspension cultures. The Sf 900 II SFM was appropriate for the cell growth and protein production of the Sf9 and Sf21 cell lines. When the Tn5B1-4 cell line was grown in the Express Five SFM, the specific growth rate was 1.6 fold higher than those of either the Sf9 or Sf21 cell lines. The glucose and glutamine consumption rates per cells, were 4 and 2.3. times higher than those of the Sf9 cell line, respectively. The overall yield coefficients of the lactate and ammonium ion were 2.8 and 1.5 times higher compared to those of the Sf9 cell line, respectively. The maximum specific β-galactosidase production rate was 4.5. fold that of the Sf9 cell line, a 3 times higher protease activity per cell.  相似文献   

9.
This article describes the step-wise approach undertaken to select a serum-free medium (SFM) for the efficient production of a recombinant adenoviral vectors expressing beta-galactosidase (Ad5 CMV-LacZ), in the complementing human embryonic kidney 293S cells. In the first step, a 293S-derived transfectoma, secreting a soluble epidermal growth factor receptor sEGFr (D2-22), was used to estimate the potential of selected serum-free formulations to support the production of a recombinant protein as compared to serum-containing medium. Assays showed that only one among six commercial serum-free formulations could support both sEGFr production and cell growth in static or suspension culture. In commercially available calcium-containing serum-free formulations, the cell aggregates reached up to 3 mm in diameter. In the second step, 293S cells were gradually adapted to a low-calcium version of the selected medium (LC-SFM). Cells were cloned, then screened according to their ability to grow at a rate and an extent comparable to parental cells in serum-containing medium (standard) as single cells or small aggregates. The 293SF-3F6 clone, first adapted to and then cloned in the selected serum-free medium, was selected for further experiments. Bioreactor run performed with the 293SF-3F6 clone showed similar growth curve as in the shake-flask controls. In the final step, the recombinant viral vector productivity of the 293S cells and the 293SF-3F6 clone was tested. The 293SF-3F6 cells infected by Ad5 CMV-LacZ in 3 L-scale bioreactor maintained the specific productivities of both beta-galactosidase and adenoviral vector equivalent to the shake-flask controls in suspension culture. Results from this study clearly demonstrate that the 293SF-3F6 cell line thus selected may be used either for establishing stable transfected cell line or for the production of adenoviral vectors required for gene therapy studies.  相似文献   

10.
In gene therapy, retrovirus and adenovirus vectors are extensively used as gene-delivery vehicles and further large-scale processing of these viral vectors will be increasingly important. This study examined stationary and microcarrier cell culture systems with respect to the production of a retrovirus vector (encoding a monounit hammerhead ribozyme gene with an intron) and an adenovirus vector (encoding a reporter lacZ gene). Cytodex 1 and Cytodex 3 solid microcarriers were found to be able to provide good cell growth and high-titer vector production in suspension cultures. Porous microcarriers such as Cytopore 2 gave slightly lower but still efficient growth but produced significantly lower titers of retrovirus and adenovirus vector from the producer cells. The specific retrovirus production was not proportionally related to the specific growth rate of the producer cells. High MOI infection was essential for high-titer production of adenovirus vector in 293 cells. Hydrodynamic shear forces on microcarrier-grown cells increased the production yield for retrovirus vector but decreased for adenovirus vector. The cellular productivity was much more efficient for adenovirus vector produced in 293 cells as compared to the retrovirus vector produced in PA317-RCM1 cells. These findings can provide further insight into the feasibility of applying microcarrier cell culture technology to produce gene-therapy virus vectors.  相似文献   

11.
The Trichoplusia ni BTI-Tn-5B1-4 (Tn-5B1-4) insect cell line has received considerable attention as a host for the baculovirus expression vector system. In the present study, suspension cultures were used to compare Tn-5B1-4 cell aggregates and cells selected to grow predominantly as individual cells. No significant difference was found between cell aggregates and cells growing predominantly individually in regard to cell growth rate, glucose consumption and lactate accumulation, and specific recombinant protein synthesis levels. In addition, the levels of recombinant protein synthesis were considerably higher than those produced by the commonly used Spodoptera frugiperda Sf-9 insect cell line.  相似文献   

12.
Human 293S cells, a cell line adapted to suspension culture, were grown to 5×106 cells/mL in batch with calcium-free DMEM. These cells, infected with new constructions of adenovirus vectors, yielded as much as 10 to 20% recombinant protein with respect to the total cellular protein content. Until recently, high specific productivity of recombinant protein was limited to low cell density infected cultures of no more than 5×105 cells/mL. In this paper, we show with a model protein, Protein Tyrosine Phosphatase 1C how high product yield can be maintained at high cell densities of 2×106 cells/mL by a medium replacement strategy. This allows the production of as much as 90 mg/L of active recombinant protein per culture volume. Analysis of key limiting/inhibiting medium components showed that glucose addition along with pH control can yield the same productivity as a medium replacement strategy at high cell density in calcium-free DMEM. Finally, the above results were reproduced in 3L bioreactor suspension culture thereby establishing the scalability of this expression system. The process we developed is used routinely with the same success for the production of various recombinant proteins and viruses.Abbreviations CFDMEM calcium-free DMEM - CS bovine calf serum - hpi hours post-infection - J+ enriched Joklik medium - MLP major late promoter - MOI multiplicity of infection (# of infectious viral particle/cell) - q specific consumption rate (mole/cell.h) - pfu plaque forming unit (# of infectious viral particle) - Y yield (g/E6 cells or mole/cell)  相似文献   

13.
There are currently two methods for maintaining cultured mammalian cells, continuous passage at 37 degrees C and freezing in small batches. We investigated a third approach, the "pausing" of cells for days or weeks at temperatures below 37 degrees C in a variety of cultivation vessels. High cell viability and exponential growth were observed after pausing a recombinant Chinese hamster ovary cell line (CHO-Clone 161) in a temperature range of 6-24 degrees C in microcentrifuge tubes for up to 3 weeks. After pausing in T-flasks at 4 degrees C for 9 days, adherent cultures of CHO-DG44 and human embryonic kidney (HEK293 EBNA) cells resumed exponential growth when incubated at 37 degrees C. Adherent cultures of CHO-DG44 cells paused for 2 days at 4 degrees C in T-flasks and suspension cultures of HEK293 EBNA cells paused for 3 days at either 4 degrees C or 24 degrees C in spinner flasks were efficiently transfected by the calcium phosphate-DNA coprecipitation method, yielding reporter protein levels comparable to those from nonpaused cultures. Finally, cultures of a recombinant CHO cell line (CHO-YIgG3) paused for 3 days at 4 degrees C, 12 degrees C, or 24 degrees C in bioreactors achieved the same cell mass and recombinant protein productivity levels as nonpaused cultures. The success of this approach to cell storage with rodent and human cell lines points to a general biological phenomenon which may have a wide range of applications for cultivated mammalian cells.  相似文献   

14.
For the mouse hybridoma cell line VO 208, kinetics of growth, consumption of glucose and glutamine, and production of lactate, ammonia and antibodies were compared in batch and continuous cultures. At a given specific growth rate, different metabolic activities were observed: a 40% lower glucose and glutamine consumption rate, but a 70% higher antibody production rate in continuous than in batch culture. Much higher metabolic rates were also measured during the initial lag phase of the batch culture. When representing the variation of the specific antibody production rate as a function of the specific growth rate, there was a positive association between growth and antibody production in the batch culture, but a negative association during the transient phase of the continuous culture. The kinetic differences between cellular metabolism in batch and continuous cultures may be result of modifications in the physiology and metabolism of cells which, in continuous cultures, were extensively exposed to glucose limitations.Institut National Polytechnique de Lorraine, ENSAIA BP 172, 2 avenue de la forêt de Haye, 54505, Vandoeuvre Cedex France  相似文献   

15.
16.
We have produced a recombinant C-terminal α-amidating enzyme (799BglIIα-AE) derived from Xenopus laevis by culturing a CHO cell line named 3μ-1S. Recently, we demonstrated that culturing 3μ-1S cells at a temperature below 37 °C led to the following phenomena: inhibited cell growth with high viability, enhanced cellular productivity (maximally at 32 °C), and suppressed medium consumption and release of impurities from the cells. Therefore, it is suggested that the 799BglIIα-AE production will be increased by culturing a sufficient number of the cells at a low temperature (especially at 32 °C). To assess this effect on batch and perfusion cultures, the culture temperature was shifted from 37 to 32 °C in the mid-exponential phase in the case of batch culture and from 37 to 34 °C when the cell density became high enough in the case of perfusion culture. Application of the low temperature culture to batch and perfusion cultures was effective in comparison with the culture at 37 °C: the productivity per medium and the productivity per time were increased severalfold with enhanced cellular productivity at a low culture temperature. The low temperature culture also increased the relative content of 799BglIIα-AE in the supernatant and reduced the glucose consumption. The method presented here would contribute to production of bioactive proteins using other recombinant cell lines. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Effects of glucose on a cultured Chinese hamster ovary cell line producing recombinant human protein C were investigated. After the recombinant cells reached confluency, they were maintained in the medium containing 10% serum and different levels of glucose in either batch or daily-exchange mode. High concentrations of glucose to the cultures yielded higher cell densities. Daily exchanges of media produced higher cell densities than the corresponding batch culture. Total protein C production per cell decreased with time in batch culture, in accordance with the declined glucose metabolism. Supplementation of the media with high levels of glucose diminished both the expression and gamma-carboxylation activities of the recombinant cells. Production of protein C persisted in daily-exchange culture, resulting in a constant production rate of protein C. In this case again, glucose reduced the specific productivity of recombinant protein C. An apparent glucose inhibition constant was determined to be 0.11 mg/mL by Dixon plots. The ability to gamma-carboxylate recombinant protein C was also impaired at the highest level of glucose. From these results, a strategy to maximize recombinant protein C productivity is discussed.  相似文献   

18.
Most commercial media for mammalian cell culture are designed to satisfy the amino acid requirements for cell growth, but not necessarily those for recombinant protein production. In this study, we analyze the amino acid consumption pattern in naïve and recombinant Chinese hamster ovary (CHO) cell cultures. The recombinant model we chose was a CHO-S cell line engineered to produce a monoclonal antibody. We report the cell concentration, product concentration, and amino acid concentration profiles in naïve and recombinant cell cultures growing in CD OptiCHO™ medium with or without amino acid supplementation with a commercial supplement (CHO CD EfficientFeed™ B). We quantify and discuss the amino acid demands due to cell growth and recombinant protein production during long term fed batch cultivation protocols. We confirmed that a group of five amino acids, constituting the highest mass fraction of the product, shows the highest depletion rates and could become limiting for product expression. In our experiments, alanine, a non-important mass constituent of the product, is in high demand during recombinant protein production. Evaluation of specific amino acid demands could be of great help in the design of feeding/supplementation strategies for recombinant mammalian cell cultures.  相似文献   

19.
A hybridoma cell line was cultivated in fed-batch cultures using a low-protein, serum-free medium. On-line oxygen uptake rate (OUR) measurement was used to adjust the nutrient feeding rate based on glucose consumption, which was estimated on-line using the stoichiometric relations between glucose and oxygen consumption. Through on-line control of the nutrient feeding rate, not only sufficients were supplied for cell growth and antibody production, but also the concentrations of glucose and other important nutrients such as amino acids were maintained at low levels during the cell growth phase. During the cultivation, cell metabolism changed from high lactate production and low oxygen consumption to low lactate production and high oxygen consumption. As a result the accumulation of lactate was reduced and the growth phase was extended. In comparison with the batch cultures, in which cells reached a concentration of approximately 2 x 10(6) cells/mL, a very high concentration of 1.36 x 10(7) cells/mL with a high cell viability (>90%) was achieved in the fed-batch culture. By considering the consumption of glucose and amino acids, as well as the production of cell mass, metabolites, and antibodies, a well-closed material balance was established. Our results demonstrate the value of coupling on-line OUR measurement and the stoichiometric realations for dynamic nutrient feeding in high cell concentration fed batch cultures. (c) 1995 John Wiley & Sons, Inc.  相似文献   

20.
Orbitally shaken bioreactors (OSRs) support the suspension cultivation of animal cells at volumetric scales up to 200 L and are a potential alternative to stirred‐tank bioreactors (STRs) due to their rapid and homogeneous mixing and high oxygen transfer rate. In this study, a Chinese hamster ovary cell line producing a recombinant antibody was cultivated in a 5 L OSR and a 3 L STR, both operated with or without pH control. Effects of bioreactor type and pH control on cell growth and metabolism and on recombinant protein production and glycosylation were determined. In pH‐controlled bioreactors, the glucose consumption and lactate production rates were higher relative to cultures grown in bioreactors without pH control. The cell density and viability were higher in the OSRs than in the STRs, either with or without pH control. Volumetric recombinant antibody yields were not affected by the process conditions, and a glycan analysis of the antibody by mass spectrometry did not reveal major process‐dependent differences in the galactosylation index. The results demonstrated that OSRs are suitable for recombinant protein production from suspension‐adapted animal cells. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1174–1180, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号