首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bacillus anthracis secretes two critical virulence factors, lethal toxin (LT) and edema toxin (ET). In this study, we show that murine bone marrow-derived dendritic cells (DC) infected with B. anthracis strains secreting ET exhibit a very different cytokine secretion pattern than DC infected with B. anthracis strains secreting LT, both toxins, or a nontoxinogenic strain. ET produced during infection selectively inhibits the production of IL-12p70 and TNF-alpha, whereas LT targets IL-10 and TNF-alpha production. To confirm the direct role of the toxins, we show that purified ET and LT similarly disrupt cytokine secretion by DC infected with a nontoxinogenic strain. These effects can be reversed by specific inhibitors of each toxin. Furthermore, ET inhibits in vivo IL-12p70 and IFN-gamma secretion induced by LPS. These results suggest that ET produced during infection impairs DC functions and cooperates with LT to suppress the innate immune response. This may represent a new strategy developed by B. anthracis to escape the host immune response.  相似文献   

2.
Pathogenic strains of Bacillus anthracis produce two potent toxins, lethal toxin (LT), a metalloprotease that cleaves mitogen-activated protein kinase kinases, and oedema toxin (ET), a calcium/calmodulin-dependent adenylate cyclase. Emerging evidence indicates a role for both toxins in suppressing the initiation of both innate and adaptive immune responses, which are essential to keep the infection under control. Here we show that LT and ET inhibit chemotaxis of T-cells and macrophages by subverting signalling by both CXC and CC chemokine receptors. The data highlight a novel strategy of immunosuppression by B. anthracis based on inhibition of immune cell homing.  相似文献   

3.
Bacillus anthracis produces lethal toxin (LT) and edema toxin (ET), and they suppress the function of LPS-stimulated dendritic cells (DCs). Because DCs respond differently to various microbial stimuli, we compared toxin effects in bone marrow DCs stimulated with either LPS or Legionella pneumophila (Lp). LT, not ET, was more toxic for cells from BALB/c than from C57BL/6 (B6) as measured by 7-AAD uptake; however, ET suppressed CD11c expression. LT suppressed IL-12, IL-6, and TNF-alpha in cells from BALB/c and B6 mice but increased IL-1beta in LPS-stimulated cultures. ET also suppressed IL-12 and TNF-alpha, but increased IL-6 and IL-1beta in Lp-stimulated cells from B6. Regarding maturation marker expression, LT increased MHCII and CD86 while suppressing CD40 and CD80; ET generally decreased marker expression across all groups. We conclude that the suppression of cytokine production by anthrax toxins is dependent on variables, including the source of the DCs, the type of stimulus and cytokine measured, and the individual toxin tested. However, LT and ET enhancement or suppression of maturation marker expression is more related to the marker studied than the stimuli or cell source. Anthrax toxins are not uniformly suppressive of DC function but instead can increase function under defined conditions.  相似文献   

4.
The anthrax toxins lethal toxin (LT) and edema toxin (ET) are essential virulence factors produced by Bacillus anthracis. These toxins act during two distinct phases of anthrax infection. During the first, prodromal phase, which is often asymptomatic, anthrax toxins act on cells of the immune system to help the pathogen establish infection. Then, during the rapidly progressing (or fulminant) stage of the disease bacteria disseminate via a hematological route to various target tissues and organs, which are typically highly vascularized. As bacteria proliferate in the bloodstream, LT and ET begin to accumulate rapidly reaching a critical threshold level that will cause death even when the bacterial proliferation is curtailed by antibiotics. During this final phase of infection the toxins cause an increase in vascular permeability and a decrease in function of target organs including the heart, spleen, kidney, adrenal gland, and brain. In this review, we examine the various biological effects of anthrax toxins, focusing on the fulminant stage of the disease and on mechanisms by which the two toxins may collaborate to cause cardiovascular collapse. We discuss normal mechanisms involved in maintaining vascular integrity and based on recent studies indicating that LT and ET cooperatively inhibit membrane trafficking to cell-cell junctions we explore several potential mechanisms by which the toxins may achieve their lethal effects. We also summarize the effects of other potential virulence factors secreted by B. anthracis and consider the role of toxic factors in the evolutionarily recent emergence of this devastating disease.  相似文献   

5.
Anthrax is the disease caused by the Gram-positive bacterium Bacillus anthracis. Two toxins secreted by B. anthracis - lethal toxin (LT) and oedema toxin (OT) - contribute significantly to virulence. Although these toxins have been studied for half a century, recent evidence indicates that LT and OT have several roles during infection not previously ascribed to them. Research on toxin-induced effects other than cytolysis of target cells has revealed that LT and OT influence cell types previously thought to be insensitive to toxin. Multiple host factors that confer sensitivity to anthrax toxin have been identified recently, and evidence indicates that the toxins probably contribute to colonisation and invasion of the host. Additionally, the toxins are now known to cause a wide spectrum of tissue and organ pathophysiologies associated with anthrax. Taken together, these new findings indicate that anthrax-toxin-associated pathogenesis is much more complex than has been traditionally recognised.  相似文献   

6.
7.
NK cells are important immune effectors for preventing microbial invasion and dissemination, through natural cytotoxicity and cytokine secretion. Bacillus anthracis spores can efficiently drive IFN-γ production by NK cells. The present study provides insights into the mechanisms of cytokine and cellular signaling that underlie the process of NK-cell activation by B. anthracis and the bacterial strategies to subvert and evade this response. Infection with non-toxigenic encapsulated B. anthracis induced recruitment of NK cells and macrophages into the mouse draining lymph node. Production of edema (ET) or lethal (LT) toxin during infection impaired this cellular recruitment. NK cell depletion led to accelerated systemic bacterial dissemination. IFN-γ production by NK cells in response to B. anthracis spores was: i) contact-dependent through RAE-1-NKG2D interaction with macrophages; ii) IL-12, IL-18, and IL-15-dependent, where IL-12 played a key role and regulated both NK cell and macrophage activation; and iii) required IL-18 for only an initial short time window. B. anthracis toxins subverted both NK cell essential functions. ET and LT disrupted IFN-γ production through different mechanisms. LT acted both on macrophages and NK cells, whereas ET mainly affected macrophages and did not alter NK cell capacity of IFN-γ secretion. In contrast, ET and LT inhibited the natural cytotoxicity function of NK cells, both in vitro and in vivo. The subverting action of ET thus led to dissociation in NK cell function and blocked natural cytotoxicity without affecting IFN-γ secretion. The high efficiency of this process stresses the impact that this toxin may exert in anthrax pathogenesis, and highlights a potential usefulness for controlling excessive cytotoxic responses in immunopathological diseases. Our findings therefore exemplify the delicate balance between bacterial stimulation and evasion strategies. This highlights the potential implication of the crosstalk between host innate defences and B. anthracis in initial anthrax control mechanisms.  相似文献   

8.
We have examined the roles of enzyme activity and the nontoxic AB complex of heat-labile toxin (LT) from Escherichia coli on its adjuvant and immunomodulatory properties. LTK63, an LT mutant that is completely devoid of enzyme activity, enhanced Th1 responses to coinjected Ags at low adjuvant dose. In contrast, LTR72, a partially detoxified mutant, enhanced Th2 responses and when administered intranasally to mice before infection with Bordetella pertussis suppressed Th1 responses and delayed bacterial clearance from the lungs. LTR72 or wild-type LT inhibited Ag-induced IFN-gamma production by Th1 cells, and LT enhanced IL-5 production by Th2 cells in vitro. Each of the toxins enhanced B7-1 expression on macrophages, but enhancement of B7-2 expression was dependent on enzyme activity. We also observed distinct effects of the nontoxic AB complex and enzyme activity on inflammatory cytokine production. LT and LTR72 suppressed LPS and IFN-gamma induced TNF-alpha and IL-12 production, but enhanced IL-10 secretion by macrophages in vitro and suppressed IL-12 production in vivo in a murine model of LPS-induced shock. In contrast, LTK63 augmented the production of IL-12 and TNF-alpha. Furthermore, LTK63 enhanced NF-kappaB translocation, whereas low doses of LTR72 or LT failed to activate NF-kappaB, but stimulated cAMP production. Thus, E. coli LT appears to be capable of suppressing Th1 responses and enhancing Th2 responses through the modulatory effects of enzyme activity on NF-kappaB activation and IL-12 production. In contrast, the nontoxic AB complex can stimulate acquired immune responses by activating components of the innate immune system.  相似文献   

9.
Bacillus anthracis toxins inhibit human neutrophil NADPH oxidase activity   总被引:4,自引:0,他引:4  
Bacillus anthracis, the causative agent of anthrax, is a Gram-positive, spore-forming bacterium. B. anthracis virulence is ascribed mainly to a secreted tripartite AB-type toxin composed of three proteins designated protective Ag (PA), lethal factor, and edema factor. PA assembles with the enzymatic portions of the toxin, the metalloprotease lethal factor, and/or the adenylate cyclase edema factor, to generate lethal toxin (LTx) and edema toxin (ETx), respectively. These toxins enter cells through the interaction of PA with specific cell surface receptors. The anthrax toxins act to suppress innate immune responses and, given the importance of human neutrophils in innate immunity, they are likely relevant targets of the anthrax toxin. We have investigated in detail the effects of B. anthracis toxin on superoxide production by primary human neutrophils. Both LTx and ETx exhibit distinct inhibitory effects on fMLP (and C5a) receptor-mediated superoxide production, but have no effect on PMA nonreceptor-dependent superoxide production. These inhibitory effects cannot be accounted for by induction of neutrophil death, or by changes in stimulatory receptor levels. Analysis of NADPH oxidase regulation using whole cell and cell-free systems suggests that the toxins do not exert direct effects on NADPH oxidase components, but rather act via their respective effects, inhibition of MAPK signaling (LTx), and elevation of intracellular cAMP (ETx), to inhibit upstream signaling components mediating NADPH oxidase assembly and/or activation. Our results demonstrate that anthrax toxins effectively suppress human neutrophil-mediated innate immunity by inhibiting their ability to generate superoxide for bacterial killing.  相似文献   

10.
Lethal factor (LF), along with its receptor-binding partner protective antigen (PA), forms lethal toxin (LT), a critical virulence factor for Bacillus anthracis. LF is a Zn(2+) protease that cleaves specific mitogen activated protein kinase kinases (MAPKKs), inactivating signal transduction intermediates required for normal immune function. Initial research emphasized the role of LT in attenuating pro-inflammatory responses by macrophages, the primary targets of infection. More recent studies have revealed that LT affects a broad range of immune cells. In addition to direct effects on macrophages and neutrophils, LT suppresses the costimulatory functions of dendritic cells, thereby impeding essential cross-talk between innate and adaptive immune responses. Moreover, LT acts directly on T and B lymphocytes, blocking antigen receptor-dependent proliferation, cytokine production and Ig production. In this manner, LT mounts a broad-based attack on host immunity, thus providing B. anthracis with multiple mechanisms for avoiding protective host responses.  相似文献   

11.
Anthrax lethal toxin (LT), a critical virulence factor for Bacillus anthracis, has been demonstrated to cleave and to inactivate mitogen-activated protein kinase kinases (MAPKKs) that propagate prosurvival signals in macrophages (1-5). Whether this action of anthrax LT leads to the production of proinflammatory cytokines by macrophages has been more controversial (6, 7). We now report that anthrax LT treatment leads to the specific extracellular release of interleukin (IL)-1beta and IL-18 by the murine macrophage cell lines, RAW264.7 and J774A.1. Studies of the processing of IL-1beta reveal that the levels of activated/cleaved IL-1beta in RAW264.7 and J774.A1 cells are increased following treatment with anthrax LT. Enhanced processing of IL-1beta directly correlates with increased levels in the activation of its upstream regulator, IL-1beta-converting enzyme/Caspase-1 (ICE). The extracellular release of IL-1beta and IL-18 in response to anthrax LT is ICE-dependent, as an ICE-specific inhibitor blocks this process. These data indicate that ICE, IL-1beta, and IL-18 are downstream effectors of anthrax LT in macrophages, providing the basis for new bioassays for anthrax LT activity and representing potential therapeutic targets.  相似文献   

12.
Anthrax lethal toxin (LT) is a critical virulence factor that cleaves and inactivates MAPK kinases (MAPKKs) in host cells and has been proposed as a therapeutic target in the treatment of human anthrax infections. Despite the potential use of anti-toxin agents in humans, the standard activity assays for anthrax LT are currently based on cytotoxic actions of anthrax LT that are cell-, strain-, and species-specific, which have not been demonstrated to occur in human cells. We now report that T cell proliferation and IL-2 production inversely correlate with anthrax LT levels in human cell assays. The model CD4+ T cell tumor line, Jurkat, is a susceptible target for the specific protease action of anthrax LT. Anthrax LT cleaves and inactivates MAPKKs in Jurkat cells, whereas not affecting proximal or parallel TCR signal transduction pathways. Moreover, anthrax LT specifically inhibits PMA/ionomycin- and anti-CD3-induced IL-2 production in Jurkat cells. An inhibitor of the protease activity of anthrax LT completely restores IL-2 production by anthrax LT-treated Jurkat cells. Anthrax LT acts on primary CD4+ T cells as well, cleaving MAPKKs and leading to a 95% reduction in anti-CD3-induced proliferation and IL-2 production. These findings not only will be useful in the development of new human cell-based bioassays for the activity of anthrax LT, but they also suggest new mechanisms that facilitate immune evasion by Bacillus anthracis. Specifically, anthrax LT inhibits IL-2 production and proliferative responses in CD4+ T cells, thereby blocking functions that are pivotal in the regulation of immune responses.  相似文献   

13.
14.
Bacillus anthracis oedema toxin (ET) and Bordetella pertussis adenylate cyclase toxin (ACT) enter host cells and produce cAMP. To understand the cellular consequences, we exposed J774 cells to these toxins at ng ml(-1) (pM) concentrations, then followed cell number and changes in cell signalling pathways. Under these conditions, both toxins produce a concentration-dependent inhibition of cell proliferation without cytotoxicity. ET and ACT increase the proportion of cells in G(1) /G(0) and reduce S phase, such that a single addition of ET or ACT inhibits cell division for 3-6 days. Treatment with ET or ACT produces striking changes in proteins controlling cell cycle, including virtual elimination of phosphorylated ERK 1/2 and Cyclin D1 and increases in phospho-CREB and p27(Kip1) . Importantly, PD98059, a MEK inhibitor, elicits a comparable reduction in Cyclin D1 to that produced by the toxins and blocks proliferation. These data show that non-lethal concentrations of ET and ACT impose a prolonged block on the proliferation of J774 cells by impairment of the progression from G(1) /G(0) to S phase in a process involving cAMP-mediated increases in phospho-CREB and p27(Kip1) and reductions in phospho-ERK 1/2 and Cyclin D1. This phenomenon represents a new mechanism by which these toxins affect host cells.  相似文献   

15.
Clostridium sordellii lethal toxin (LT) is a glucosyltransferase which inactivates small GTPases from the Rho and Ras families. In the present work, we studied the effects of two variants, LT82 and LT9048, on the integrity of epithelial cell barrier using polarized MCCD (Mouse Cortical Collecting Duct) and MDCK (Madin-Darby Canine Kidney) cells. Our results demonstrate for the first time that LTs have very limited effects on tight junctions. In contrast, we show that both toxins modified the paracellular permeability within 2-4 h. Concomitantly LT82 and LT9048 induced a disorganization of basolateral actin filaments, without modifying apical actin. Both toxins mainly altered adherens junctions by removing E-cadherin-catenin complexes from the membrane to the cytosol. Similar effects on adherens junctions have been observed with other toxins, which directly or indirectly depolymerize actin. Thereby, Rac, a common substrate of both LTs, might play a central role in LT-dependent adherens junction alteration. Here, we show that adherens junction perturbation induced by LTs results neither from a direct effect of toxins on adherens junction proteins nor from an actin-independent Rac pathway, but rather from a Rac-dependent disorganization of basolateral actin cytoskeleton. This further supports that a dynamic equilibrium of cortical actin filaments is essential for functional E-cadherin organization in epithelia.  相似文献   

16.
Bacillus anthracis, the causative agent of anthrax, secretes two bipartite toxins that help the bacterium evade the immune system and contribute directly to pathogenesis. Both toxin catalytic moieties, lethal factor (LF) and oedema factor (OF), are internalized into the host-cell cytosol by a third factor, protective antigen (PA), which binds to cellular anthrax toxin receptors (ANTXRs). Oedema factor is an adenylate cyclase that impairs host defences by raising cellular cAMP levels. Here we demonstrate that oedema toxin (PA + OF) induces an increase in ANTXR expression levels in macrophages and dendritic cells resulting in an increased rate of toxin internalization. Furthermore, we show that increases in ANTXR mRNA levels depends on the ability of OF to increase cAMP levels, is mediated through protein kinase A-directed signalling and is monocyte-lineage-specific. To our knowledge, this is the first report of a bacterial toxin inducing host target cells to increase toxin receptor expression.  相似文献   

17.
We demonstrate that disruption of the htrA (high temperature requirement A) gene in either the virulent Bacillus anthracis Vollum (pXO1(+) , pXO2(+) ), or in the ΔVollum (pXO1(-), pXO2(-), nontoxinogenic and noncapsular) strains, affect significantly the ability of the resulting mutants to withstand heat, oxidative, ethanol and osmotic stress. The ΔhtrA mutants manifest altered secretion of several proteins, as well as complete silencing of the abundant extracellular starvation-associated neutral protease A (NprA). VollumΔhtrA bacteria exhibit delayed proliferation in a macrophage infection assay, and despite their ability to synthesize the major B. anthracis toxins LT (lethal toxin) and ET (oedema toxin) as well as the capsule, show a decrease of over six orders of magnitude in virulence (lethal dose 50% = 3 × 10(8) spores, in the guinea pig model of anthrax), as compared with the parental wild-type strain. This unprecedented extent of loss of virulence in B. anthracis, as a consequence of deletion of a single gene, as well as all other phenotypic defects associated with htrA mutation, are restored in their corresponding trans-complemented strains. It is suggested that the loss of virulence is due to increased susceptibility of the ΔhtrA bacteria to stress insults encountered in the host. On a practical note, it is demonstrated that the attenuated Vollum ΔhtrA is highly efficacious in protecting guinea pigs against a lethal anthrax challenge.  相似文献   

18.
The combination of lethal factor and its receptor-binding partner, protective Ag, is termed lethal toxin (LT) and has critical pathogenic activity during infection with Bacillus anthracis. We herein report that anthrax LT binds and enters murine neutrophils, leading to the cleavage of mitogen-activated protein kinase kinase/MEK/MAPKK 1-4 and 6, but not mitogen-activated protein kinase kinase 5 and 7. Anthrax LT treatment of neutrophils disrupts signaling to downstream MAPK targets in response to TLR stimulation. Following anthrax LT treatment, ERK family and p38 phosphorylation are nearly completely blocked, but signaling to JNK family members persists in vitro and ex vivo. In contrast to previous reports involving human neutrophils, anthrax LT treatment of murine neutrophils increases their production of superoxide in response to PMA or TLR stimulation in vitro or ex vivo. Although this enhanced superoxide production correlates with effects due to the LT-induced blockade of ERK signaling, it requires JNK signaling that remains largely intact despite the activity of anthrax LT. These findings reveal a previously unrecognized mechanism through which anthrax LT supports a critical proinflammatory response of murine neutrophils.  相似文献   

19.
炭疽是由炭疽芽孢杆菌引起的严重威胁人类健康的传染病。炭疽毒素包括3种蛋白质成分:保护性抗原(PA)、致死因子(LF)和水肿因子(EF)。PA与LF形成致死毒素(LT),与EF形成水肿毒素(ET)。由于致死毒素(LT)在感染者损伤及死亡中发挥主要作用,因此在炭疽感染晚期单纯使用抗生素治疗难以发挥疗效,治疗性中和抗体成为目前最有效的炭疽治疗药物。目前国外获得的炭疽毒素抗体多为炭疽PA抗体,美国FDA已批准瑞西巴库(人源PA单抗)用于吸入性炭疽的治疗。一旦炭疽芽孢杆菌被人为改构或PA中和表位发生突变,针对PA单一表位的抗体将可能失效,因此针对LF的抗体将成为炭疽治疗的有效补充。目前国外已有的LF抗体多为鼠源抗体和嵌合抗体,而全人源抗体可以避免鼠源抗体免疫原性高等缺点。本研究首先用LF抗原免疫人抗体转基因小鼠,利用流式细胞仪从小鼠脾淋巴细胞中分选抗原特异的记忆B细胞,通过单细胞PCR方法快速获得两株具有结合活性的抗LF单抗1D7和2B9。瞬时转染Expi 293F细胞制备抗体,通过毒素中和实验(TNA)发现1D7和2B9在细胞模型中均显示较好的中和活性,并且与PA单抗联合使用时,表现出较好的协同作用。总之,本文利用转基因小鼠、流式分选技术和单细胞PCR技术的优势,快速筛选到全人源LF抗体,为快速筛选全人源单克隆抗体开辟了新的思路与方法。  相似文献   

20.
Escherichia coli heat-labile enterotoxin (LT) is a powerful mucosal adjuvant; however, it is associated with toxic effects when delivered intranasally, and its mechanism of action is poorly understood. In this article, we demonstrate that LT acts as a highly effective adjuvant when administered parenterally, promoting Ag-specific IL-17, as well as IFN-γ, IL-4, and IL-10 production in response to coadministered Ags. We found that the adjuvant activity of LT was mediated in part by inducing dendritic cell (DC) activation; LT promoted CD80 and CD86 expression by DCs and enhanced IL-1α, IL-1β, and IL-23 production. An LT mutant, LTK63, that lacks enzyme activity was less effective than the wild-type toxin in promoting DC maturation and the development of Ag-specific Th17 cells. LT enhanced IL-23 and IL-1α production from DCs via activation of ERK MAPK and IL-1β secretion through activation of caspase-1 and the NLRP3 inflammasome. These cytokines played a major role in promoting Th17 responses by LT and LTK63. The induction of Th17 cells in vivo in response to LT and LTK63 as adjuvants was significantly reduced in IL-1RI-deficient mice. Finally, using a murine respiratory infection model, we demonstrated that LT can act as a highly effective adjuvant for a pertussis vaccine, promoting Ag-specific Th17 cells and protection against Bordetella pertussis challenge, which was significantly reduced in IL-17-defective mice. Our findings provide clear evidence that LT can promote protective immune responses in part through induction of innate IL-1 and, consequently, Th17 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号