首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Minocycline prevents the development of neuropathic and inflammatory pain by inhibiting microglial activation and postsynaptic currents. But, how minocycline obviates acute visceral pain is unclear. The present study investigated whether minocycline had an any antinociceptive effect on acetic acid-induced acute abdominal pain after intraperitoneal (i.p.) administration of saline or minocycline 1 hour before acetic acid injection (1.0%, 250 ??l, i.p.).

Results

Minocycline (4, 10, or 40 mg/kg) significantly decreased acetic acid-induced nociception (0-60 minutes post-injection) and the enhancement in the number of c-Fos positive cells in the T5-L2 spinal cord induced by acetic acid injection. Also, the expression of spinal phosphorylated extracellular signal-regulated kinase (p-ERK) induced by acetic acid was reduced by minocycline pre-administration. Interestingly, intrathecal introduction of PD98059, an ERK upstream kinase inhibitor, markedly blocked the acetic acid-stimulated pain responses.

Conclusions

These results demonstrate that minocycline effectively inhibits acetic acid-induced acute abdominal nociception via the inhibition of neuronal p-ERK expression in the spinal cord, and that minocycline may have therapeutic potential in suppressing acute abdominal pain.  相似文献   

2.
Abstract. The durations of the cell cycle and its component phases have been determined for the basal layer of the epidermis of the skin from the upper surface of the hind foot of the rat using single pulse [3H]-thymidine labelling and the percent labelled mitosis (PLM) technique. Rats of three age groups were used, namely 7, 14 and 52 weeks. The duration of DNA synthesis (Ts) and the G2 plus M phase (Tg2± m) were comparable in 7-week and 52-week-old rats ( P > 0–1). The major difference between 7-week and 52-week-old rats was in the duration of the G1 phase (Tg1). In 7-week-old rats Tg1 was 15.0 ± 0.8 h and in 52-week-old rats Tg1 was 31.2 ± 3.5 h. A consequence of this variation was that the overall duration of the cell cycle was longer in 52-week-old rats (53.9 ± 5.3 h) than in 7-week-old rats (30.1 ± 1.3 h).
Difficulties were found in fitting a simple curve to the PLM data for 14-week-old rats. This suggests that the proliferative cell population of the epidermis of rats of this age group may be heterogeneous. A satisfactory fit to the data was obtained using a computer model which assumed that the proliferative population of the epidermis of 14-week-old rats was a mixture of cells with cell cycle parameters the same as those of the 7-week and the 52-week-old rats. These two sub-populations of relatively slowly and rapidly proliferating cells were present in the ratio of 2:1.  相似文献   

3.
Inflammatory processes have been implicated in the pathogenesis of traumatic brain damage. We analyzed the spatiotemporal expression pattern of the proinflammatory key molecules: interleukin-1beta, interleukin-6, tumor necrosis factor-alpha, and inducible nitric oxide synthase in a rat closed head injury (CHI) paradigm. 51 rats were used for RT-PCR analysis after CHI, and 18 for immunocytochemistry. We found an early upregulation of IL-1beta, IL-6, and TNF-alpha mRNA between 1h and 7h after injury; the expression of iNOS mRNA only revealed a significant increase at 4h. After 24h, the expression decreased towards baseline levels, and remained low until 7d after injury. Immunocytochemically, IL-1beta induction was localized to ramified microglia in areas surrounding the primary impact place as well as deeper brain structures. Our study shows rapid induction of inflammatory gene expression that exceeds by far the primary impact site and might therefore contribute to tissue damage at remote sites.  相似文献   

4.
The durations of the cell cycle and its component phases have been determined for the basal layer of the epidermis of the skin from the upper surface of the hind foot of the rat using single pulse [3H]-thymidine labelling and the percent labelled mitosis (PLM) technique. Rats of three age groups were used, namely 7, 14 and 52 weeks. The duration of DNA synthesis (Ts) and the G2 plus M phase (TG2 + M) were comparable in 7-week and 52-week-old rats (P greater than 0.1). The major difference between 7-week and 52-week-old rats was in the duration of the G1 phase (TG1). In 7-week-old rats TG1 was 15.0 +/- 0.8 h and in 52-week-old rats TG1 was 31.2 +/- 3.5 h. A consequence of this variation was that the overall duration of the cell cycle was longer in 52-week-old rats (53.9 +/- 5.3 h) than in 7-week-old rats (30.1 +/- 1.3 h). Difficulties were found in fitting a simple curve to the PLM data for 14-week-old rats. This suggests that the proliferative cell population of the epidermis of rats of this age group may be heterogeneous. A satisfactory fit to the data was obtained using a computer model which assumed that the proliferative population of the epidermis of 14-week-old rats was a mixture of cells with cell cycle parameters the same as those of the 7-week and the 52-week-old rats. These two sub-populations of relatively slowly and rapidly proliferating cells were present in the ratio of 2:1.  相似文献   

5.
6.
CGRP is a well-known neuropeptide that has various protective effects on cardiovascular system. Our previous studies have shown that CGRP inhibits vascular smooth muscle cell (VSMC) proliferation in vitro. The present study aimed to explore the role of the CGRP in neointimal formation after balloon injury in the rat aortic wall and the underlying mechanism. Gene transfer of CGRP was performed with the use of intramuscular electroporation in a balloon-injured rat aorta model. Apoptosis in VSMCs was determined by electrophoresis assessment of DNA fragmentation and terminal deoxynucleotide transferase-mediated dUTP nick-end labeling assay. Overexpression of the CGRP gene significantly inhibited the neointimal formation after balloon injury compared with the mock transfer, as assessed by the intima-to-media ratio 14 days after balloon injury (29.2 +/- 3.7% vs. 52.7 +/- 5.4%; n = 9-12, P < 0.05). In addition, CGRP gene expression increased the number of apoptotic cells in the neointima in vivo 14 days after balloon injury. Similarly, the addition of bioactive CGRP and the nitric oxide donor induced similar apoptosis in cultured VSMCs. The antagonist of the CGRP(1) receptor and inhibitors of cAMP-PKA and nitric oxide blocked CGRP-mediated apoptosis. Furthermore, CGRP gene transfer increased inducible nitric oxide synthase and p53 but decreased PCNA and Bcl-2 protein levels in balloon-injured rat aorta. Our data demonstrated that CGRP potently inhibited neointimal thickening in the rat aorta, at least in part through its distinct effects on apoptosis and proliferation of VSMCs both in vivo and in vitro. Therefore, delivery of the CGRP gene may have therapeutic implications in limiting vascular restenosis.  相似文献   

7.
8.
9.
Summary Extracellular recording from single auditory nerve fibers in the pigeon,Columba livia, revealed some unusual discharge patterns of spontaneous and evoked activity.Time interval histograms (TIHs) of spontaneous activity showed a random interval distribution in 73% of the auditory fibers (Fig. 1a). The remaining 27% revealed periodicity in the TIHs (Fig. 1b–e), determined by the characteristic frequency (CF) of a given fiber. Normally, those fibers had a CF<2.2 kHz. In both cases spontaneous activity was irregular.The time pattern of quasiperiodic spontaneous firing in different auditory fibers is described by three main types of autocorrelation histograms (ACHs; decaying, nondecaying, and modulated), reflecting the spontaneous oscillations of the hair cell membrane potential (Fig. 1b–d).Single-tone suppression in auditory fibers with quasi-periodic spontaneous activity was found (Figs. 2, 10) and it could be observed if the eighth nerve was cut. There was no suppressive effect in fibres with random spontaneous firing.The frequency selectivity properties of auditory fibers were studied by means of an automatic method. Both simple (Fig. 4) and complex (Figs. 7, 8) response maps were found. Apart from the usual excitatory area, complex response maps were characterized by suppressive areas lying either above (Fig. 7), below (Fig. 8e), or on both sides of the CF (Fig. 8a–c). Generally, complex response maps were observed for fibers showing quasiperiodic spontaneous activity (Figs. 7, 8).Input-output functions at frequencies evoking single-tone suppression were nonmonotonic, while they were always monotonic at frequencies near the CF (Fig. 12).No difference in sharpness was observed between normal frequency threshold curves (FTCs) and exitatory areas of complex response maps (Fig. 9).On-off responses evoked by suppressive stimuli were found (Figs. 2, 3). They had a periodic pattern determined by the CF and did not depend on the stimulus frequency (Fig. 3).Low-CF fibers were observed which changed their time discharge structure to tone levels about 45 dB lower than their thresholds at the CF (Fig. 6).The observed features of the discharge patterns of the pigeon's auditory fibers reflect the distinctive nature of the fundamental mechanisms of auditory analysis in birds that are connected with electrical tuning of the hair cells and probably with the micromechanics of the bird's cochlea.Abbreviations ACH autocorrelation histogram - BP base period - CF characteristic frequency - FTC frequency threshold curve - IHC inner hair cell - OHC outer hair cell - PSTH peristimulus time histogram - TIH time interval histogram  相似文献   

10.
The work has been performed on Wistar rats and non-inbred animals. Their ischiatic nerves have been dissected at the femoral superior third under nembutal narcosis. The end of the sectioned nerve are connected by a fragment of an aorta from rats of the same age. The state of nervous elements and dermal epithelium of the hind extremity sole in the animals is studied by means of general histological and neurohistological techniques. Mitotic activity of cells in the plantar epidermis, thickness as a whole and its separate layers are estimated, keratinization coefficient and correlation of thickness of separate sheaths in the whole layer are calculated. Use of the arterial vessels for connecting the end of the cut ischiatic nerve, trophic ulcers, that usually take place after the nerve section, do not develop. At early stages after the operation mitotic activity in the epidermis decreases by 70%, and the layer thickness--by 40%. Restoration of both indices proceeds slowly. As soon as the regenerating nerve fibers reach the distal part of the ischiatic nerve, the state of the epidermis improves: the mitotic activity differs from the normal by 20-30%, and thickness of the epithelium--by 28-30%. Coordination of thickness of separate layers in the epidermis is not nearly disturbed. It remains in the same state up to complete restoration of receptory structures in the rat plantar skin (during 9-9.5 months after the operation).  相似文献   

11.
12.
Summary The histochemical and cytochemical distribution of acetylcholinesterase activity in the anterior and posterior spinal nerve roots and ganglia of the rat was demonstrated by the Karnovsky method using acetyl and butyrylthiocholine as substrates and eserine and DFP as inhibitors. Light and electron microscopic examination of transverse frozen sections enabled the simultaneous visualization of end product in relationship to the various fiber components of each nerve root. While the enzymatic activity of the anterior roots was consistantly observed in the large extrafusal and small intrafusal motor fibers a relatively greater amount of precipitate occurred in aggregates of myelinated and unmyelinated fibers believed to represent preganglionic sympathetic nerves. In contrast, no significant enzymatic activity could be demonstrated in the myelinated nerve fibers of the posterior root. In the sensory sytem, the limited enzymatic precipitate was largely restricted to the unmyelinated afferent fibers and to their small cell bodies in the dorsal root ganglia. The ultrastructural distribution of enzymatic activity was located in the granular endoplasmic reticulum and perinuclear spaces of the ganglion cells. Within peripheral nerves this end product occurred between the apposing axonal and Schwann cell membranes and along the membranous aspect of occasional axoplasmic vesicles of both myelinated and unmyelinated nerve fibers.This study was supported by grants NB 04161-04 and NB 04161-05 of the National Institute of Neurological Diseases and Blindness. — The author would like to thank MissMaria C. la Valle for her skillful technical assistance.  相似文献   

13.
Summary Indirect immunofluorescence technique was used to study the occurrence and distribution of CGRP immunoreactivity in the submandibular gland of normal rats and after unilateral sensory and sympathetic denervations. In normal rats, CGRP-immunoreactive nerve fibers and nerve trunks were seen around or in close contact with interlobular salivary ducts as well as around small blood vessels of the gland. Occasionally, CGRP-immunoreactive nerve fibers were also detected between or around the acini of the gland.The submandibular ganglia contained CGRP-immunoreactive nerve fibers, but the ganglion cells were not immunoreactive for CGRP. The trigeminal ganglion contained a population of CGRP-immunoreactive, mainly small sized ganglion cells and nerve fibers distributed throughout the ganglion. Unilateral electrocoagulation of the trigeminal nerve caused a significant reduction in the number of immunoreactive nerve fibers in the gland, although some fibers still were present in the ipsilateral glandular tissue. Unilateral superior cervical ganglionectomy caused no detectable effect on the number of CGRP-immunoreactive nerve fibers in the gland.The present results suggest that the rat submandibular gland contains CGRP-immunoreactive nerve fibers both around blood vessels and in glandular secretory elements. Denervation experiments support the view that the majority, but perhaps not all of them originate from the trigeminal ganglion.  相似文献   

14.
Indirect immunofluorescence technique was used to study the occurrence and distribution of CGRP immunoreactivity in the submandibular gland of normal rats and after unilateral sensory and sympathetic denervations. In normal rats, CGRP-immunoreactive nerve fibers and nerve trunks were seen around or in close contact with interlobular salivary ducts as well as around small blood vessels of the gland. Occasionally, CGRP-immunoreactive nerve fibers were also detected between or around the acini of the gland. The submandibular ganglia contained CGRP-immunoreactive nerve fibers, but the ganglion cells were not immunoreactive for CGRP. The trigeminal ganglion contained a population of CGRP-immunoreactive, mainly small sized ganglion cells and nerve fibers distributed throughout the ganglion. Unilateral electrocoagulation of the trigeminal nerve caused a significant reduction in the number of immunoreactive nerve fibers in the gland, although some fibers still were present in the ipsilateral glandular tissue. Unilateral superior cervical ganglionectomy caused no detectable effect on the number of CGRP-immunoreactive nerve fibers in the gland. The present results suggest that the rat submandibular gland contains CGRP-immunoreactive nerve fibers both around blood vessels and in glandular secretory elements. Denervation experiments support the view that the majority, but perhaps not all of them originate from the trigeminal ganglion.  相似文献   

15.
The possible participation of capsaicin-sensitive sensory nerves in the modulation of neurogenic contractions was studied in nonpregnant and term pregnant rat uteri. Neurogenic contractions were elicited by electric field stimulation (40 V, 1-70 Hz, 0.6 msec) in intact uteri and uteri that were previously exposed to capsaicin in vitro. In capsaicin pretreated preparations obtained both from nonpregnant and term pregnant rats, a dose-dependent increase in the amplitude of uterine contractions was detected. Prior systemic treatment of the rats with capsaicin (130 mg/kg, s.c.) abolished the effect of in vitro capsaicin administration on the amplitude of neurogenic contractions. Use of a specific antagonist of calcitonin gene-related peptide revealed that depletion of this peptide, which normally elicits uterine smooth muscle relaxation, may be responsible for the increased responsiveness of the uterus to low-frequency stimulation. Experiments on the localization of calcitonin gene-related peptide in uterine tissue specimens exposed to capsaicin revealed dose-dependent depletion of calcitonin-gene related peptide-immunoreactive nerves innervating blood vessels and the myometrium. The findings indicate that capsaicin-sensitive afferent nerves, by the release of sensory neuropeptides, significantly contribute to the modulation of uterine contractility both in nonpregnant and term pregnant rats. It is suggested that uterine sensory nerve activation may be part of a trigger mechanism leading to preterm contractions evoked by, for example, inflammation.  相似文献   

16.
 The distribution of serotonin-immunoreactive (5HT-IR) nerve cells and fibers was thoroughly investigated immunohistochemically in the rat stomach, duodenum, jejunum, ileum, and colon. The immunoreactivity of the 5HT neurons was compared between non-treated controls and animals treated with colchicine, colchicine plus 5-hydroxytryptophan (5HTP), colchicine plus pargyline, and reserpine. The intensity of immunoreactivity in nerve fibers as well as nerve cell bodies was enhanced mostly in colchicine plus pargyline treated animals, therefore these animals were used for an observation of precise localization of 5HT in the rat gastrointestinal (GI) tract. Immunoreactivity in the nerve cell bodies and fibers was completely abolished in the GI tract of reserpine treated animals. The pattern of localization and projection of 5HT-IR neurons was similar in all segments of the rat GI tract. 5HT-IR nerve cell bodies were located in the myenteric plexus and showed the distinctive features of Dogiel type I neurons. Prominent bundles of varicose fibers traversed the myenteric ganglia and some of them surrounded the cell bodies of immunopositive and immunonegative neurons. 5HT-IR nerve fibers were located in the submucous plexus, densely entwined about the submucosal blood vessels. Most characteristically, 5HT-IR nerve fibers invaded the lamina propria of mucosa where they underlay the crypt epithelium. In conclusion, the present study showed that 5HT-IR neurons located in the myenteric plexus projected fibers widely in the rat GI tract. The localization of fibers in the lamina propria of mucosa implies that this neuron may exert an important role in the epithelial function of the GI tract. Accepted: 8 October 1996  相似文献   

17.
Synopsis Skin samples from rabbit hind limb were taken from controls and at 5 min, 2 and 6 hr after a mild thermal injury (60°C for 1 min). Large aggregates of intercellular particles, usually ribosomal in appearance, were seen in 6 hr samples and were accompanied by some peripheral aggregates of particles and by granule-coated vesicles. These structures were present in earlier samples to a lesser extent and were absent from control material. Quantitative assessment showed that intercellular particles apparently increased up to 6 hr whereas peripheral aggregation was maximum at 2 hr. Histochemical analysis confirmed that the particles contained ribonucleoprotein. Other larger particles were seen occasionally and contained carbohydrate. Lymph draining the site showed cellular changes, little change in enzyme activities, and no aggregates of particles.Paper given at the Royal Microscopical Society's European Histochemistry Meeting at Nottingham in September 1975.  相似文献   

18.
Sensory testing, by providing stimuli for nociceptors of the foot, is a popular method of evaluating sensory regeneration after damage to the sciatic nerve in the rat. In the following study, 20 rats were submitted to double transection of the sciatic nerve. The subsequent 14 mm gap was repaired through guidance interponation. In order to evaluate nerve regeneration, sensory testing was performed additionally to other methods, which included motor testing, morphometry, and electron microscopic assessments of nerves. Somatosensory testing revealed that all animals exhibited next to the same amount of sensory reinnervation on their foot regardless of their experimental group. In motor tests, however, two out of the three experimental groups did not improve at all. These groups also failed to show neural regrowth in morphometric and electron microscopic assessments of the associated nerve. Retrograde tracing was able to prove the saphenous nerve as an alternative source of sensory reinnervation in animals with failed sciatic regeneration. This means that results of sensory testing in the rat should be treated with caution, taking into account the areas tested and the likelihood that in these areas saphenous sprouting could have taken place. Furthermore, it is strongly advised that somatosensory testing should be conducted only on toe 5.  相似文献   

19.
Following peripheral nerve transection, a series of biochemical changes occurs in axons and Schwann cells both at the site of lesion and distal to it. Macrophages differentiated from monocytes that invade the area in response to transection (elicited macrophages) and, perhaps, also macrophages normally present in the tissue (resident macrophages) play important roles in these changes. In addition, nerve transection produces changes in the cell bodies of axotomized neurons and their surrounding glial cells, located at some distance from the lesion. To determine whether macrophages might play a role in the changes occurring in the superior cervical ganglion (SCG) after axotomy, we examined the presence of macrophages before and after axonal damage. The monoclonal antibodies ED1, ED2, and OX6 were used, each of which recognizes a somewhat different population of macrophages. Ganglia from normal rats contained a population of resident cells that were ED2+ but very few that were ED1+. Within 2 days after the postganglionic nerves were transected, the number of ED1+ cells increased substantially, with little change in immunostaining for ED2. These data, in combination with published studies on other tissues, suggest that ED1 in the SCG is selective for elicited macrophages and ED2 for resident macrophages. OX6 immunostaining was prominent in normal ganglia but also increased significantly after axotomy, suggesting that it reflects both macrophage populations. Systemic administration of 6-hydroxydopamine, a neurotoxin that causes the destruction of sympathetic nerve endings, also produced an increase in ED1 immunostaining. Thus, the change in ED1 immunostaining in the SCG does not require surgery, with the attendant servering of local blood vessels and connective tissue, but rather only the disconnection of sympathetic neurons from their end organs. The time course of the invasion of monocytes after axotomy indicates that this process is not required to trigger the biochemical changes occurring in the ganglion within the first 24 h. On the other hand, the existence of a resident population of macrophages raises the possibility that changes in those cells might be involved. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
The foot sole epidermis of the fore and hind feet of the adult mouse contains an acidic (type I) mRNA-encoded 73-kDa keratin polypeptide which cannot be detected in any other skin site of the mouse integument. Western blot analysis using an antibody specific for the 64-kDa keratin 9 of human and bovine callus-forming epidermis [A. C. Knapp et al. (1986) J. Cell Biol. 103, 657-667] demonstrates that the 73-kDa keratin represents the murine analog of keratin 9 of man and cow. Concomitant investigations in two related rodent species indicate that the size of this keratin varies more among species than that of any other orthologous keratin. Histological examination of adult mouse foot sole skin reveals an extremely thick and undulated epidermis covering the apical portion of the six footpads, whereas the epidermal-dermal junction of the lateral walls of these nodular protuberances as well as that of the remainder of the foot sole skin is essentially flat. If sections of adult foot sole skin are investigated by indirect immunofluorescence with the keratin 9-specific antibody, intense cytoplasmic staining is restricted to the apical rete pegs of the footpad epidermis in which virtually all suprabasal cells express keratin 9. However, we also observed keratin 9-negative cell columns ascending straight above the tips of the dermal papillae and separating the keratin 9-positive rete pegs from each other. At the transition from the strongly undulated apical epidermis to the flat epidermis of the lateral walls of the footpads, keratin 9-positive cells loose their coherence and gradually disappear toward the inter-footpad epidermis. This intimate relationship between the morphogenesis of epidermal ridges and inter-ridges and the expression of keratin 9 is also visible in foot sole epidermis of neonatal mice. Here we observed the appearance of keratin 9-positive suprabasal cells concomitant with the onset of pronounced folding of the apical footpad epidermis by about Day 3 after birth. Our findings confirm the view that the expression of keratin 9 is characteristic of a highly specialized pathway of epidermal differentiation. We propose a hypothesis for keratin expression in skin sites which are subject to pronounced mechanical wear and tear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号