首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mammals are unable to synthesize cobalamin or vitamin B12 and rely on the uptake of dietary cobalamin. The cubam receptor expressed on the intestinal endothelium is required for the uptake of cobalamin from the gut. Cubam is composed of two protein subunits, amnionless and cubilin, which are encoded by the AMN and CUBN genes respectively. Loss‐of‐function mutations in either the AMN or the CUBN gene lead to hereditary selective cobalamin malabsorption or Imerslund–Gräsbeck syndrome (IGS). We investigated Beagles with IGS and resequenced the whole genome of one affected Beagle at 15× coverage. The analysis of the AMN and CUBN candidate genes revealed a homozygous deletion of a single cytosine in exon 8 of the CUBN gene (c.786delC). This deletion leads to a frameshift and early premature stop codon (p.Asp262Glufs*47) and is, thus, predicted to represent a complete loss‐of‐function allele. We tested three IGS‐affected and 89 control Beagles and found perfect association between the IGS phenotype and the CUBN:c.786delC variant. Given the known role of cubilin in cobalamin transport, which has been firmly established in humans and dogs, our data strongly suggest that the CUBN:c.786delC variant is causing IGS in the investigated Beagles.  相似文献   

2.
Impaired primitive streak assembly in the mouse amnionless (amn) mutant results in the absence of non-axial trunk mesoderm, a derivative of the middle region of the primitive streak. In addition, the epiblast of amn mutants fails to increase significantly in size after E7.0, indicating that middle primitive streak assembly is mechanistically tied to the growth of the embryo during gastrulation. Amn, a novel transmembrane protein, is expressed exclusively in an extra-embryonic tissue, visceral endoderm (VE), during the early post-implantation stages. We show that Amn is also expressed in kidney proximal tubules (KPT) and intestinal epithelium, which, like the VE, are polarized epithelia specialized for resorption and secretion. To explore whether Amn participates in the development or function of KPT and intestinal epithelia and to gain insight into the function of Amn during gastrulation, we constructed Amn(-/-) ES cell<-->+/+ blastocyst chimeras. While chimeras form anatomically normal kidneys and intestine, they exhibit variable, selective proteinuria, a sign of KPT malfunction. In humans, AMN has been genetically connected to Cubilin (CUBN), a multi-ligand scavenger receptor expressed by KPT, intestine and yolk sac. Loss of CUBN, the intestinal intrinsic factor (IF)-vitamin B12 receptor, results in hereditary megaloblastic anemia (MGA1), owing to vitamin B12 malabsorption. The recent report of MGA1 families with mutations in AMN suggests that AMN functions in the same pathway as CUBN. We demonstrate that Cubn is not properly localized to the cell surface in Amn(-/-) tissues in the embryo and adult mouse, and that adult chimeras exhibit selective proteinuria of Cubn ligands. This study demonstrates that Amn is an essential component of the Cubn receptor complex in vivo and suggests that Amn/Cubn is required for endocytosis/transcytosis of one or more ligands in the VE during gastrulation to coordinate growth and patterning of the embryo. Furthermore, as AMN is apparently not required for gastrulation in humans, the developmental requirements for Amn/Cubn function may not be evolutionarily conserved, possibly reflecting differences between species in the role and organization of extra-embryonic tissues.  相似文献   

3.
Imerslund-Gräsbeck syndrome (IGS) or selective cobalamin malabsorption has been described in humans and dogs. IGS occurs in Border Collies and is inherited as a monogenic autosomal recessive trait in this breed. Using 7 IGS cases and 7 non-affected controls we mapped the causative mutation by genome-wide association and homozygosity mapping to a 3.53 Mb interval on chromosome 2. We re-sequenced the genome of one affected dog at ∼10× coverage and detected 17 non-synonymous variants in the critical interval. Two of these non-synonymous variants were in the cubilin gene (CUBN), which is known to play an essential role in cobalamin uptake from the ileum. We tested these two CUBN variants for association with IGS in larger cohorts of dogs and found that only one of them was perfectly associated with the phenotype. This variant, a single base pair deletion (c.8392delC), is predicted to cause a frameshift and premature stop codon in the CUBN gene. The resulting mutant open reading frame is 821 codons shorter than the wildtype open reading frame (p.Q2798Rfs*3). Interestingly, we observed an additional nonsense mutation in the MRC1 gene encoding the mannose receptor, C type 1, which was in perfect linkage disequilibrium with the CUBN frameshift mutation. Based on our genetic data and the known role of CUBN for cobalamin uptake we conclude that the identified CUBN frameshift mutation is most likely causative for IGS in Border Collies.  相似文献   

4.
Insertional mutation of 'classical' and novel genes in transgenic mice.   总被引:10,自引:0,他引:10  
Approximately 5% of established transgenic lines carry insertional mutations. The mutated genes may be directly isolated using the transgene DNA as a molecular probe. These mutants provide useful models of human inherited disorders and developmental abnormalities.  相似文献   

5.
Hypertrophic cardiomyopathy (HCM) is genetically heterogeneous, and largely caused by mutations in genes encoding sarcomere proteins. However, GLA mutations causing Fabry disease, an X-linked lysosomal storage disorder, may also present with isolated HCM. As HCM genetic testing panels are increasingly being used clinically, variants of unknown significance (VUS) are encountered, leading to challenges in interpretation. We present an illustrative case: a 10-year-old girl with isolated HCM who, on testing with a HCM multi-gene panel, was found to carry a maternally inherited p.W24R variant in GLA. Attempts to evaluate the significance of this variant, by direct biochemical testing of patient specimens, gave inconclusive results. Subsequent in vitro protein expression studies suggested that the variant is unlikely to be pathogenic. This case highlights diagnostic dilemmas that can be provoked by VUS in general, and specifically raises a question whether GLA sequencing should be included in first-line diagnostic testing for female children with isolated hypertrophic cardiomyopathy.  相似文献   

6.
X-ALD is an inherited neurodegenerative disorder where mutations in the ABCD1 gene result in clinically diverse phenotypes: the fatal disorder of cerebral childhood ALD (cALD) or a milder disorder of adrenomyeloneuropathy (AMN). The various models used to study the pathobiology of X-ALD disease lack the appropriate presentation for different phenotypes of cALD vs AMN. This study demonstrates that induced pluripotent stem cells (IPSC) derived brain cells astrocytes (Ast), neurons and oligodendrocytes (OLs) express morphological and functional activities of the respective brain cell types. The excessive accumulation of saturated VLCFA, a “hallmark” of X-ALD, was observed in both AMN OLs and cALD OLs with higher levels observed in cALD OLs than AMN OLs. The levels of ELOVL1 (ELOVL Fatty Acid Elongase 1) mRNA parallel the VLCFA load in AMN and cALD OLs. Furthermore, cALD Ast expressed higher levels of proinflammatory cytokines than AMN Ast and control Ast with or without stimulation with lipopolysaccharide. These results document that IPSC-derived Ast and OLs from cALD and AMN fibroblasts mimic the respective biochemical disease phenotypes and thus provide an ideal platform to investigate the mechanism of VLCFA load in cALD OLs and VLCFA-induced inflammatory disease mechanisms of cALD Ast and thus for testing of new therapeutics for AMN and cALD disease of X-ALD.  相似文献   

7.
We have shown by genetic mapping, molecular cloning, and DNA sequencing that four Escherichia coli mutants, which express the adaptive response to alkylation damage constitutively, are mutated in the ada gene. All four mutant ada genes have two GC to AT transition mutations in the coding region and encode altered Ada proteins with two amino acid substitutions in the N-terminal domain. E. coli carrying the mutated ada genes on recombinant plasmids overexpressed both the mutated ada gene and the chromosomal alkA gene. This observation indicates that the mutant Ada proteins act as strong positive regulators of the ada and alkA genes in the absence of DNA alkylation. One mutant protein, Ada-11, was shown to be a strong activator of ada gene expression in a cell-free system. An altered pattern of tryptic digestion of the Ada-11 protein compared with the wild-type Ada protein suggested that it has a different conformation. One amino acid substitution, namely methionine residue 126 replaced by isoleucine, occurred in all four mutant Ada proteins, and this mutation alone was sufficient to convert the Ada protein into a strong activator of ada and alkA gene expression in vivo.  相似文献   

8.
An effective shotgun cloning procedure was developed for Bacillus megaterium by amplifying gene libraries in Bacillus subtilis. This technique was useful in isolating at least 11 genes from B. megaterium which are involved with cobalamin (vitamin B12) biosynthesis. Amplified plasmid banks were transformed into protoplasts of both a series of Cob mutants blocked before the biosynthesis of cobinamide and Cbl mutants blocked in the conversion of cobinamide into cobalamin. Amplification of gene libraries overcame the cloning barriers inherent in the relatively low protoplast transformation frequency of B. megaterium. A family of plasmids was isolated by complementation of seven different Cob and Cbl mutants. Each plasmid capable of complementing a Cob or Cbl mutant was transformed into each one of the series of Cob and Cbl mutants; many of the plasmids isolated by complementation of one mutation carried genetic activity for complementation of other mutations. By these criteria, four different complementation groups were resolved. At least six genes involved in the biosynthesis of cobinamide are carried on a fragment of DNA approximately 2.7 kilobase pairs in length; other genes involved in the biosynthesis of cobinamide were located in two other complementation groups. The physical and genetic data permitted an ordering of genes within several of the complementation groups. The presence of complementing plasmids in mutants blocked in cobalamin synthesis resulted in restoration of cobalamin biosynthesis.  相似文献   

9.
The long QT syndrome (LQTS) is an inherited cardiac arrhythmia that may lead to sudden death in the absence of structural heart disease. Mutations in the cardiac potassium and sodium channel genes can be found in approximately 70% of patients with a highly probable clinical diagnosis. In this study, we aimed to genotype and explore the yield of genetic testing of LQTS patients from Greece, for whom there are no collective published data available. We clinically evaluated and genetically screened 17 unrelated patients for mutations in theKCNQ1, KCNH2, SCN5A, KCNE1, andKCNE2 cardiac ion channel genes. Genetic testing was positive in 6 out of 8 patients with a highly probable clinical diagnosis of LQTS and negative for all the other patients. Two patients carriedKCNQ1 mutations (c.580G>C, c.1022C>T), while 4 patients carriedKCNH2 mutations (c.202T>C, c.1714G>A, c.3103delC, c.3136C>T). To the best of our knowledge, the last mentioned mutation (c.3136C>T) is novel. Moreover, 27 single-nucleotide polymorphisms (SNPs) were detected, 5 of which are novel. Our preliminary data indicate a low genetic diversity of the Greek LQTS genetic pool, and are in accordance with international data that genetic testing of the major LQTS genes is efficient in genotyping the majority of patients with a strong clinical diagnosis. Therefore, the transition of an LQTS genetic screening program from research to the diagnostic setting within our ethnic background is feasible.  相似文献   

10.
The genetic and molecular basis of epilepsy   总被引:4,自引:0,他引:4  
In the past decade, studies of large families in which epilepsy has been inherited in an autosomal dominant fashion have revealed several mutated genes, most of which encode ion channel subunits. Despite these exciting findings, only a few families with similar phenotypes have mutations in these known genes. More frustrating has been the genetic research into idiopathic epilepsies with complex inheritance. Although these forms are more common than those with Mendelian inheritance, their unknown mode of inheritance, phenotypic heterogeneity and the uncertainty of the genetic overlap among syndrome subtypes have hampered gene mapping. New techniques of molecular analysis could help the dissection of genes for epilepsies with complex inheritance. Hopefully, in the near future, successful genetic studies will make possible the discovery of new and more-targeted anti-epileptic drugs.  相似文献   

11.
It has been shown that normal mouse serum contains a tumor growth-inhibitory factor (GIF). and that strain-dependent levels of GIF correlate with mouse NK activity. To further analyze the genetic control of GIF we have studied the growth-inhibitory activity of normal mouse serum from 8 different mouse strains and their F1 hybrids. A sensitive method using a chromogenic substrate for an endogenous lysosomal enzyme was used to measure the inhibitory activity of normal mouse serum on the mouse B16 melanoma. The highest level of GIF was found in old mice, lower activity in serum of young animals and no activity in suckling mice. To compare the genetic control of GIF and NK, spleen NK activity against B16 as well as YAC-1 targets was measured in parallel in the same animals. Confirming previous results we found the H-2k strains CBA and C3H to have high levels of GIF as well as NK activity, while the strain A/Sn and the A congenic strain A.SW had low levels of both activities. Experiments with H-2d and H-2b strains, however, showed that GIF and NK had a different genetic control; thus the DBA/2 and Balb/c strains had considerably higher GIF activity than the C57B1 and Leaden strains, while the reverse was true for NK activity. In F1 hybrid crosses between strains with high and low activity, high activity was inherited as a dominant trait for both GIF and NK. A backcross analysis in (A X CBA) X A backcross mice, segregating for NK and GIF showed that the two activities did not cosegregate. These studies therefore demonstrate that GIF and NK activity are under different genetic control, and do not support any direct or simple relationship between GIF and NK cells.  相似文献   

12.
We have isolated genetic suppressors of mutations in the recJ gene of Escherichia coli in a locus we term srjA. These srjA mutations cause partial to complete alleviation of the recombination and UV repair defects conferred by recJ153 and recJ154 mutations in a recBC sbcA genetic background. The srjA gene was mapped to 37.5 min on the E. coli chromosome. This chromosomal region from the srjA5 strain was cloned into a plasmid vector and was shown to confer recJ suppression in a dominant fashion. Mutational analysis of this plasmid mapped srjA to the infC gene encoding translation initiation factor 3 (IF3). Sequence analysis revealed that all three srjA alleles cause amino acid substitutions of IF3. Suppression of recJ was shown to be allele specific: recJ153 and recJ154 mutations were suppressible, but recJ77 and the insertion allele recJ284::Tn10 were not. In addition, growth medium-conditional lethality was observed for strains carrying srjA mutations with the nonsuppressible recJ alleles. When introduced into recJ+ strains, srjA mutations conferred hyperrecombinational and hyper-UVr phenotypes. An interesting implication of these genetic properties of srjA suppression is that IF3 may regulate the expression of recJ and perhaps other recombination genes and hence may regulate the recombinational capacity of the cell.  相似文献   

13.
Hereditary non-polyposis colorectal cancer (HNPCC) is a common hereditary cancer. Genetic testing is complicated by the multiple DNA mismatch repair genes that underlie the disorder. Many suspected HNPCC families have no germ-line mutation identified. We reassessed an unusual family that appeared to have 2 individuals homozygous for a germline mutation within exon 1 of the hMLH1 gene. A few rare individuals with two inherited mutations in one of the mismatch repair genes have been reported and appear to have a distinct clinical appearance. However, there were no clinical features in the family discussed here that were consistent with constitutive lack of hMLH1. Redesigning the intronic primers for exon 1 identified a common polymorphism located within the original intronic primer site. The polymorphism prevented amplification of the wild-type allele, giving the erroneous appearance of homozygous inheritance of the mutated allele. Likewise, common intronic polymorphisms, if located within primer sequences on the chromosome harboring the HNPCC germ-line mutation could restrict amplification to only the wild-type allele, which may contribute significantly to the low success rate of identifying mutations in HNPCC families.  相似文献   

14.
ARPKD is a genetically inherited kidney disease that manifests by bilateral enlargement of cystic kidneys and liver fibrosis. It shows a range of severity, with 30% of individuals dying early on and the majority having good prognosis if they survive the first year of life. The reasons for this variability remain unclear. Two genes have been shown to cause ARPKD when mutated, PKHD1, mutations in which lead to most of ARPKD cases and DZIP1L, which is associated with moderate ARPKD. This mini review will explore the genetics of ARPKD and discuss potential genetic modifiers and phenocopies that could affect diagnosis.  相似文献   

15.
Individuals differ in their inherited tendency to develop cancer. Major single-gene defects that cause early cancer onset have been known for many years from their inheritance patterns, and inherited defects that have weaker effects on predisposition were also suspected to exist. Recent progress in cancer genetics has identified specific loci that are involved in cancer progression, many of which have key roles in DNA repair, cell-cycle control and cell-death pathways. Those loci, which are often mutated somatically during cancer progression, sometimes also contain inherited mutations. Recent genetic studies and quantitative population-genetic analyses provide a framework for understanding the frequency of inherited mutations and the consequences of these mutations for increased predisposition to cancer.  相似文献   

16.
Hypertrophic cardiomyopathy (HCM), the most common inherited cardiac disorder, is characterized by increased ventricular wall thickness that cannot be explained by underlying conditions, cadiomyocyte hypertrophy and disarray, and increased myocardial fibrosis. In as many as 50% of HCM cases, the genetic cause remains unknown, suggesting that more genes may be involved. Nexilin, encoded by NEXN, is a cardiac Z-disc protein recently identified as a crucial protein that functions to protect cardiac Z-discs from forces generated within the sarcomere. We screened NEXN in 121 unrelated HCM patients who did not carry any mutation in eight genes commonly mutated in myofilament disease. Two missense mutations, c.391C>G (p.Q131E) and c.835C>T (p.R279C), were identified in exons 5 and 8 of NEXN, respectively, in two probands. Each of the two mutations segregated with the HCM phenotype in the family and was absent in 384 control chromosomes. In silico analysis revealed that both of the mutations affect highly conserved amino acid residues, which are predicted to be functionally deleterious. Cellular transfection studies showed that the two mutations resulted in local accumulations of nexilin and that the expressed fragment of actin-binding domain containing p.Q131E completely lost the ability to bind F-actin in C2C12 cells. Coimmunoprecipitation assay indicated that the p.Q131E mutation decreased the binding of full-length NEXN to α-actin and abolished the interaction between the fragment of actin-binding domain and α-actin. Therefore, the mutations in NEXN that we describe here may further expand the knowledge of Z-disc genes in the pathogenesis of HCM.  相似文献   

17.
Over 1600 mammalian genes are known to cause an inherited disorder, when subjected to one or more mutations. These disease genes represent a unique resource for the identification and quantification of relationships between phenotypic attributes of a disease and the molecular features of the associated disease genes, including their ascribed annotated functional classes and expression patterns. Such analyses can provide a more global perspective and a deeper understanding of the probable causes underlying human hereditary diseases. In this perspective and critical view of disease genomics, we present a comparative analysis of genes reported to cause inherited diseases in humans in terms of their causative effects on physiology, their genetics and inheritance modes, the functional processes they are involved in and their expression profiles across a wide spectrum of tissues. Our analysis reveals that there are more extensive correlations between these attributes of genetic disease genes than previously appreciated. For instance, the functional pattern of genes causing dominant and recessive diseases is markedly different. Also, the function of the genes and their expression correlate with the type of disease they cause when mutated. The results further indicate that a comparative genomics approach for the analysis of genes linked to human genetic diseases will facilitate the elucidation of the underlying molecular and cellular mechanisms.  相似文献   

18.
Autism Spectrum Disorder (ASD) demonstrates high heritability and familial clustering, yet the genetic causes remain only partially understood as a result of extensive clinical and genomic heterogeneity. Whole-genome sequencing (WGS) shows promise as a tool for identifying ASD risk genes as well as unreported mutations in known loci, but an assessment of its full utility in an ASD group has not been performed. We used WGS to examine 32 families with ASD to detect de novo or rare inherited genetic variants predicted to be deleterious (loss-of-function and damaging missense mutations). Among ASD probands, we identified deleterious de novo mutations in six of 32 (19%) families and X-linked or autosomal inherited alterations in ten of 32 (31%) families (some had combinations of mutations). The proportion of families identified with such putative mutations was larger than has been previously reported; this yield was in part due to the comprehensive and uniform coverage afforded by WGS. Deleterious variants were found in four unrecognized, nine known, and eight candidate ASD risk genes. Examples include CAPRIN1 and AFF2 (both linked to FMR1, which is involved in fragile X syndrome), VIP (involved in social-cognitive deficits), and other genes such as SCN2A and KCNQ2 (linked to epilepsy), NRXN1, and CHD7, which causes ASD-associated CHARGE syndrome. Taken together, these results suggest that WGS and thorough bioinformatic analyses for de novo and rare inherited mutations will improve the detection of genetic variants likely to be associated with ASD or its accompanying clinical symptoms.  相似文献   

19.
The genetic bases for syndromic and nonsyndromic deafness among Jews   总被引:1,自引:0,他引:1  
There are hundreds of different mutated genes associated with hearing loss. However, recent findings indicate that a large proportion of both syndromic and nonsyndromic forms of deafness in some Jewish populations is caused by a small number of founder mutations. This review is focused on genetic disorders such as nonsyndromic deafness, Usher syndrome and Alport syndrome, in which hearing loss is a major part of the phenotype and in which the underlying prevalent founder mutations have been recently identified in different Jewish populations. These and other examples of common mutations within a distinct population allow for sensitive and specific use of genetic testing for carrier screening and diagnosis, and are an impetus for development of therapeutic strategies.  相似文献   

20.

Background

Homozygosity mapping has facilitated the identification of the genetic causes underlying inherited diseases, particularly in consanguineous families with multiple affected individuals. This knowledge has also resulted in a mutation dataset that can be used in a cost and time effective manner to screen frequent population-specific genetic variations associated with diseases such as inherited retinal disease (IRD).

Methods

We genetically screened 13 families from a cohort of 81 Pakistani IRD families diagnosed with Leber congenital amaurosis (LCA), retinitis pigmentosa (RP), congenital stationary night blindness (CSNB), or cone dystrophy (CD). We employed genome-wide single nucleotide polymorphism (SNP) array analysis to identify homozygous regions shared by affected individuals and performed Sanger sequencing of IRD-associated genes located in the sizeable homozygous regions. In addition, based on population specific mutation data we performed targeted Sanger sequencing (TSS) of frequent variants in AIPL1, CEP290, CRB1, GUCY2D, LCA5, RPGRIP1 and TULP1, in probands from 28 LCA families.

Results

Homozygosity mapping and Sanger sequencing of IRD-associated genes revealed the underlying mutations in 10 families. TSS revealed causative variants in three families. In these 13 families four novel mutations were identified in CNGA1, CNGB1, GUCY2D, and RPGRIP1.

Conclusions

Homozygosity mapping and TSS revealed the underlying genetic cause in 13 IRD families, which is useful for genetic counseling as well as therapeutic interventions that are likely to become available in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号