首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhou J  Yin J  Chen T  Ding X  Gao Z  Shen M 《PloS one》2011,6(9):e23873

Background

The limited capacity of visual working memory (VWM) requires us to select the task relevant information and filter out the irrelevant information efficiently. Previous studies showed that the individual differences in VWM capacity dramatically influenced the way we filtered out the distracters displayed in distinct spatial-locations: low-capacity individuals were poorer at filtering them out than the high-capacity ones. However, when the target and distracting information pertain to the same object (i.e., multiple-featured object), whether the VWM capacity modulates the feature-based filtering remains unknown.

Methodology/Principal Findings

We explored this issue mainly based on one of our recent studies, in which we asked the participants to remember three colors of colored-shapes or colored-landolt-Cs while using two types of task irrelevant information. We found that the irrelevant high-discriminable information could not be filtered out during the extraction of VWM but the irrelevant fine-grained information could be. We added 8 extra participants to the original 16 participants and then split the overall 24 participants into low- and high-VWM capacity groups. We found that regardless of the VWM capacity, the irrelevant high-discriminable information was selected into VWM, whereas the irrelevant fine-grained information was filtered out. The latter finding was further corroborated in a second experiment in which the participants were required to remember one colored-landolt-C and a more strict control was exerted over the VWM capacity.

Conclusions/Significance

We conclude that VWM capacity did not modulate the feature-based filtering in VWM.  相似文献   

2.
Camperi and Wang (Comput Neurosci 5:383–405, 1998) presented a network model for working memory that combines intrinsic cellular bistability with the recurrent network architecture of the neocortex. While Fall and Rinzel (Comput Neurosci 20:97–107, 2006) replaced this intrinsic bistability with a biological mechanism-Ca2+ release subsystem. In this study, we aim to further expand the above work. We integrate the traditional firing-rate network with Ca2+ subsystem-induced bistability, amend the synaptic weights and suggest that Ca2+ concentration only increase the efficacy of synaptic input but has nothing to do with the external input for the transient cue. We found that our network model maintained the persistent activity in response to a brief transient stimulus like that of the previous two models and the working memory performance was resistant to noise and distraction stimulus if Ca2+ subsystem was tuned to be bistable.  相似文献   

3.
Working memory is a basic cognitive process that temporarily maintains the information necessary for the performance of many complex tasks such as reading comprehension, learning and reasoning. Working memory includes two storage components: phonological and visuospatial, and a central executive control. The objective of this study was to identify possible circadian rhythms in phonological and visuospatial storage components of working memory using a constant routine protocol. Participants were eight female undergraduate students, aged 17.5±0.93, range = 16 - 19 years old. They were recorded in the laboratory in a constant routine protocol during 30 h. Rectal temperature was recorded every minute; subjective sleepiness and tiredness, as well as phonological and visuospatial working memory tasks, were assessed each hour. There were circadian variations in correct responses in phonological and visuospatial working memory tasks. Cross-correlation analysis showed a 1-h phase delay of the phonological storage component and a 3-h phase delay of the visuospatial storage component with respect to rectal temperature. This result may explain the changes in the performance of many complex tasks during the day.  相似文献   

4.
Sleep deprivation has adverse consequences for a variety of cognitive functions. The exact effects of sleep deprivation, though, are dependent upon the cognitive process examined. Within working memory, for example, some component processes are more vulnerable to sleep deprivation than others. Additionally, the differential impacts on cognition of different types of sleep deprivation have not been well studied. The aim of this study was to examine the effects of one night of total sleep deprivation and 4 nights of partial sleep deprivation (4 hours in bed/night) on two components of visual working memory: capacity and filtering efficiency. Forty-four healthy young adults were randomly assigned to one of the two sleep deprivation conditions. All participants were studied: 1) in a well-rested condition (following 6 nights of 9 hours in bed/night); and 2) following sleep deprivation, in a counter-balanced order. Visual working memory testing consisted of two related tasks. The first measured visual working memory capacity and the second measured the ability to ignore distractor stimuli in a visual scene (filtering efficiency). Results showed neither type of sleep deprivation reduced visual working memory capacity. Partial sleep deprivation also generally did not change filtering efficiency. Total sleep deprivation, on the other hand, did impair performance in the filtering task. These results suggest components of visual working memory are differentially vulnerable to the effects of sleep deprivation, and different types of sleep deprivation impact visual working memory to different degrees. Such findings have implications for operational settings where individuals may need to perform with inadequate sleep and whose jobs involve receiving an array of visual information and discriminating the relevant from the irrelevant prior to making decisions or taking actions (e.g., baggage screeners, air traffic controllers, military personnel, health care providers).  相似文献   

5.
6.
Hartshorne JK 《PloS one》2008,3(7):e2716

Background

Visual working memory capacity is extremely limited and appears to be relatively immune to practice effects or the use of explicit strategies. The recent discovery that visual working memory tasks, like verbal working memory tasks, are subject to proactive interference, coupled with the fact that typical visual working memory tasks are particularly conducive to proactive interference, suggests that visual working memory capacity may be systematically under-estimated.

Methodology/Principal Findings

Working memory capacity was probed behaviorally in adult humans both in laboratory settings and via the Internet. Several experiments show that although the effect of proactive interference on visual working memory is significant and can last over several trials, it only changes the capacity estimate by about 15%.

Conclusions/Significance

This study further confirms the sharp limitations on visual working memory capacity, both in absolute terms and relative to verbal working memory. It is suggested that future research take these limitations into account in understanding differences across a variety of tasks between human adults, prelinguistic infants and nonlinguistic animals.  相似文献   

7.

Background

The capacity of visual working memory (WM) is substantially limited and only a fraction of what we see is maintained as a temporary trace. The process of binding visual features has been proposed as an adaptive means of minimising information demands on WM. However the neural mechanisms underlying this process, and its modulation by task and load effects, are not well understood.

Objective

To investigate the neural correlates of feature binding and its modulation by WM load during the sequential phases of encoding, maintenance and retrieval.

Methods and Findings

18 young healthy participants performed a visuospatial WM task with independent factors of load and feature conjunction (object identity and position) in an event-related functional MRI study. During stimulus encoding, load-invariant conjunction-related activity was observed in left prefrontal cortex and left hippocampus. During maintenance, greater activity for task demands of feature conjunction versus single features, and for increased load was observed in left-sided regions of the superior occipital cortex, precuneus and superior frontal cortex. Where these effects were expressed in overlapping cortical regions, their combined effect was additive. During retrieval, however, an interaction of load and feature conjunction was observed. This modulation of feature conjunction activity under increased load was expressed through greater deactivation in medial structures identified as part of the default mode network.

Conclusions and Significance

The relationship between memory load and feature binding qualitatively differed through each phase of the WM task. Of particular interest was the interaction of these factors observed within regions of the default mode network during retrieval which we interpret as suggesting that at low loads, binding processes may be ‘automatic’ but at higher loads it becomes a resource-intensive process leading to disengagement of activity in this network. These findings provide new insights into how feature binding operates within the capacity-limited WM system.  相似文献   

8.
Broadway JM  Engle RW 《PloS one》2011,6(10):e25422
Temporal judgment in the milliseconds-to-seconds range depends on consistent attention to time and robust working memory representation. Individual differences in working memory capacity (WMC) predict a wide range of higher-order and lower-order cognitive abilities. In the present work we examined whether WMC would predict temporal discrimination. High-WMC individuals were more sensitive than low-WMC at discriminating the longer of two temporal intervals across a range of temporal differences. WMC-related individual differences in temporal discrimination were not eliminated by including a measure of fluid intelligence as a covariate. Results are discussed in terms of attention, working memory and other psychological constructs.  相似文献   

9.
Moriya J  Sugiura Y 《PloS one》2012,7(4):e34244
Working memory capacity is one of the most important cognitive functions influencing individual traits, such as attentional control, fluid intelligence, and also psychopathological traits. Previous research suggests that anxiety is associated with impaired cognitive function, and studies have shown low verbal working memory capacity in individuals with high trait anxiety. However, the relationship between trait anxiety and visual working memory capacity is still unclear. Considering that people allocate visual attention more widely to detect danger under threat, visual working memory capacity might be higher in anxious people. In the present study, we show that visual working memory capacity increases as trait social anxiety increases by using a change detection task. When the demand to inhibit distractors increased, however, high visual working memory capacity diminished in individuals with social anxiety, and instead, impaired filtering of distractors was predicted by trait social anxiety. State anxiety was not correlated with visual working memory capacity. These results indicate that socially anxious people could potentially hold a large amount of information in working memory. However, because of an impaired cognitive function, they could not inhibit goal-irrelevant distractors and their performance decreased under highly demanding conditions.  相似文献   

10.
The division of cortical visual processing into distinct dorsal and ventral streams is a key framework that has guided visual neuroscience. The characterization of the ventral stream as a 'What' pathway is relatively uncontroversial, but the nature of dorsal stream processing is less clear. Originally proposed as mediating spatial perception ('Where'), more recent accounts suggest it primarily serves non-conscious visually guided action ('How'). Here, we identify three pathways emerging from the dorsal stream that consist of projections to the prefrontal and premotor cortices, and a major projection to the medial temporal lobe that courses both directly and indirectly through the posterior cingulate and retrosplenial cortices. These three pathways support both conscious and non-conscious visuospatial processing, including spatial working memory, visually guided action and navigation, respectively.  相似文献   

11.
目的:评价长时间连续工作记忆的行为学表现与事件相关电位(Event-related potential,ERP)的关系。方法:对16位健康男性青年(平均年龄21.4岁),连续进行1h的3-back数字倒背实验,记录ERP。结果:受试者的行为学表现明显差异,记录的ERP的P300波幅存在显著性差异(P〈0.01)。结论:ERP的P300成分可以客观评价行为学上的差异。  相似文献   

12.
Nasr S  Moeeny A  Esteky H 《PloS one》2008,3(9):e3282
In a dynamic environment stimulus task relevancy could be altered through time and it is not always possible to dissociate relevant and irrelevant objects from the very first moment they come to our sight. In such conditions, subjects need to retain maximum possible information in their WM until it is clear which items should be eliminated from WM to free attention and memory resources. Here, we examined the neural basis of irrelevant information filtering from WM by recording human ERP during a visual change detection task in which the stimulus irrelevancy was revealed in a later stage of the task forcing the subjects to keep all of the information in WM until test object set was presented. Assessing subjects' behaviour we found that subjects' RT was highly correlated with the number of irrelevant objects and not the relevant one, pointing to the notion that filtering, and not selection, process was used to handle the distracting effect of irrelevant objects. In addition we found that frontal N150 and parietal N200 peak latencies increased systematically as the amount of irrelevancy load increased. Interestingly, the peak latency of parietal N200, and not frontal N150, better correlated with subjects' RT. The difference between frontal N150 and parietal N200 peak latencies varied with the amount of irrelevancy load suggesting that functional connectivity between modules underlying fronto-parietal potentials vary concomitant with the irrelevancy load. These findings suggest the existence of two neural modules, responsible for irrelevant objects elimination, whose activity latency and functional connectivity depend on the number of irrelevant object.  相似文献   

13.
Gonadotropin Hormone Releasing Hormone agonists (GnRHa) produce an acute decline in ovarian hormone production leading to a ‘pseudo’ menopause. This is therapeutically useful in the management of a variety of gynaecological conditions but also serves as a powerful model to study the effects of ovarian hormones on cognition. Animal and human behavioral studies report that memory is particularly sensitive to the effects ovarian hormone suppression (e.g. post GnRHa). Further, it has recently been reported that ovariectomy in young women increases the risk of cognitive impairment in later life. However, the underlying brain networks and/or stages of memory processing that might be modulated by acute ovarian hormone suppression remain poorly understood. We used event-related fMRI to examine the effect of GnRHa on visual working memory (VWM). Neuroimaging outcomes from 17 pre-menopausal healthy women were assessed at baseline and 8 weeks after GnRHa treatment. Seventeen matched wait-listed volunteers served as the control group and were assessed at similar intervals during the late follicular phase of the menstrual cycle. We report GnRHa was associated with attenuation of left parahippocampal (BA 35) and middle temporal gyri (BA 21 ,22, 39) activation, with a significant group-by-time interaction at left precuneus (BA 7) and posterior cingulate cortex (PCC) (BA 31) at encoding, and with cerebellar activation at recognition in the context of unimpaired behavioral responses. Our study suggests that acute ovarian hormone withdrawal following GnRHa, and perhaps at other times, (e.g. following surgical menopause and postpartum) alters the neural circuitry underlying performance of VWM.  相似文献   

14.
Stevens AA  Tappon SC  Garg A  Fair DA 《PloS one》2012,7(1):e30468

Background

Cognitive abilities, such as working memory, differ among people; however, individuals also vary in their own day-to-day cognitive performance. One potential source of cognitive variability may be fluctuations in the functional organization of neural systems. The degree to which the organization of these functional networks is optimized may relate to the effective cognitive functioning of the individual. Here we specifically examine how changes in the organization of large-scale networks measured via resting state functional connectivity MRI and graph theory track changes in working memory capacity.

Methodology/Principal Findings

Twenty-two participants performed a test of working memory capacity and then underwent resting-state fMRI. Seventeen subjects repeated the protocol three weeks later. We applied graph theoretic techniques to measure network organization on 34 brain regions of interest (ROI). Network modularity, which measures the level of integration and segregation across sub-networks, and small-worldness, which measures global network connection efficiency, both predicted individual differences in memory capacity; however, only modularity predicted intra-individual variation across the two sessions. Partial correlations controlling for the component of working memory that was stable across sessions revealed that modularity was almost entirely associated with the variability of working memory at each session. Analyses of specific sub-networks and individual circuits were unable to consistently account for working memory capacity variability.

Conclusions/Significance

The results suggest that the intrinsic functional organization of an a priori defined cognitive control network measured at rest provides substantial information about actual cognitive performance. The association of network modularity to the variability in an individual''s working memory capacity suggests that the organization of this network into high connectivity within modules and sparse connections between modules may reflect effective signaling across brain regions, perhaps through the modulation of signal or the suppression of the propagation of noise.  相似文献   

15.
Phenomenologically inspired by dolphins’ unihemispheric sleep, we introduce a minimal model for random walks with physiological memory. The physiological memory consists of long-term memory which includes unconscious implicit memory and conscious explicit memory, and working memory which serves as a multi-component system for integrating, manipulating and managing short-term storage. The model assumes that the sleeping state allows retrievals of episodic objects merely from the episodic buffer where these memory objects are invoked corresponding to the ambient objects and are thus object-oriented, together with intermittent but increasing use of implicit memory in which decisions are unconsciously picked up from historical time series. The process of memory decay and forgetting is constructed in the episodic buffer. The walker’s risk attitude, as a product of physiological heuristics according to the performance of objected-oriented decisions, is imposed on implicit memory. The analytical results of unihemispheric random walks with the mixture of object-oriented and time-oriented memory, as well as the long-time behavior which tends to the use of implicit memory, are provided, indicating the common sense that a conservative risk attitude is inclinable to slow movement.  相似文献   

16.
The influence of emotional valence (positive, negative or neutral) of realistic images on the functioning of visual working memory (WM) was studied in adults (n = 40) and adolescents (n = 17). In adults, emotional coloring of stimuli increased the reaction time and decreased the accuracy of WM task performance. This effect was more pronounced for negative than for positive valence: the minimal reaction time was observed for the neutral stimuli, the maximal for the negative emotional stimuli, and significant differences in the reaction time were found between all three types of images. The accuracy was lower for negative stimuli than for either positive or neutral stimuli. Compared with adults, adolescents of age 14–16 showed lower indices of the performance accuracy and rate with neutral and positive stimuli in the WM task. In this group, no significant influence of the emotional valence of visual stimuli on the accuracy of WM task performance was found.  相似文献   

17.
Brain-derived neurotrophic factor (BDNF) may play a role in modulating memory function and there is growing evidence that the BDNF V166M polymorphism may influence episodic memory in humans. However, previous association studies examining this polymorphism and working memory are inconsistent. The current study examined this association in a large sample of adolescent twin-pairs and siblings (785 individuals from 439 families). A range of measures (event-related potential, general performance and reaction time) was obtained from a delayed-response working-memory task and total association was examined using the quantitative transmission disequilibrium tests (QTDT) program. Analyses had approximately 93-97% power (alpha= 0.05) to detect an association accounting for as little as 2% of the variance in the phenotypes examined. Results indicated that the BDNF V166M polymorphism is not associated with variation in working memory in healthy adolescents.  相似文献   

18.
19.
It was found that the volume of working memory in adolescents at the initial pubertal stages (II–III) was lower than in adults. Analysis of the event-related potentials (ERPs) in various cortical areas in adolescents when they compared two successive pictures revealed specific features of neurophysiological mechanisms of visual working memory at the early pubertal stages. As compared to adult subjects, the adolescents were characterized by longer latencies and higher amplitudes of the early components of the ERPs. Certain differences were revealed in the functional organization of working memory both at the stages of stimulus fixation and in its comparison with the current information.  相似文献   

20.
Melcher D  Piazza M 《PloS one》2011,6(12):e29296
Many common tasks require us to individuate in parallel two or more objects out of a complex scene. Although the mechanisms underlying our abilities to count the number of items, remember the visual properties of objects and to make saccadic eye movements towards targets have been studied separately, each of these tasks require selection of individual objects and shows a capacity limit. Here we show that a common factor--salience--determines the capacity limit in the various tasks. We manipulated bottom-up salience (visual contrast) and top-down salience (task relevance) in enumeration and visual memory tasks. As one item became increasingly salient, the subitizing range was reduced and memory performance for all other less-salient items was decreased. Overall, the pattern of results suggests that our abilities to enumerate and remember small groups of stimuli are grounded in an attentional priority or salience map which represents the location of important items.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号