首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The quantitative and qualitative variability in floral scent of 98 specimens of the dioecious species Silene latifolia belonging to 15 European and 19 North American populations was determined. Floral scent was collected from single flowers using dynamic headspace methods, and analysed by Micro-SPE and GC-MS methods. The flowers showed a nocturnal rhythm, and scent was emitted only at night. The amount of emitted volatiles varied greatly during the season, from 400 ng/flower/2 min in June to 50 ng/flower/2 min in August and September. The qualitative variability in the floral scent was high and different chemotypes, characterised by specific scent compounds, were found. Female and male flowers emitted the same type and amount of volatiles. The differences in floral scent composition between European and North American populations were small. Typical compounds were isoprenoids like lilac aldehyde isomers, or trans-beta-ocimene, and benzenoids like benzaldehyde, phenyl acetaldehyde, or veratrole. Some of these compounds are known to attract nocturnal Lepidoptera species. The high qualitative variability is discussed in relation to the pollination biology of S. latifolia, and the results are compared with other studies investigating intraspecific variability of flower scent.  相似文献   

2.
The relatively recent origin of sex chromosomes in the plant genus Silene provides an opportunity to study the early stages of sex chromosome evolution and, potentially, to test between the different population genetic processes likely to operate in nonrecombining chromosomes such as Y chromosomes. We previously reported much lower nucleotide polymorphism in a Y-linked gene (SlY1) of the plant Silene latifolia than in the homologous X-linked gene (SlX1). Here, we report a more extensive study of nucleotide diversity in these sex-linked genes, including a larger S. latifolia sample and a sample from the closely related species Silene dioica, and we also study the diversity of an autosomal gene, CCLS37.1. We demonstrate that nucleotide diversity in the Y-linked genes of both S. latifolia and S. dioica is very low compared with that of the X-linked gene. However, the autosomal gene also has low DNA polymorphism, which may be due to a selective sweep. We use a single individual of the related hermaphrodite species Silene conica, as an outgroup to show that the low SlY1 diversity is not due to a lower mutation rate than that for the X-linked gene. We also investigate several other possibilities for the low SlY1 diversity, including differential gene flow between the two species for Y-linked, X-linked, and autosomal genes. The frequency spectrum of nucleotide polymorphism on the Y chromosome deviates significantly from that expected under a selective-sweep model. However, we detect population subdivision in both S. latifolia and S. dioica, so it is not simple to test for selective sweeps. We also discuss the possibility that Y-linked diversity is reduced due to highly variable male reproductive success, and we conclude that this explanation is unlikely.  相似文献   

3.
The mechanics of speciation with gene flow are still unclear. Disparity among genes in population differentiation (F(ST)) between diverging species is often interpreted as evidence for semipermeable species boundaries, with selection preventing "key" genes from introgressing despite ongoing gene flow. However, F(ST) can remain high before it reaches equilibrium between the lineage sorting of species divergence and the homogenizing effects of gene flow (via secondary contact). Thus, when interpreting F(ST), the dynamics of drift, gene flow, and selection need to be taken into account. We illustrate this view with a multigenic analyses of gene flow and selection in three closely related Silene species, S. latifolia, S. dioica, and S. diclinis. We report that although S. diclinis appears to have evolved in allopatry, isolation with (bidirectional) gene flow between S. latifolia and S. dioica is likely, perhaps as a result of parapatric speciation followed by more extensive sympatry. Interestingly, we detected the signatures of apparently independent instances of positive selection at the same locus in S. latifolia and S. dioica. Despite gene flow between the species, the adaptive alleles have not crossed the species boundary, suggesting that this gene has independently undergone species-specific (diversifying or parallel) selection.  相似文献   

4.
Since the 1970s it has been known that the nursery pollinator Hadena bicruris is attracted to the flowers of its most important host plant, Silene latifolia, by their scent. Here we identified important compounds for attraction of this noctuid moth. Gas chromatographic and electroantennographic methods were used to detect compounds eliciting signals in the antennae of the moth. Electrophysiologically active compounds were tested in wind-tunnel bioassays to foraging na?ve moths, and the attractivity of these compounds was compared with that to the natural scent of whole S. latifolia flowers. The antennae of moths detected substances of several classes. Phenylacetaldehyde elicited the strongest signals in the antennae, but lilac aldehydes were the most attractive compounds in wind-tunnel bioassays and attracted 90% of the moths tested, as did the scent of single flowers. Our results show that the most common and abundant floral scent compounds in S. latifolia, lilac aldehydes, attracted most of the moths tested, indicating a specific adaptation of H. bicruris to its host plant.  相似文献   

5.
Mechanisms preventing interspecific pollination are important in closely related plant species, in particular when post-zygotic barriers are weak or absent. We investigated the role of floral odour in reproductive isolation between the two closely related species Silene latifolia and S. dioica. First, we tested whether floral odour composition and emission differed between the species. We found significant odour differences, but contrary to expectations, both species showed a rhythmic emission of the same compounds between day and night. Second, in a field experiment, odour of the two species was made more similar by applying phenylacetaldehyde to flowers. This manipulation led to higher pollen-analogue transfer between species, revealing that floral odour differences are important for maintaining reproductive isolation. We conclude that differences in single key compounds can reduce pollen transfer across species boundaries by pollinators and demonstrate that odour differences are an important component of premating floral isolation between closely related plant species.  相似文献   

6.
The monoterpene lilac aldehyde is found in floral scent of several plants species, among them Silene latifolia. This plant is involved in a nursery pollination system, because a noctuid moth, Hadena bicruris, is not only pollinator but also seed predator. Lilac aldehyde is the key floral scent compound of S. latifolia for attracting Hadena. This monoterpene has three stereogenic centers, and eight different isomers are possible. Here, we analysed the ratio of lilac aldehyde isomers from plants originating from 18 different populations of S. latifolia using enantioselective multidimensional GC-MS (enantio-MDGC-MS), and compared resulting variability with variability found in total scent emitted by specimen under study. Though variability in total emitted scent was high, ratio of lilac aldehyde isomers was a more conservative trait. There was no correlation between the ratio of lilac aldehyde isomers and the total emitted floral scent pattern. Both, ratio of stereoisomers and total emitted scent were independent from the geographic origin of the plants. In conclusion, the ratio of lilac aldehyde stereoisomers in S. latifolia is a reliable trait, and may used by the nursery pollinator H. bicruris for host-plant detection.  相似文献   

7.
8.
Natural hybrid zones provide a valuable tool to study introgressive hybridization, because they can contain a wide variety of genotypes that result from many generations of recombination. Here we used molecular markers and morphological variation to describe the structure of two natural hybrid zones between Silene latifolia and Silene dioica in the Swiss Alps. Populations in both hybrid zones consisted of few intermediate hybrids and were dominated by backcross hybrids. The latter were also found in the parental populations at the margins of the hybrid zones. Out of 209 amplified fragment length polymorphism (AFLP) markers scored in 390 individuals, only 7 (3.3%) were species specific. These results indicate that introgression between S. dioica and S. latifolia is extensive, and that hybrid zones act as bridges to gene flow between these two species. Analysis of linkage disequilibrium identified few populations in which hybridization is ongoing, whereas in most populations linkage disequilibrium has eroded. Where hybridization is ongoing, strong changes in species-specific marker frequencies and morphological traits were observed. Plastid introgression into the hybrid zone was found to be bidirectional, but only the S. latifolia plastid haplotype was found in a nuclear S. dioica background. This unidirectional plastid introgression from S. latifolia into S. dioica is most likely due to pollen-flow from S. dioica onto S. latifolia, and results in plastid capture. Comparisons between the molecular and the morphological hybrid indices revealed that morphology in this study system is useful for identifying hybrids, but not for detailed analysis of hybrid zone structure.  相似文献   

9.
10.
Unlike the majority of flowering plants, which possess hermaphrodite flowers, white campion (Silene latifolia) is dioecious and has flowers of two different sexes. The sex is determined by the combination of heteromorphic sex chromosomes: XX in females and XY in males. The Y chromosome of S.latifolia was microdissected to generate a Y-specific probe which was used to screen a young male flower cDNA library. We identified five genes which represent the first active genes to be cloned from a plant Y chromosome. Here we report a detailed analysis of one of these genes, SlY1 (S.latifolia Y-gene 1). SlY1 is expressed predominantly in male flowers. A closely related gene, SlX1, is predicted to be located on the X chromosome and is strongly expressed in both male and female flowers. SlY1 and SlX1 encode almost identical proteins containing WD repeats. Immunolocalization experiments showed that these proteins are localized in the nucleus, and that they are most abundant in cells that are actively dividing or beginning to differentiate. Interestingly, they do not accumulate in arrested sexual organs and represent potential targets for sex determination genes. These genes will permit investigation of the origin and evolution of sex chromosomes in plants.  相似文献   

11.
Y chromosomes carry genes with functions in male reproduction and often have few other loci. Their evolution and the causes of genetic degeneration are of great interest. In addition to genetic degeneration, the acquisition of autosomal genes may be important in Y chromosome evolution. We here report that the dioecious plant Silene latifolia harbors a complete MADS box gene, SlAP3Y, duplicated onto the Y chromosome. This gene has no X-linked homologs but only an autosomal paralog, SlAP3A, and sequence divergence suggests that the duplication is a quite old event that occurred soon after the evolution of the sex chromosomes. Evolutionary sequence analyses using homologs of closely related species, including hermaphroditic Silene conica and dioecious Silene dioica and Silene diclinis, suggest that both SlAP3A and SlAP3Y genes encode functional proteins. Indeed, quantitative RT-PCR and in situ hybridization analyses showed that SlAP3A is expressed specifically in developing petals, but SlAP3Y is much more strongly expressed in developing stamens. The S. conica homolog, ScAP3A, is expressed in developing petals, suggesting subfunctionalization with evolution of male-specific functions, possibly due to evolutionary change in regulatory elements. Our results suggest that the acquisition of autosomal genes is an important event in the evolution of plant Y chromosomes.  相似文献   

12.
13.
14.
Abstract We studied intraspecific competition and assortative mating between strains of the anther smut fungus Microbotryum violaceum from two of its host species, Silene latifolia and S. dioica . Specifically, we investigated whether strains from allopatric host populations have higher competitive ability on their native host species and show positive assortative mating. In general, strains isolated from S. latifolia outcompeted strains isolated from S. dioica on both host species, but in female hosts, heterotypic dikaryons (i.e., dikaryons composed of a haploid strain originating from S. latifolia and a haploid strain originating from S. dioica ) were most successful in competition. Furthermore, the latency period was significantly shorter for heterokaryons that contained at least one strain originating from S. latifolia , compared to heterokaryons that only contained strains originating from S. dioica . The frequencies of conjugations between strains originating from S. latifolia were much higher than conjugation frequencies between strains originating from S. dioica . A significant positive correlation was detected between the relative success of strains in competition and in conjugation, suggesting that success of a strain in competition might be partly determined by its swiftness of mating. In addition, reciprocal differences within heterotypic crosses revealed a significant effect of fungal mating type, with mating type a1 being the main determinant of mating pace. The observed differences in infection success, conjugation rate, and latency period in favor of strains from S. latifolia relative to strains from S. dioica on both host species are discussed in an evolutionary context of opportunities for the maintenance of differentiation between different formae speciales upon secondary contact.  相似文献   

15.
Minder AM  Widmer A 《Molecular ecology》2008,17(6):1552-1563
Little is known about the nature of species boundaries between closely related plant species and about the extent of introgression as a consequence of hybridization upon secondary contact. To address these topics we analyzed genome-wide differentiation between two closely related Silene species, Silene latifolia and S. dioica , and assessed the strength of introgression in sympatry. More than 300 AFLP markers were genotyped in three allopatric and three sympatric populations of each species. Outlier analyses were performed separately for sympatric and allopatric populations. Both positive and negative outlier loci were found, indicating that divergent and balancing selection, respectively, have shaped patterns of divergence between the two species. Sympatric populations of the two species were found to be less differentiated genetically than allopatric populations, indicating that hybridization has led to gene introgression. We conclude that differentiation between S. latifolia and S. dioica has been shaped by a combination of introgression and selection. These results challenge the view that species differentiation is a genome-wide phenomenon, and instead support the idea that genomes can be porous and that species differentiation has a genic basis.  相似文献   

16.
Muir G  Filatov D 《Genetics》2007,177(2):1239-1247
Gene flow occurs predominantly via pollen in angiosperms, leading to stronger population subdivision for maternally inherited markers, relative to paternally or biparentally inherited genes. In contrast to this trend, population subdivision within Silene latifolia and S. dioica, as well as subdivision between the two species, is substantially lower in maternally inherited chloroplast genes compared to paternally inherited Y-linked genes. A significant frequency spectrum bias toward rare polymorphisms and a significant loss of polymorphism in chloroplast genes compared to Y-linked and autosomal genes suggest that intra- and inter-specific subdivision in the chloroplast DNA may have been eroded by a selective sweep that has crossed the S. latifolia and S. dioica species boundary.  相似文献   

17.
Floral scent of 13 night-flowering Silene species (Caryophyllaceae) was collected by headspace adsorption and analysed via gas chromatography and mass spectrometry. Benzenoids together with isoprenoids dominated the scent in all species. Among the benzenoids, benzaldehyde (Silene subconica 35.5%, Silene succulenta 23.1%, Silene sericea 15.6%, Silene vulgaris 12.2%, and Silene nutans 9.9%), methylbenzoate (Silene saxifraga 96.1%, S. succulenta 15.2%), benzyl acetate (Silene dichotoma 37.8%, S. nutans 30.1%, Silene italica 9.0%, and Silene latifolia 5.5%), or benzyl alcohol (Silene viscosa 36.1%) occur in the largest amounts. p-Cresol is only found in the floral scent of S. dichotoma (28.5%). Among the isoprenoids, monoterpenes occur in the largest amounts (myrcene 23% in Silene chlorantha, trans-β-ocimene 27.2% in S. nutans and 34.9% in S. sericea, fenchyl acetate 12.7% in S. chlorantha, β-linalool 40.5% in S. chlorantha and 14.5% in S. italica). Relatively high amounts of lilac compounds occur in S. latifolia (49.1%), Silene otites (35.7%), S. subconica (15.2%), and S. vulgaris (59.6%). Higher amounts of sesquiterpenes (isoprenoids) were only found in Silene vallesia with β-bourbonene and γ-muurolene.The vast majority of chemicals identified are common components of a wide array of scented angiosperm flowers. Nevertheless, the results conform most strongly with the findings in other night-blooming and/or moth-pollinated flowers. All investigated Silene species follow the general trend of floral scent compounds typical for moth-pollinated flowers, i.e. flowers having acyclic terpene alcohols (e.g. linalool), aromatic alcohols (benzyl alcohol, 2-phenylethanol) and esters derived from them, and small amounts of nitrogen-containing compounds.  相似文献   

18.
With regards to pollination there exist several mutualistic relationships between Hadena -species and Caryophyllaceae. As mutualists have both negative and positive effects on their partners, mutualism is often betoken as reciprocative exploitation which may shift to parasitism if the exploitation of one partner becomes prevalent.
Several Silene - and Saponaria -species are considered to be larval host plants of Hadena bicruris . Although Silene latifolia ssp. alba and S. dioica are frequently cited as hosts of the seed eating larvae, field and laboratory observations at Ulm were suggestive for only S. latifolia ssp. alba being a suitable host. Records of the oviposition behavior of H. bicruris made it evident that in fact a considerable number of eggs could be found in planted stands of both species. On the other hand, phenological data of the flowering periods and of the oviposition behavior of H. bicruris showed that S. latifolia ssp. alba is clearly preferred for oviposition if host selection is possible due to contemporaneous flowering of individuals of both plant species growing at close range. In addition, the flowering periods of S. latifolia ssp. alba and the periods of moth activity overlap to a large extent. This is not the case in S. dioica . Feeding experiences first indicated that the caterpillars may not prefer one of the species to the other, but comparison of the pupal weight of the animals reared on fruits of exclusively one of the species showed that the seeds of S. latifolia ssp. alba were more profitable for nutrition than those of S. dioica ; the pupal weight of animals reared on seeds of the former species significantly exceeded that of animals reared on seeds of the latter one. The question arises if the symbiosis of H. bicruris and its hosts constitutes a stable situation or if an evolutionary shift to mutualism or parasitism will take place.  相似文献   

19.
Filatov DA 《Genetics》2005,170(2):975-979
The sex chromosomes of dioecious white campion, Silene latifolia (Caryophyllaceae), are of relatively recent origin (10-20 million years), providing a unique opportunity to trace the origin and evolution of sex chromosomes in this genus by comparing closely related Silene species with and without sex chromosomes. Here I demonstrate that four genes that are X-linked in S. latifolia are also linked in nondioecious S. vulgaris, which is consistent with Ohno's (1967) hypothesis that sex chromosomes evolve from a single pair of autosomes. I also report a genetic map for four S. latifolia X-linked genes, SlX1, DD44X, SlX4, and a new X-linked gene SlssX, which encodes spermidine synthase. The order of the genes on the S. latifolia X chromosome and divergence between the homologous X- and Y-linked copies of these genes supports the "evolutionary strata" model, with at least three consecutive expansions of the nonrecombining region on the Y chromosome (NRY) in this plant species.  相似文献   

20.
Abstract: Nectar production in Saponaria officincilis and in five species of Silene (S. ciba, S. dioica, S. noctiflora, S. nutans, S. vulgaris ) was examined during two consecutive years (May to July 1993, and May to June 1994) in the Botanical Garden of the University of Giessen. Nectar volume and sugar concentration were studied in relation to time of day, flower sex, flower age, and flowering stage. Nectar amount in all species studied (except S. dioica ) increased in the afternoon or in the evening until midnight (or until the early morning in S. nutans ). After midnight and until midday, nectar volume in non-visited flowers (except S. dioica ) decreased. Nectar volume in non-visited S. dioica flowers increased constantly with flower age, indicating a stable nectar secretion rate, possibly favouring both day- and night-active flower visitors. Even at the time of highest nectar secretion, all species studied presented several nectarless flowers. Sucrose dominance in the nectar of the nocturnal species S. nutans and Saponaria officinalis fits well with the general syndrome of flowers pollinated by hawkmoths. The syndrome also applies to the nocturnal but regularly selfing, S. noctiflora . The more generalis-tic species S. dioica and S. vulgaris , which are regularly visited by bumblebees as well as nocturnal moths, secreted hexose-domi-nant nectar. Unexpectedly, Silene alba , the only nocturnal species that strictly excluded day-active flower visitors by closing flowers during the day, also secreted hexose-dominant nectar. In some cases, nectar volumes and nectar concentration differed significantly between hermaphroditic, male, and female flowers. Female flowers of S. alba, S. dioica , and S. nutans contained significantly less concentrated nectar than male or hermaphroditic ( S. nutans ) ones. In S. noctifiora and S. vulgaris the difference was not statistically significant but nectar concentration did show the same tendency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号