首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Visceral Leishmaniasis (VL) is a vector-borne disease transmitted by Phlebotomus argentipes. To understand the VL seasonality, annual and monthly variations of VL incidence and its relationship to meteorological variables, the numbers of VL cases reported in Muzaffarpur district, Bihar, India from 1990 to 2008 were studied.

Methods

Annual VL incidence per 10,000 and the total number of annual VL cases reported at block Community Health Centres (CHC), Public Hospitals or Non-Governmental Organisations (NGO) and the number of VL cases per month from 2000 to 2008 as well as the monthly average of cases for 2000–08, 2000–04 and 2005–08 periods along with the monthly averages of temperature, rainfall and relative humidity were plotted. VL Standardised Incidence Ratios per block were computed for the periods of 1990–1993, 1994–1998, 1999–2004 and 2005–2008 and month wise from 2002 to 2008. A negative binomial regression model was used to evaluate the association between meteorological variables and the number of VL cases per month from 2000 to 2008.

Results

A total of 68,358 VL cases were reported in Muzaffarpur district from 1990 to 2008, ranging from 1,2481 in 1992 to 1,161 in 2001. The blocks with the highest number of cases shifted from East (1990–98) to West (1999–2008). Monthly averages of cases ranged from 149 to 309, highest peak in March–April and another one in July. Monthly VL incidence was associated positively to rainfall and negatively to relative humidity and the numbers of VL cases in the previous month.

Interpretation

The number of cases reported to the public health sector allowed the describing of the spatial distribution and temporal variations in the Muzaffarpur from 1990 to 2008. However, to assess the actual VL burden, as well as the efficacy of the control measures applied in the district, reporting from private practices and NGOs should be encouraged.  相似文献   

2.

Background

Measuring progress towards Millennium Development Goal 6, including estimates of, and time trends in, the number of malaria cases, has relied on risk maps constructed from surveys of parasite prevalence, and on routine case reports compiled by health ministries. Here we present a critique of both methods, illustrated with national incidence estimates for 2009.

Methods and Findings

We compiled information on the number of cases reported by National Malaria Control Programs in 99 countries with ongoing malaria transmission. For 71 countries we estimated the total incidence of Plasmodium falciparum and P. vivax by adjusting the number of reported cases using data on reporting completeness, the proportion of suspects that are parasite-positive, the proportion of confirmed cases due to each Plasmodium species, and the extent to which patients use public sector health facilities. All four factors varied markedly among countries and regions. For 28 African countries with less reliable routine surveillance data, we estimated the number of cases from model-based methods that link measures of malaria transmission with case incidence. In 2009, 98% of cases were due to P. falciparum in Africa and 65% in other regions. There were an estimated 225 million malaria cases (5th–95th centiles, 146–316 million) worldwide, 176 (110–248) million in the African region, and 49 (36–68) million elsewhere. Our estimates are lower than other published figures, especially survey-based estimates for non-African countries.

Conclusions

Estimates of malaria incidence derived from routine surveillance data were typically lower than those derived from surveys of parasite prevalence. Carefully interpreted surveillance data can be used to monitor malaria trends in response to control efforts, and to highlight areas where malaria programs and health information systems need to be strengthened. As malaria incidence declines around the world, evaluation of control efforts will increasingly rely on robust systems of routine surveillance. Please see later in the article for the Editors'' Summary  相似文献   

3.
Malaria is a major public health problem especially in the tropics with the potential to significantly increase in response to changing weather and climate. This study explored the impact of weather and climate and its variability on the occurrence and transmission of malaria in Akure, the tropical rain forest area of southwest and Kaduna, in the savanna area of Nigeria. We investigate this supposition by looking at the relationship between rainfall, relative humidity, minimum and maximum temperature, and malaria at the two stations. This study uses monthly data of 7 years (2001–2007) for both meteorological data and record of reported cases of malaria infection. Autoregressive integrated moving average (ARIMA) models were used to evaluate the relationship between weather factors and malaria incidence. Of all the models tested, the ARIMA (1, 0, 1) model fits the malaria incidence data best for Akure and Kaduna according to normalized Bayesian information criterion (BIC) and goodness-of-fit criteria. Humidity and rainfall have almost the same trend of association in all the stations while maximum temperature share the same negative association at southwestern stations and positive in the northern station. Rainfall and humidity have a positive association with malaria incidence at lag of 1 month. In all, we found that minimum temperature is not a limiting factor for malaria transmission in Akure but otherwise in the other stations.  相似文献   

4.

Background

Sri Lanka has a long history of malaria control, and over the past decade has had dramatic declines in cases amid a national conflict. A case study of Sri Lanka''s malaria programme was conducted to characterize the programme and explain recent progress.

Methods

The case study employed qualitative and quantitative methods. Data were collected from published and grey literature, district-level and national records, and thirty-three key informant interviews. Expenditures in two districts for two years – 2004 and 2009 – were compiled.

Findings

Malaria incidence in Sri Lanka has declined by 99.9% since 1999. During this time, there were increases in the proportion of malaria infections due to Plasmodium vivax, and the proportion of infections occurring in adult males. Indoor residual spraying and distribution of long-lasting insecticide-treated nets have likely contributed to the low transmission. Entomological surveillance was maintained. A strong passive case detection system captures infections and active case detection was introduced. When comparing conflict and non-conflict districts, vector control and surveillance measures were maintained in conflict areas, often with higher coverage reported in conflict districts. One of two districts in the study reported a 48% decline in malaria programme expenditure per person at risk from 2004 to 2009. The other district had stable malaria spending.

Conclusions/Significance

Malaria is now at low levels in Sri Lanka – 124 indigenous cases were found in 2011. The majority of infections occur in adult males and are due to P. vivax. Evidence-driven policy and an ability to adapt to new circumstances contributed to this decline. Malaria interventions were maintained in the conflict districts despite an ongoing war. Sri Lanka has set a goal of eliminating malaria by the end of 2014. Early identification and treatment of infections, especially imported ones, together with effective surveillance and response, will be critical to achieving this goal.  相似文献   

5.

Background

To achieve malaria eradication, control efforts have to be sustained even when the incidence of malaria cases becomes low during the dry season. In this work, malaria incidence and its determinants including bed net use were investigated in children of under 5 years of age in 28 villages in southern Benin during the dry season.

Methods and Findings

Mean malaria clinical incidence was measured in children aged 0–5 years by active case detection in 28 villages of the Ouidah-Kpomasse-Tori Bossito sanitary district between November 2007 and March 2008. Using Poisson mixed-effect models, malaria incidence was assessed according to the level of transmission by different vector species, and Long-Lasting Insecticide-treated mosquito Nets (LLIN) use and ownership. Then, a Binomial mixed-effect model was developed to assess whether nighttime temperature (derived from MODIS remote sensing data), biting nuisance and LLIN ownership are good predictors of LLIN use >60%. Results suggested that Anopheles funestus (Incidence Rates Ratio (IRR) = 3.38 [IC95 1.91–6]) rather than An. gambiae s.s. is responsible for malaria transmission. A rate of LLIN use >60% was associated with a lower risk of malaria (IRR = 0.6 [IC95 0.37–0.99]). Low nocturnal temperature and high biting nuisance were good predictors of LLIN use >60%.

Conclusions

As recommended by the Malaria Eradication (MalERA) Consultative Group on Modelling, there is a need to understand better the effects of seasonality on malaria morbidity. This study highlights the need to take into account the specificity of malaria epidemiology during the dry-hot season and get a better understanding of the factors that influence malaria incidence and net use. These findings should help National Malaria Control Programmes to implement more effective and sustainable malaria control strategies in Africa.  相似文献   

6.
ABSTRACT: BACKGROUND: Malaria remains a significant health problem in Bangladesh affecting 13 of 64 districts. The risk of malaria is variable across the endemic areas and throughout the year. A better understanding of the spatial and temporal patterns in malaria risk and the determinants driving the variation are crucial for the appropriate targeting of interventions under the National Malaria Control and Prevention Programme. METHODS: Numbers of Plasmodium falciparum and Plasmodium vivax malaria cases reported by month in 2007, across the 70 endemic thanas (sub-districts) in Bangladesh, were assembled from health centre surveillance reports. Bayesian Poisson regression models of incidence were constructed, with fixed effects for monthly rainfall, maximum temperature and elevation, and random effects for thanas, with a conditional autoregressive prior spatial structure. RESULTS: The annual incidence of reported cases was 34.0 and 9.6 cases/10,000 population for P. falciparum and P. vivax respectively and the population of the 70 malaria-endemic thanas was approximately 13.5 million in 2007. Incidence of reported cases for both types of malaria was highest in the mountainous south-east of the country (the Chittagong Hill Tracts). Models revealed statistically significant positive associations between the incidence of reported P. vivax and P. falciparum cases and rainfall and maximum temperature. CONCLUSIONS: The risk of P. falciparum and P. vivax was spatially variable across the endemic thanas of Bangladesh and also highly seasonal, suggesting that interventions should be targeted and timed according to the risk profile of the endemic areas. Rainfall, temperature and elevation are major factors driving the spatiotemporal patterns of malaria in Bangladesh.  相似文献   

7.
Kibii Komen 《EcoHealth》2017,14(2):259-271
Malaria cases in South Africa’s Northern Province of Limpopo have surpassed known endemic KwaZulu Natal and Mpumalanga Provinces. This paper applies statistical methods: regression analysis and impulse response function to understand the timing of impact and the length that such impacts last. Climate data (rainfall and temperature) are obtained from South African Weather Services (SAWs); global data from the European Centre for Medium-Range Weather Forecasts (ECMWF), while clinical malaria data came from Malaria Control Centre in Tzaneen (Limpopo Province). Data collected span from January 1998 to July 2007. Signs of the coefficients are positive for rainfall and temperature and negative for their exponents. Three out of five independent variables consistently maintain a very high statistical level of significance. The coefficients for climate variables describe an inverted u-shape: parameters for the exponents of rainfall (?0.02, ?0.01, ?0.02, ?0.00) and temperature (?46.61, ?47.46, ?48.14, ?36.04) are both negative. A one standard deviation rise in rainfall (rainfall onset) increases malaria cases, and the effects become sustained for at least 3 months and conclude that onset of rainfall therefore triggers a ‘malaria season’. Malaria control programme and early warning system should be intensified in the first 3 months following the onset of rainfall.  相似文献   

8.

Background

Malaria is a major public health problem in Bangladesh, frequently occurring as epidemics since the 1990s. Many factors affect increases in malaria cases, including changes in land use, drug resistance, malaria control programs, socioeconomic issues, and climatic factors. No study has examined the relationship between malaria epidemics and climatic factors in Bangladesh. Here, we investigate the relationship between climatic parameters [rainfall, temperature, humidity, sea surface temperature (SST), El Niño-Southern Oscillation (ENSO), the normalized difference vegetation index (NDVI)], and malaria cases over the last 20 years in the malaria endemic district of Chittagong Hill Tracts (CHT).

Methods and Principal Findings

Monthly malaria case data from January 1989 to December 2008, monthly rainfall, temperature, humidity sea surface temperature in the Bay of Bengal and ENSO index at the Niño Region 3 (NIÑO3) were used. A generalized linear negative binomial regression model was developed using the number of monthly malaria cases and each of the climatic parameters. After adjusting for potential mutual confounding between climatic factors there was no evidence for any association between the number of malaria cases and temperature, rainfall and humidity. Only a low NDVI was associated with an increase in the number of malaria cases. There was no evidence of an association between malaria cases and SST in the Bay of Bengal and NIÑO3.

Conclusion and Significance

It seems counterintuitive that a low NDVI, an indicator of low vegetation greenness, is associated with increases in malaria cases, since the primary vectors in Bangladesh, such as An. dirus, are associated with forests. This relationship can be explained by the drying up of rivers and streams creating suitable breeding sites for the vector fauna. Bangladesh has very high vector species diversity and vectors suited to these habitats may be responsible for the observed results.  相似文献   

9.
Malaria belongs to the infectious diseases with the highest morbidity and mortality worldwide. As a vector-borne disease malaria distribution is strongly influenced by environmental factors. The aim of this study was to investigate the association between malaria risk and different land cover classes by using high-resolution multispectral Ikonos images and Poisson regression analyses. The association of malaria incidence with land cover around 12 villages in the Ashanti Region, Ghana, was assessed in 1,988 children <15 years of age. The median malaria incidence was 85.7 per 1,000 inhabitants and year (range 28.4–272.7). Swampy areas and banana/plantain production in the proximity of villages were strong predictors of a high malaria incidence. An increase of 10% of swampy area coverage in the 2 km radius around a village led to a 43% higher incidence (relative risk [RR] = 1.43, p<0.001). Each 10% increase of area with banana/plantain production around a village tripled the risk for malaria (RR = 3.25, p<0.001). An increase in forested area of 10% was associated with a 47% decrease of malaria incidence (RR = 0.53, p = 0.029).Distinct cultivation in the proximity of homesteads was associated with childhood malaria in a rural area in Ghana. The analyses demonstrate the usefulness of satellite images for the prediction of malaria endemicity. Thus, planning and monitoring of malaria control measures should be assisted by models based on geographic information systems.  相似文献   

10.

Background

The Shoklo Malaria Research Unit has been working on the Thai–Myanmar border for 25 y providing early diagnosis and treatment (EDT) of malaria. Transmission of Plasmodium falciparum has declined, but resistance to artesunate has emerged. We expanded malaria activities through EDT and evaluated the impact over a 12-y period.

Methods and Findings

Between 1 October 1999 and 30 September 2011, the Shoklo Malaria Research Unit increased the number of cross-border (Myanmar side) health facilities from two to 11 and recorded the number of malaria consultations. Changes in malaria incidence were estimated from a cohort of pregnant women, and prevalence from cross-sectional surveys. In vivo and in vitro antimalarial drug efficacy were monitored. Over this period, the number of malaria cases detected increased initially, but then declined rapidly. In children under 5 y, the percentage of consultations due to malaria declined from 78% (95% CI 76–80) (1,048/1,344 consultations) to 7% (95% CI 6.2–7.1) (767/11,542 consultations), p<0.001. The ratio of P. falciparum/P. vivax declined from 1.4 (95% CI 1.3–1.4) to 0.7 (95% CI 0.7–0.8). The case fatality rate was low (39/75,126; 0.05% [95% CI 0.04–0.07]). The incidence of malaria declined from 1.1 to 0.1 episodes per pregnant women-year. The cumulative proportion of P. falciparum decreased significantly from 24.3% (95% CI 21.0–28.0) (143/588 pregnant women) to 3.4% (95% CI 2.8–4.3) (76/2,207 pregnant women), p<0.001. The in vivo efficacy of mefloquine-artesunate declined steadily, with a sharp drop in 2011 (day-42 PCR-adjusted cure rate 42% [95% CI 20–62]). The proportion of patients still slide positive for malaria at day 3 rose from 0% in 2000 to reach 28% (95% CI 13–45) (8/29 patients) in 2011.

Conclusions

Despite the emergence of resistance to artesunate in P. falciparum, the strategy of EDT with artemisinin-based combination treatments has been associated with a reduction in malaria in the migrant population living on the Thai–Myanmar border. Although limited by its observational nature, this study provides useful data on malaria burden in a strategically crucial geographical area. Alternative fixed combination treatments are needed urgently to replace the failing first-line regimen of mefloquine and artesunate. Please see later in the article for the Editors'' Summary  相似文献   

11.

Background

Intermittent preventive treatment of malaria in children (IPTc) is a promising strategy for malaria control. A study conducted in Mali in 2008 showed that administration of three courses of IPTc with sulphadoxine-pyrimethamine (SP) and amodiaquine (AQ) at monthly intervals reduced clinical malaria, severe malaria and malaria infection by >80% in children under 5 years of age. Here we report the results of a follow-on study undertaken to establish whether children who had received IPTc would be at increased risk of malaria during the subsequent malaria transmission season.

Methods

Morbidity from malaria and the prevalence of malaria parasitaemia and anaemia were measured in children who had previously received IPTc with SP and AQ using similar surveillance methods to those employed during the previous intervention period.

Results

1396 of 1508 children (93%) who had previously received IPTc and 1406 of 1508 children (93%) who had previously received placebos were followed up during the high malaria transmission season of the year following the intervention. Incidence rates of clinical malaria during the post-intervention transmission season (July –November 2009) were 1.87 (95% CI 1.76 –1.99) and 1.73 (95% CI; 1.62–1.85) episodes per child year in the previous intervention and placebo groups respectively; incidence rate ratio (IRR) 1.09 (95% CI 0.99 –1.21) (P = 0.08). The prevalence of malaria infection was similar in the two groups, 7.4% versus 7.5%, prevalence ratio (PR) of 0.99 (95% CI 0.73–1.33) (P = 0.95). At the end of post-intervention malaria transmission season, the prevalence of anaemia, defined as a haemoglobin concentration<11g/dL, was similar in the two groups (56.2% versus 55.6%; PR = 1.01 [95% CI 0.91 – 1.12]) (P = 0.84).

Conclusion

IPTc with SP+AQ was not associated with an increase in incidence of malaria episodes, prevalence of malaria infection or anaemia in the subsequent malaria transmission season.

Trial Registration

ClinicalTrials.gov NCT00738946  相似文献   

12.
Hand, foot and mouth disease (HFMD) is an important public health issue in mainland China, including Jiangsu Province. The main purpose of this study was to depict the epidemiological characteristics of HFMD and evaluate the effects of meteorological variables on its dynamics via spatiotemporal analytic methods, which is essential for formulating scientific and effective prevention and control strategies and measures. In total, 497,910 cases of HFMD occurred in the 2009-2013 period, with an average annual incidence of 126.3 per 100,000 in Jiangsu. Out of these, 87.7% were under 5 years old with a male-to-female incidence ratio of 1.4. The dominant pathogens of the laboratory-confirmed cases were EV71 and CoxA16, accounting for 44.8% and 30.6% of all cases, respectively. Two incidence peaks were observed in each year, the higher occurring between April and June, the lower between November and December. The incidence ranged between 16.8 and 233.5 per 100,000 at the county level. The incidence in the South of the province was generally higher than that in the northern regions. The most likely spatiotemporal cluster detected by space–time scan analysis occurred in May-June of 2012 in the southern region. Average temperature and rainfall were positively correlated with HFMD incidence, while the number of days with rainfall ≥ 0.1mm, low temperature, high temperature and hours of sunshine were negatively related. Particularly, relative humidity had no relationship. In conclusion, the prevalence of HFMD in Jiangsu Province has an obvious feature of seasonality. The etiological composition changed dynamically and might be a latent driving force for the temporal variation of the incidence of HFMD. A moderately warm environment promotes the transmission of the HFMD viruses, while particularly cold and hot climate conditions restrain their transmission.  相似文献   

13.

Background

The Government of Ethiopia and its partners have deployed artemisinin-based combination therapies (ACT) since 2004 and long-lasting insecticidal nets (LLINs) since 2005. Malaria interventions and trends in malaria cases and deaths were assessed at hospitals in malaria transmission areas during 2001–2011.

Methods

Regional LLINs distribution records were used to estimate the proportion of the population-at-risk protected by LLINs. Hospital records were reviewed to estimate ACT availability. Time-series analysis was applied to data from 41 hospitals in malaria risk areas to assess trends of malaria cases and deaths during pre-intervention (2001–2005) and post-interventions (2006–2011) periods.

Findings

The proportion of the population-at-risk potentially protected by LLINs increased to 51% in 2011. The proportion of facilities with ACTs in stock exceeded 87% during 2006–2011. Among all ages, confirmed malaria cases in 2011 declined by 66% (95% confidence interval [CI], 44–79%) and SPR by 37% (CI, 20%–51%) compared to the level predicted by pre-intervention trends. In children under 5 years of age, malaria admissions and deaths fell by 81% (CI, 47%–94%) and 73% (CI, 48%–86%) respectively. Optimal breakpoint of the trendlines occurred between January and June 2006, consistent with the timing of malaria interventions. Over the same period, non-malaria cases and deaths either increased or remained unchanged, the number of malaria diagnostic tests performed reflected the decline in malaria cases, and rainfall remained at levels supportive of malaria transmission.

Conclusions

Malaria cases and deaths in Ethiopian hospitals decreased substantially during 2006–2011 in conjunction with scale-up of malaria interventions. The decrease could not be accounted for by changes in hospital visits, malaria diagnostic testing or rainfall. However, given the history of variable malaria transmission in Ethiopia, more data would be required to exclude the possibility that the decrease is due to other factors.  相似文献   

14.

Background

Interventions that reduce exposure to malaria infection may lead to delayed malaria morbidity and mortality. We investigated whether intermittent preventive treatment of malaria in children (IPTc) was associated with an increase in the incidence of malaria after cessation of the intervention.

Methods

An individually randomised, trial of IPTc, comparing three courses of sulphadoxine pyrimethamine (SP) plus amodiaquine (AQ) with placebos was implemented in children aged 3–59 months during the 2008 malaria transmission season in Burkina Faso. All children in the trial were given a long lasting insecticide treated net; 1509 children received SP+AQ and 1505 received placebos. Passive surveillance for malaria was maintained until the end of the subsequent malaria transmission season in 2009, and active surveillance for malaria infection, anaemia and malnutrition was conducted.

Results

On thousand, four hundred and sixteen children (93.8%) and 1399 children (93.0%) initially enrolled in the intervention and control arms of the trial respectively were followed during the 2009 malaria transmission season. During the period July 2009 to November 2009, incidence rates of clinical malaria were 3.84 (95%CI; 3.67–4.02) and 3.45 (95%CI; 3.29–3.62) episodes per child during the follow up period in children who had previously received IPT or placebos, indicating a small increase in risk for children in the former intervention arm (IRR = 1.12; 95%CI 1.04–1.20) (P = 0.003). Children who had received SP+AQ had a lower prevalence of malaria infection (adjusted PR: 0.88 95%CI: 0.79–0.98) (P = 0.04) but they had a higher parasite density (P = 0.001) if they were infected. There was no evidence that the risks of moderately severe anaemia (Hb<8 g/dL), wasting, stunting, or of being underweight in children differed between treatment arms.

Conclusion

IPT with SP+AQ was associated with a small increase in the incidence of clinical malaria in the subsequent malaria transmission season.

Trial Registration

ClinicalTrials.gov NCT00738946  相似文献   

15.
BackgroundMalaria is an important cause of morbidity and mortality in malaria endemic countries. The malaria mosquito vectors depend on environmental conditions, such as temperature and rainfall, for reproduction and survival. To investigate the potential for weather driven early warning systems to prevent disease occurrence, the disease relationship to weather conditions need to be carefully investigated. Where meteorological observations are scarce, satellite derived products provide new opportunities to study the disease patterns depending on remotely sensed variables. In this study, we explored the lagged association of Normalized Difference Vegetation Index (NVDI), day Land Surface Temperature (LST) and precipitation on malaria mortality in three areas in Western Kenya.ConclusionThis study identified lag patterns and association of remote- sensing environmental factors and malaria mortality in three malaria endemic regions in Western Kenya. Our results show that rainfall has the most consistent predictive pattern to malaria transmission in the endemic study area. Results highlight a potential for development of locally based early warning forecasts that could potentially reduce the disease burden by enabling timely control actions.  相似文献   

16.

Background and Objectives

Experimental models show a male bias in murine malaria; however, extant literature on biases in human clinical malaria is inconclusive. Studies in hyperendemic areas document an absence of sexual dimorphism in clinical malaria. Data on sex bias in clinical malaria in hypoendemic areas is ambiguous—some reports note a male bias but do not investigate the role of differential mosquito exposure in that bias. Moreover, these studies do not examine whether the bias is age related. This study investigates whether clinical malaria in hypoendemic regions exhibits a sex bias and whether this bias is age-dependent. We also consider the role of vector exposure in this bias.

Methods

Retrospective passive clinical malaria datasets (2002–2007) and active surveillance datasets (2000–2009) were captured for the hypoendemic Mumbai region in Western India. To validate findings, passive retrospective data was captured from a primary malaria clinic (2006–2007) in hypoendemic Rourkela (Eastern India). Data was normalized by determining percent slide-positivity rates (SPRs) for males and females, and parasite-positivity distributions were established across age groups. The Mann–Whitney test, Wilcoxon Signed Rank test, and Chi-square analysis were used to determine statistical significances.

Results

In both the Mumbai and Rourkela regions, clinical malaria exhibited an adult male bias (p<0.01). A sex bias was not observed in children aged ≤10. Post-puberty, male SPRs were significantly greater than females SPRs (p<0.01). This adult male bias was observed for both vivax and falciparum clinical disease. Analysis of active surveillance data did not reveal an age or sex bias in the frequency of parasite positivity.

Conclusion

This study demonstrates an age-dependent sex bias in clinical malaria in hypoendemic regions and enhanced incidence of clinical malaria in males following puberty. Possible roles of sex hormones, vector exposure, co-infections, and other factors in this enhanced susceptibility are discussed.  相似文献   

17.
Hii YL  Rocklöv J  Ng N 《PloS one》2011,6(2):e16796

Background

Hand, foot, and mouth disease (HFMD) outbreaks leading to clinical and fatal complications have increased since late 1990s; especially in the Asia Pacific Region. Outbreaks of HFMD peaks in the warmer season of the year, but the underlying factors for this annual pattern and the reasons to the recent upsurge trend have not yet been established. This study analyzed the effect of short-term changes in weather on the incidence of HFMD in Singapore.

Methods

The relative risks between weekly HFMD cases and temperature and rainfall were estimated for the period 2001–2008 using time series Poisson regression models allowing for over-dispersion. Smoothing was used to allow non-linear relationship between weather and weekly HFMD cases, and to adjust for seasonality and long-term time trend. Additionally, autocorrelation was controlled and weather was allowed to have a lagged effect on HFMD incidence up to 2 weeks.

Results

Weekly temperature and rainfall showed statistically significant association with HFMD incidence at time lag of 1–2 weeks. Every 1°C increases in maximum temperature above 32°C elevated the risk of HFMD incidence by 36% (95% CI = 1.341–1.389). Simultaneously, one mm increase of weekly cumulative rainfall below 75 mm increased the risk of HFMD by 0.3% (CI = 1.002–1.003). While above 75 mm the effect was opposite and each mm increases of rainfall decreased the incidence by 0.5% (CI = 0.995–0.996). We also found that a difference between minimum and maximum temperature greater than 7°C elevated the risk of HFMD by 41% (CI = 1.388–1.439).

Conclusion

Our findings suggest a strong association between HFMD and weather. However, the exact reason for the association is yet to be studied. Information on maximum temperature above 32°C and moderate rainfall precede HFMD incidence could help to control and curb the up-surging trend of HFMD.  相似文献   

18.

Background

The aim of this study was to determine the incidence and seasonal pattern of malaria in children in South-West Burkina Faso, and to compare, in a randomized trial, characteristics of cases detected by active and passive surveillance. This study also enabled the planning of a malaria vaccine trial.

Methods

Households with young children, located within 5 kilometers of a health facility, were randomized to one of two malaria surveillance methods. In the first group, children were monitored actively. Each child was visited twice weekly; tympanic temperature was measured, and if the child had a fever or history of fever, a malaria rapid diagnostic test was performed and a blood smear collected. In the second group, children were monitored passively. The child’s parent or caregiver was asked to bring the child to the nearest clinic if he was unwell. Follow up lasted 13 months from September 2009.

Results

Incidence of malaria (Fever with parasitaemia ≥5,000/µL) was 1.18 episodes/child/year in the active cohort and 0.89 in the passive cohort (rate ratio 1.32, 95% CI 1.13–1.54). Malaria cases in the passive cohort were more likely to have high grade fever; but parasite densities were similar in the two groups. Incidence was highly seasonal; when a specific case definition was used, about 60% of cases occurred within the 4 months June-September.

Conclusion

Passive case detection required at least a 30%–40% increase in the sample size for vaccine trials, compared to active detection, to achieve the same power. However we did not find any evidence that parasite densities were higher with passive than with active detection. The incidence of malaria is highly seasonal and meets the WHO criteria for Seasonal Malaria Chemoprevention (SMC). At least half of the malaria cases in these children could potentially be prevented if SMC was effectively deployed.  相似文献   

19.
Katz I  Komatsu R  Low-Beer D  Atun R 《PloS one》2011,6(2):e17166

Objective

The paper projects the contribution to 2011–2015 international targets of three major pandemics by programs in 140 countries funded by the Global Fund to Fight AIDS, Tuberculosis and Malaria, the largest external financier of tuberculosis and malaria programs and a major external funder of HIV programs in low and middle income countries.

Design

Estimates, using past trends, for the period 2011–2015 of the number of persons receiving antiretroviral (ARV) treatment, tuberculosis case detection using the internationally approved DOTS strategy, and insecticide-treated nets (ITNs) to be delivered by programs in low and middle income countries supported by the Global Fund compared to international targets established by UNAIDS, Stop TB Partnership, Roll Back Malaria Partnership and the World Health Organisation.

Results

Global Fund-supported programs are projected to provide ARV treatment to 5.5–5.8 million people, providing 30%–31% of the 2015 international target. Investments in tuberculosis and malaria control will enable reaching in 2015 60%–63% of the international target for tuberculosis case detection and 30%–35% of the ITN distribution target in sub-Saharan Africa.

Conclusion

Global Fund investments will substantially contribute to the achievement by 2015 of international targets for HIV, TB and malaria. However, additional large scale international and domestic financing is needed if these targets are to be reached by 2015.  相似文献   

20.

Background

The impact of insecticide treated nets (ITNs) on reducing malaria incidence is shown mainly through data collection from health facilities. Routine evaluation of long-term epidemiological and entomological dynamics is currently unavailable. In Kenya, new policies supporting the provision of free ITNs were implemented nationwide in June 2006. To evaluate the impacts of ITNs on malaria transmission, we conducted monthly surveys in three sentinel sites with different transmission intensities in western Kenya from 2002 to 2010.

Methods and Findings

Longitudinal samplings of malaria parasite prevalence in asymptomatic school children and vector abundance in randomly selected houses were undertaken monthly from February 2002. ITN ownership and usage surveys were conducted annually from 2004 to 2010. Asymptomatic malaria parasite prevalence and vector abundances gradually decreased in all three sites from 2002 to 2006, and parasite prevalence reached its lowest level from late 2006 to early 2007. The abundance of the major malaria vectors, Anopheles funestus and An. gambiae, increased about 5–10 folds in all study sites after 2007. However, the resurgence of vectors was highly variable between sites and species. By 2010, asymptomatic parasite prevalence in Kombewa had resurged to levels recorded in 2004/2005, but the resurgence was smaller in magnitude in the other sites. Household ITN ownership was at 50–70% in 2009, but the functional and effective bed net coverage in the population was estimated at 40.3%, 49.4% and 28.2% in 2010 in Iguhu, Kombewa, and Marani, respectively.

Conclusion

The resurgence in parasite prevalence and malaria vectors has been observed in two out of three sentinel sites in western Kenya despite a high ownership of ITNs. The likely factors contributing to malaria resurgence include reduced efficacy of ITNs, insecticide resistance in mosquitoes and lack of proper use of ITNs. These factors should be targeted to avoid further resurgence of malaria transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号