首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lassa virus (LASV), which causes a viral hemorrhagic fever, inhibits the innate immune response. The exonuclease (ExoN) domain of its nucleoprotein (NP) is implicated in the suppression of retinoic acid-inducible gene I (RIG-I) signaling. We show here that a LASV in which ExoN function has been abolished strongly activates innate immunity and that this effect is dependent on RIG-I signaling. These results highlight the key role of NP ExoN function in the immune evasion that occurs during LASV infection.  相似文献   

2.
3.
In meiotic cells of the fission yeast Schizosaccharomyces pombe, a DNA exonuclease activity increased approximately 5-fold after premeiotic S-phase and decreased to the initial level before the meiotic divisions. We have purified this activity, designated exonuclease I, to near homogeneity. The activity co-purified with a polypeptide with an apparent molecular weight of 36,000. With a linear double-stranded DNA substrate, exonuclease I degraded only the 5'-ended strand from each end to produce 3'-single-stranded tails. The enzyme also acted on nicked circular DNA with comparable affinity. The meiotic induction of exonuclease I and its mode of action, similar to that of recombination-promoting exonucleases from bacteria, suggest that exonuclease I is involved in meiotic homologous recombination in S. pombe.  相似文献   

4.
Evolutionary conserved mitochondrial nucleases are involved in programmed cell death and normal cell proliferation in lower and higher eukaryotes. The endo/exonuclease Nuc1p, also termed 'yeast Endonuclease G (EndoG)', is a member of this class of enzymes that differs from mammalian homologs by the presence of a 5'-3' exonuclease activity in addition to its broad spectrum endonuclease activity. However, this exonuclease activity is thought to be essential for a function of the yeast enzyme in DNA recombination and repair. Here we show that higher eukaryotes in addition to EndoG contain its paralog 'EXOG', a novel EndoG-like mitochondrial endo/exonuclease. We find that during metazoan evolution duplication of an ancestral nuclease gene obviously generated the paralogous EndoG- and EXOG-protein subfamilies in higher eukaryotes, thereby maintaining the full endo/exonuclease activity found in mitochondria of lower eukaryotes. We demonstrate that human EXOG is a dimeric mitochondrial enzyme that displays 5'-3' exonuclease activity and further differs from EndoG in substrate specificity. We hypothesize that in higher eukaryotes the complementary enzymatic activities of EndoG and EXOG probably together account for both, the lethal and vital functions of conserved mitochondrial endo/exonucleases.  相似文献   

5.
6.
7.
Dermić D 《Genetics》2006,172(4):2057-2069
Heterotrimeric RecBCD enzyme unwinds and resects a DNA duplex containing blunt double-stranded ends and directs loading of the strand-exchange protein RecA onto the unwound 3'-ending strand, thereby initiating the majority of recombination in wild-type Escherichia coli. When the enzyme lacks its RecD subunit, the resulting RecBC enzyme, active in recD mutants, is recombination proficient although it has only helicase and RecA loading activity and is not a nuclease. However, E. coli encodes for several other exonucleases that digest double-stranded and single-stranded DNA and thus might act in consort with the RecBC enzyme to efficiently promote recombination reactions. To test this hypothesis, I inactivated multiple exonucleases (i.e., exonuclease I, exonuclease X, exonuclease VII, RecJ, and SbcCD) in recD derivatives of the wild-type and nuclease-deficient recB1067 strain and assessed the ability of the resultant mutants to maintain cell viability and to promote DNA repair and homologous recombination. A complex pattern of overlapping and sometimes competing activities of multiple exonucleases in recD mutants was thus revealed. These exonucleases were shown to be essential for cell viability, DNA repair (of UV- and gamma-induced lesions), and homologous recombination (during Hfr conjugation and P1 transduction), which are dependent on the RecBC enzyme. A model for donor DNA processing in recD transconjugants and transductants was proposed.  相似文献   

8.
9.
Activation of the latent kinase PKR is a potent innate defense reaction of vertebrate cells towards viral infections, which is triggered by recognition of viral double-stranded (ds) RNA and results in a translational shutdown. A major gap in our understanding of PKR''s antiviral properties concerns the nature of the kinase activating molecules expressed by influenza and other viruses with a negative strand RNA genome, as these pathogens produce little or no detectable amounts of dsRNA. Here we systematically investigated PKR activation by influenza B virus and its impact on viral pathogenicity. Biochemical analysis revealed that PKR is activated by viral ribonucleoprotein (vRNP) complexes known to contain single-stranded RNA with a 5′-triphosphate group. Cell biological examination of recombinant viruses showed that the nucleo-cytoplasmic transport of vRNP late in infection is a strong trigger for PKR activation. In addition, our analysis provides a mechanistic explanation for the previously observed suppression of PKR activation by the influenza B virus NS1 protein, which we show here to rely on complex formation between PKR and NS1''s dsRNA binding domain. The high significance of this interaction for pathogenicity was revealed by the finding that attenuated influenza viruses expressing dsRNA binding-deficient NS1 proteins were rescued for high replication and virulence in PKR-deficient cells and mice, respectively. Collectively, our study provides new insights into an important antiviral defense mechanism of vertebrates and leads us to suggest a new model of PKR activation by cytosolic vRNP complexes, a model that may also be applicable to other negative strand RNA viruses.  相似文献   

10.
11.
The processes of melting and reassociation of double-stranded RNA in dimethylsulfoxide were studied. The addition of a small amount of LiCl results in great results in great reduction of Tm (temperature of melting), whereas the NaCl produces the opposite effect. It is suggested, that LiCl coordinates the molecules of H2O, reducing their activity, and consequently destabilises dsRNA. Mild conditions for melting and reassociation of RNA can be created. It was found that under optimal conditions for dsRNA melting, the degree of strand separation depends on the overall concentration of RNA, irrespective of the type of RNA added to the dsRNA preparation. Reassociation of dsRNA of EMC virus proceeds much faster than that of dsRNA of a related poliovirus. Addition of poly(C) to an annealing mixture slows down the rate of reassociation of EMC dsRNA, producing no effect on the poliovirus dsRNA reassociation. It is suggested that the presence of large poly(C) and poly(G) tracts in the complementary strands of the RNA determines its anomalous fast reassociation. Upon incubation of completely separated strands of EMC dsRNA in a water solution with high ionic strength partially double-stranded aggregates are formed. The formation of aggregates is prevented by addition of poly(A), which indicates that they are produced by "zippening" of a molecule starting with poly(A):poly(U) region. The significance of homopolymeric regions for stability of dsRNA of the EMC virus as well as their role in viral multiplication are discussed.  相似文献   

12.
13.
Autonomous parvoviruses are thought to uniquely encapsidate single-stranded DNA of minus polarity. In contrast, the defective adeno-associated viruses separately encapsidate equal amounts of plus and minus DNA strands. We reexamined the uniqueness of minus strand encapsidation for the autonomous parvoviruses. Although we found that Kilham rat virus and H-1 virus encapsidate varying but small amounts of complementary-strand DNA, it was unexpected to find that LuIII virus encapsidated equal amounts of plus and minus DNA. The extracted LuIII DNA possessed properties of double-stranded replicative-form DNA, including insensitivity to S1 endonuclease, cleavage by restriction enzymes, and conversion to unit-length, single-stranded DNA when electrophoresed under denaturing conditions. However, the inability of this DNA to form single-stranded DNA circles when denatured and then renatured in the presence of formamide and the lack of double-stranded DNA circle formation after treatment with exonuclease III and reannealing shows a lack of sequence homology of the 3' and 5' termini of LuIII DNA, in contrast to adeno-associated virus DNA. Digestion of LuIII double-stranded DNA with EcoRI and HincII and separation of plus and minus DNA strands on composite agarose-acrylamide gels identified a heterogeneity present only in the plus DNA strand. These results suggest that strand specificity of viral DNA encapsidation is not a useful property for differentiation between the autonomous and defective parvoviruses. Furthermore, encapsidation by LuIII of equal amounts of complementary DNA strands in contrast to encapsidation of minus strands by H-1 virus, when propagated in the same host cell type, suggests that selection of strands for encapsidation is a virus-coded rather than host-controlled event.  相似文献   

14.
15.
20 S RNA virus is a positive strand RNA virus found in Saccharomyces cerevisiae. The viral genome (2.5 kb) only encodes its RNA polymerase (p91) and forms a ribonucleoprotein complex with p91 in vivo. A lysate prepared from 20 S RNA-induced cells showed an RNA polymerase activity that synthesized the positive strands of viral genome. When in vitro products, after phenol extraction, were analyzed in a time course, radioactive nucleotides were first incorporated into double-stranded RNA (dsRNA) intermediates and then chased out to the final single-stranded RNA products. The positive and negative strands in these dsRNA intermediates were non-covalently associated, and the release of the positive strand products from the intermediates required a net RNA synthesis. We found, however, that these dsRNA intermediates were an artifact caused by phenol extraction. Native replication intermediates had a single-stranded RNA backbone as judged by RNase sensitivity experiments, and they migrated distinctly from a dsRNA form in non-denaturing gels. Upon completion of RNA synthesis, positive strand RNA products as well as negative strand templates were released from replication intermediates. These results indicate that the native replication intermediates consist of a positive strand of less than unit length and a negative strand template loosely associated, probably through the RNA polymerase p91. Therefore, W, a dsRNA form of 20 S RNA that accumulates in yeast cells grown at 37 degrees C, is not an intermediate in the 20 S RNA replication cycle, but a by-product.  相似文献   

16.
During viral infections, single- and double-stranded RNA (ssRNA and dsRNA) are recognized by the host and induce innate immune responses. The cellular enzyme ADAR-1 (adenosine deaminase acting on RNA-1) activation in virally infected cells leads to presence of inosine-containing RNA (Ino-RNA). Here we report that ss-Ino-RNA is a novel viral recognition element. We synthesized unmodified ssRNA and ssRNA that had 6% to16% inosine residues. The results showed that in primary human cells, or in mice, 10% ss-Ino-RNA rapidly and potently induced a significant increase in inflammatory cytokines, such as interferon (IFN)-β (35 fold), tumor necrosis factor (TNF)-α (9.7 fold), and interleukin (IL)-6 (11.3 fold) (p<0.01). Flow cytometry data revealed a corresponding 4-fold increase in influx of neutrophils into the lungs by ss-Ino-RNA treatment. In our in vitro experiments, treatment of epithelial cells with ss-Ino-RNA reduced replication of respiratory syncytial virus (RSV). Interestingly, RNA structural analysis showed that ss-Ino-RNA had increased formation of secondary structures. Our data further revealed that extracellular ss-Ino-RNA was taken up by scavenger receptor class-A (SR-A) which activated downstream MAP Kinase pathways through Toll-like receptor 3 (TLR3) and dsRNA-activated protein kinase (PKR). Our data suggests that ss-Ino-RNA is an as yet undescribed virus-associated innate immune stimulus.  相似文献   

17.
Lassa virus is an enveloped virus with glycoprotein spikes on its surface. It contains an RNA ambisense genome that encodes the glycoprotein precursor GP-C, the nucleoprotein NP, the polymerase L, and the Z protein. Here we demonstrate that the Lassa virus Z protein (i). is abundant in viral particles, (ii). is strongly membrane associated, (iii). is sufficient in the absence of all other viral proteins to release enveloped particles, and (iv). contains two late domains, PTAP and PPXY, necessary for the release of virus-like particles. Our data provide evidence that Z is the Lassa virus matrix protein that is the driving force for virus particle release.  相似文献   

18.
Point mutations that resulted in a substitution of the conserved 3'-penultimate cytidine in genomic RNA or the RNA negative strand of the self-amplifying replicon of the Flavivirus Kunjin virus completely blocked in vivo replication. Similarly, substitutions of the conserved 3'-terminal uridine in the RNA negative or positive strand completely blocked replication or caused much-reduced replication, respectively. The same preference for cytidine in the 3'-terminal dinucleotide was noted in reports of the in vitro activity of the RNA-dependent RNA polymerase (RdRp) for the other genera of Flaviviridae that also employ a double-stranded RNA (dsRNA) template to initiate asymmetric semiconservative RNA positive-strand synthesis. The Kunjin virus replicon results were interpreted in the context of a proposed model for initiation of RNA synthesis based on the solved crystal structure of the RdRp of phi6 bacteriophage, which also replicates efficiently using a dsRNA template with conserved 3'-penultimate cytidines and a 3'-terminal pyrimidine. A previously untested substitution of the conserved pentanucleotide at the top of the 3'-terminal stem-loop of all Flavivirus species also blocked detectable in vivo replication of the Kunjin virus replicon RNA.  相似文献   

19.
Bacillus amyloliquefaciens cells were found to contain an exonuclease which catalyzes the sequential hydrolysis of mononucleotides from the 3'-termini of duplex DNA. The enzyme was purified to homogeneity and its molecular weight (as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate) is 29,000. The exonuclease possesses an additional catalytic activity, i.e., 3'-5' exonuclease specific for the RNA strand in an RNA--DNA hybrid duplex (RNase H activity). In terms of physical and catalytic properties the exonuclease of B. amyloliquefaciens is similar to exonucleases III from E. coli and Haemophilus influenzae and can thus be related to the same class of hydrolases, i.e., 3.1.11.2. However, in comparison with exo III from E. coli, the enzyme from B. amyloliquefaciens exhibits a more strict specificity for the structure of the substrate 3'-end.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号