首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Segal G  Song R  Messing J 《Genetics》2003,165(1):387-397
In maize, alpha-zeins, the main protein components of seed stores, are major determinants of nutritional imbalance when maize is used as the sole food source. Mutations like opaque-2 (o2) are used in breeding varieties with improved nutritional quality. However, o2 works in a recessive fashion by affecting the expression of a subset of 22-kD alpha-zeins, as well as additional endosperm gene functions. Thus, we sought a dominant mutation that could suppress the storage protein genes without interrupting O2 synthesis. We found that maize transformed with RNA interference (RNAi) constructs derived from a 22-kD zein gene could produce a dominant opaque phenotype. This phenotype segregates in a normal Mendelian fashion and eliminates 22-kD zeins without affecting the accumulation of other zein proteins. A system for regulated transgene expression generating antisense RNA also reduced the expression of 22-kD zein genes, but failed to give an opaque phenotype. Therefore, it appears that small interfering RNAs not only may play an important regulatory role during plant development, but also are effective genetic tools for dissecting the function of gene families. Since the dominant phenotype is also correlated with increased lysine content, the new mutant illustrates an approach for creating more nutritious crop plants.  相似文献   

5.
Scaffolding proteins exist in eukaryotes to properly assemble signaling proteins into specific multimeric functional complexes. JLP is a novel leucine zipper protein belonging to a family of scaffolding proteins that assemble JNK signaling modules. JLP is a proline-rich protein that contains two leucine zipper domains and a highly conserved C-terminal domain. We have identified kinesin light chain 1 (KLC1) as a binding partner for the second leucine zipper domain of JLP using yeast two-hybrid screening. The interaction domain of KLC1 was mapped to its tetratripeptide repeat, which contains a novel leucine zipper-like domain that is crucial for the interaction with JLP. Mutations of Leu-280, Leu-287, Val-294, and Leu-301 within this domain of KLC1 disrupted its ability to associate with JLP. Immunofluorescence studies showed that JLP and KLC1 co-localized in the cytoplasm and that the localization of JLP was dependent on its second leucine zipper. Ectopic expression of a dominant negative form of KLC1 resulted in the mislocalization of endogenous JLP. Moreover, the association between JLP and KLC1 occurred in vivo and was important in the formation of ternary complex with JNK1. These results identify a novel protein-protein interaction between KLC1 and JLP that involves leucine zipper-like domains and support the role of motor proteins in the spatial regulation of signaling modules.  相似文献   

6.
7.
8.
9.
The 15.5-kD protein and its yeast homolog Snu13p bind U4 snRNA, U3 snoRNA, and the C/D box snoRNAs. In U4 snRNA, they associate with a helix-bulge-helix (K-turn) structure. U3 snoRNA contains two conserved pairs of boxes, C'/D and B/C, which were both expected to bind the 15.5-kD/Snu13 protein. Only binding to the B/C motif was experimentally demonstrated. Here, by chemical probing of in vitro reconstituted RNA/protein complexes, we demonstrate the independent binding of the 15.5-kD/Snu13 protein to each of the two motifs. Due to a highly reduced stem I (1 bp), the K-turn structure is not formed in the naked B/C motif. However, gel-shift experiments revealed a higher affinity of Snu13p for the B/C motif, compared to the C'/D motif. A phylogenetic analysis of U3 snoRNA, coupled with an analysis of Snu13p affinity for variant yeast C'/D and B/C motifs, and a study of the functionality of a truncated yeast U3 snoRNA carrying base substitutions in the C'/D and B/C motifs, revealed that conservation of the identities of residues 2 and 3 in the B/C K-turn is more important for Snu13p binding and U3 snoRNA function, than conservation of the identities of corresponding residues in the C'/D K-turn. This suggests that binding of Snu13p to K-turns with a very short helix I imposes sequence constraints in the bulge. Altogether, the data demonstrate the strong importance of the binding of the 15.5-kD/Snu13 protein to the C'/D and B/C motifs for both U3 snoRNP assembly and activity.  相似文献   

10.
Human cytomegalovirus (HCMV) UL84 encodes a 75-kDa protein required for oriLyt-dependent DNA replication and interacts with IE2 in infected and transfected cells. UL84 localizes to the nucleus of transfected and infected cells and is found in viral replication compartments. In transient assays it was shown that UL84 can interfere with the IE2-mediated transactivation of the UL112/113 promoter of HCMV. To determine whether UL84 protein-protein interactions are necessary for lytic DNA synthesis, we purified UL84 and used this protein to generate a monoclonal antibody. Using this antibody, we now show that UL84 forms a stable interaction with itself in vivo. The point of self-interaction maps to a region of the protein between amino acids 151 and 200, a domain that contains a series of highly charged amino acid residues. Coimmunoprecipitation assays determined that UL84 interacts with a protein domain present within the first 215 amino acids of IE2. We also show that an intact leucine zipper domain of UL84 is required for a stable interaction with IE2 and UL84 leucine zipper mutants fail to complement oriLyt-dependent DNA replication. UL84 leucine zipper mutants no longer interfere with IE2-mediated transactivation of the UL112/113 promoter, confirming that the leucine zipper is essential for a functional interaction with IE2. In addition, we demonstrate that both the leucine zipper and oligomerization domains of UL84 can act as transdominant-negative inhibitors of lytic replication in the transient assay, strongly suggesting that both an IE2-UL84 and a UL84-UL84 interaction are required for DNA synthesis.  相似文献   

11.
12.
The F-box protein family   总被引:8,自引:0,他引:8  
Kipreos ET  Pagano M 《Genome biology》2000,1(5):reviews3002.1-reviews30027
The F-box is a protein motif of approximately 50 amino acids that functions as a site of protein-protein interaction. F-box proteins were first characterized as components of SCF ubiquitin-ligase complexes (named after their main components, Skp I, Cullin, and an F-box protein), in which they bind substrates for ubiquitin-mediated proteolysis. The F-box motif links the F-box protein to other components of the SCF complex by binding the core SCF component Skp I. F-box proteins have more recently been discovered to function in non-SCF protein complexes in a variety of cellular functions. There are 11 F-box proteins in budding yeast, 326 predicted in Caenorhabditis elegans, 22 in Drosophila, and at least 38 in humans. F-box proteins often include additional carboxy-terminal motifs capable of protein-protein interaction; the most common secondary motifs in yeast and human F-box proteins are WD repeats and leucine-rich repeats, both of which have been found to bind phosphorylated substrates to the SCF complex. The majority of F-box proteins have other associated motifs, and the functions of most of these proteins have not yet been defined.  相似文献   

13.
14.
15.
To identify the proteins that interact and mediate angiotensin II receptor AT2-specific signaling, a random peptide library was screened by yeast-based Two-Hybrid protein-protein interaction assay technique. A peptide that shared significant homology with the amino acids located between the residues Gly-Xaa-Gly-Xaa-Xaa-Gly721 and Lys742, the residues predicted to be important for ATP binding of the ErbB3 and ErbB2 receptors, was identified to be interacting with the AT2 receptor. The interaction between the human ErbB3 receptor and the AT2 receptor was further confirmed using the cytoplasmic domain (amino acids 671-782) of the human ErbB3 receptor. Moreover, an AT2 receptor peptide that spans the amino acids 226-363, (spans the third ICL and carboxy terminal domain) could also interact with the AT2 receptor in a yeast Two-Hybrid protein-protein interaction assay. Studies using mutated and chimeric AT2 receptors showed that replacing the third intracellular loop (ICL) of the AT2 receptor with that of the AT1 abolishes the interaction between the ErbB3 and the AT2 in yeast Two-Hybrid protein-protein interaction assay. Thus the interaction between the AT2 receptor and the ErbB3 receptor seems to require the region spanning the third ICL and carboxy terminus of the AT2 receptor. Since the third ICL of the AT2 receptor is essential for exerting its inhibitory effects on cell growth, possible involvement of this region in the interaction with the cytoplasmic domain of the ErbB3 receptor suggests a novel signaling mechanism for the AT2 receptor mediated inhibition of cell growth. Furthermore, since both the AT2 and the ErbB3 receptors are expressed during fetal development, we propose that the existence of direct interaction between these two receptors may play a role in the regulation of growth during the initial stages of development.  相似文献   

16.
Cellular adhesion plays important roles in a variety of biological processes. The ADAM family contains disintegrin-like and metalloproteinase-like domains which potentially have cell adhesion and protease activities. Recent studies suggest that the interaction between 14-3-3zeta and ADAM22cyt can regulate cell adhesion and spreading, therefore it has a potential role in neural development and function. 14-3-3 family has seven highly conserved members that regulate various cellular functions. Using yeast two-hybrid method, we identified that ADAM22cyt bound some other 14-3-3 family members. The interaction was further confirmed by in vitro protein pull-down assay and co-immunoprecipitation. We also found that the overexpression of exogenous ADAM22 in HEK293 cells could significantly enhance cell adhesion and spreading, compared with the truncated ADAM22 lack of 14-3-3 binding motifs. These results strongly demonstrated a functional role for ADAM22/14-3-3 in cell adhesion and spreading.  相似文献   

17.
18.
陈斯  王建  杨晓明 《生命科学》2008,20(5):790-794
蛋白质的核转运是真核生物细胞内发生的重要过程之一,是一大群蛋白质发挥其功能的前提,与细胞正常功能的维持密切相关。蛋白质的核运输通常采用核受体介导的方式进行。此过程非常复杂,需要多种蛋白质的参与,涉及到大量的蛋白质相互作用。本文将综合近年来本领域取得的进展,就蛋白质相互作用参与蛋白质核转运来调节蛋白质的亚细胞定位,进一步在多方面影响细胞以及生物体生理功能的变化进行阐述。  相似文献   

19.
Predicting active site residue annotations in the Pfam database   总被引:1,自引:0,他引:1  

Background

The recent increase in the use of high-throughput two-hybrid analysis has generated large quantities of data on protein interactions. Specifically, the availability of information about experimental protein-protein interactions and other protein features on the Internet enables human protein-protein interactions to be computationally predicted from co-evolution events (interolog). This study also considers other protein interaction features, including sub-cellular localization, tissue-specificity, the cell-cycle stage and domain-domain combination. Computational methods need to be developed to integrate these heterogeneous biological data to facilitate the maximum accuracy of the human protein interaction prediction.

Results

This study proposes a relative conservation score by finding maximal quasi-cliques in protein interaction networks, and considering other interaction features to formulate a scoring method. The scoring method can be adopted to discover which protein pairs are the most likely to interact among multiple protein pairs. The predicted human protein-protein interactions associated with confidence scores are derived from six eukaryotic organisms – rat, mouse, fly, worm, thale cress and baker's yeast.

Conclusion

Evaluation results of the proposed method using functional keyword and Gene Ontology (GO) annotations indicate that some confidence is justified in the accuracy of the predicted interactions. Comparisons among existing methods also reveal that the proposed method predicts human protein-protein interactions more accurately than other interolog-based methods.  相似文献   

20.
The Ras Recruitment System (RRS) is a method for identification and isolation of protein-protein interaction. The method is based on translocation of cytoplasmic mammalian Ras protein to the inner leaflet of the plasma membrane through protein-protein interaction. The system is studied in a temperature-sensitive yeast strain where the yeast Ras guanyl nucleotide exchange factor is inactive at 36 degrees C. Protein-protein interaction results in cell growth at the restrictive temperature. We developed a gene reporter assay for the analysis of protein-protein interaction in mammalian cells. Ras activation in mammalian cells induces the mitogen-activated kinase cascade (MAPK), which can be monitored using Ras-dependent reporter genes. This greatly extends the usefulness of the system and provides a novel assay for protein-protein interaction in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号