首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
 The effect of root exudates from onions differing in P status on spore germination and hyphal growth of arbuscular mycorrhizal fungi was investigated. Onion (Allium cepa) was grown in solution culture at different phosphorus concentrations (0, 0.1, 1.0, 8.0 and 24.0 mg P l–1) and root exudates were collected. When spores of the arbuscular mycorrhizal fungus, Gigaspora margarita were incubated with these root exudates, spore germination was only slightly affected but hyphal growth was greatly affected, particularly with exudates from P-deficient plants. This suggests that the P nutrition of host plants influences the composition of root exudates and thereby the hyphal growth of arbuscular mycorrhizal fungi. Accepted: 25 June 1995  相似文献   

2.
3.
A sensitive bioassay was developed to provide a way to detect chemical signals from host plants which induce changes in hyphal growth patterns of germinated spores of arbuscular mycorrhizal (AM) fungi. The assay can be used to test host root exudates, as well as particulate fractions (root cap border cells and root mucilage), for their ability to affect AM fungal growth. Hyphal branching, induced by various host root components, can be detected as early as 4 h although results of the bioassay were usually determined after 16 to 24 h. The type of branching pattern observed was dose-dependent.  相似文献   

4.
Vierheilig  H.  Alt-Hug  M.  Engel-Streitwolf  R.  Mäder  P.  Wiemken  A. 《Plant and Soil》1998,203(1):137-144
The effects of tomato and bean rhizospheres on hyphal spreading of the arbuscular mycorrhizal (AM) fungus Glomus mosseae were studied using a soil compartment system in combination with hydrophobic polytetrafluorethylene (PTFE) membranes. Both the nylon screen and the PTFE membrane were freely permeable to hyphae but not to roots. Furthermore, the hydrophobic PTFE membrane seemed to be a barrier to the flux of soil solutions containing root exudates. The results show that water soluble exudates of tomato and bean roots greatly stimulate hyphal growth in the soil compartment system used. Moreover, water soluble root exudates of bean exert a clear attractional effect on AM hyphal growth.  相似文献   

5.
Strigolactones (SLs) trigger germination of parasitic plant seeds and hyphal branching of symbiotic arbuscular mycorrhizal (AM) fungi. There is extensive structural variation in SLs and plants usually produce blends of different SLs. The structural variation among natural SLs has been shown to impact their biological activity as hyphal branching and parasitic plant seed germination stimulants. In this study, rice root exudates were fractioned by HPLC. The resulting fractions were analyzed by MRM-LC-MS to investigate the presence of SLs and tested using bioassays to assess their Striga hermonthica seed germination and Gigaspora rosea hyphal branching stimulatory activities. A substantial number of active fractions were revealed often with very different effect on seed germination and hyphal branching. Fractions containing (−)−orobanchol and ent-2''-epi-5-deoxystrigol contributed little to the induction of S. hermonthica seed germination but strongly stimulated AM fungal hyphal branching. Three SLs in one fraction, putative methoxy-5-deoxystrigol isomers, had moderate seed germination and hyphal branching inducing activity. Two fractions contained strong germination stimulants but displayed only modest hyphal branching activity. We provide evidence that these stimulants are likely SLs although no SL-representative masses could be detected using MRM-LC-MS. Our results show that seed germination and hyphal branching are induced to very different extents by the various SLs (or other stimulants) present in rice root exudates. We propose that the development of rice varieties with different SL composition is a promising strategy to reduce parasitic plant infestation while maintaining symbiosis with AM fungi.  相似文献   

6.
Exciting research looking at early events in arbuscular mycorrhizal symbioses has shown how the fungus and plant get together. Kohki Akiyama et al. have demonstrated that strigolactones in root exudates are fungal germ tube branching factors, and Arnaud Besserer et al. found that these compounds rapidly induce fungal mitochondrial activity. Andrea Genre et al. have shown that subsequent development of appressoria on host roots induces construction of a transient prepenetration apparatus inside epidermal cells that is reminiscent of nodulation infection.  相似文献   

7.
Strigolactones (SLs), originally characterized as germination stimulants for root parasitic weeds, are now recognized as hyphal branching factors for symbiotic arbuscular mycorrhizal fungi and as a novel class of plant hormones inhibiting shoot branching. In the present study, SLs in root exudates of 13 Asteraceae plants including crops, a weed, and ornamental plants were characterized. High performance liquid chromatography/tandem mass spectrometry (LC–MS/MS) analyses revealed that all the Asteraceae plants examined exuded known SLs and, except for sunflower (Helianthus annuus), high germination stimulant activities at retention times corresponding to these SLs were confirmed. The two major SLs exuded by these Asteraceae plants were orobanchyl acetate and orobanchol. 5-Deoxystrigol and 7-hydroxyorobanchyl acetate were detected in root exudates from several Asteraceae species examined in this study.  相似文献   

8.
The effect of maize root exudates on the toxicity of lead and manganese to arbuscular mycorrhizal fungus (AMF) Glomus intraradices was studied in vitro by observation of intraradical hyphae regrowth from colonised root segments. Higher heavy metal (HM) concentrations strongly reduced the hyphal growth, however, the inhibitory effect was to a large extent eliminated by the addition of maize root exudates to the media. However, the capacity of exudates to ameliorate HM toxicity was limited and did not operate when a threshold HM concentration was reached. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
We isolated and elucidated the structure of several stimulants for arbuscular mycorrhizal fungi (AMF) in water-stressed bahia grass roots. We could isolate some compounds that promoted the growth of Gigaspora margarita Becker and Hall and Glomus caledonium (Nicol. and Gerd.) Trappe and Gerd. In these compounds, tryptophan dimer (Trp–Trp) was elucidated the structure. Trp–Trp was abundantly produced in water-stressed bahia grass roots and exuded to the soil, although it was scarcely detected in non-stressed root exudates. Interestingly, this peptide strongly attracted the hyphae of Gi. margarita and G. caledonium and promoted their hyphal growth in vitro (1.8 × longer than the control). Tryptophan, however, had no effect on hyphal growth and attraction. Thus, Trp–Trp exuded from water-stressed roots would play an important role as a major signal for AMF. An erratum to this article can be found at  相似文献   

10.
In this paper we present a mathematical model for estimating external mycelium growth of arbuscular mycorrhizal fungi and its effect on root uptake of phosphate (P). The model describes P transport in soil and P uptake by both root and fungi on the single root scale. We investigate differences in soil P depletion and overall P influx into a mycorrhizal root by assuming that different spatial regions of mycelia are active in P uptake. When all external hyphae contribute to P uptake, overall uptake is dominated by the fungus and the most effective growth pattern appears to be the one using a high level of anastomosis. The same is true when only the proportion of external hyphae assumed to be active contributes to uptake. When uptake is restricted to the tips, hyphal contribution to overall P uptake is less dominant; the most effective growth pattern appears to be the one characterised by nonlinear branching where branching stops at a given maximal hyphal tip density. Comparison to measured P depletion in the literature suggests that the scenario where active hyphae are contributing to P uptake is likely to fit the data best. These quantitative predictions promote our understanding of the mycorrhizal symbiosis and its role in plant P nutrition.  相似文献   

11.
Ca(2+)/calmodulin (CaM)-dependent protein kinase (CCaMK) is a key regulator of root nodule and arbuscular mycorrhizal symbioses and is believed to be a decoder for Ca(2+) signals induced by microbial symbionts. However, it is unclear how CCaMK is activated by these microbes. Here, we investigated in vivo activation of CCaMK in symbiotic signaling, focusing mainly on the significance of and epistatic relationships among functional domains of CCaMK. Loss-of-function mutations in EF-hand motifs revealed the critical importance of the third EF hand for CCaMK activation to promote infection of endosymbionts. However, a gain-of-function mutation (T265D) in the kinase domain compensated for these loss-of-function mutations in the EF hands. Mutation of the CaM binding domain abolished CaM binding and suppressed CCaMK(T265D) activity in rhizobial infection, but not in mycorrhization, indicating that the requirement for CaM binding to CCaMK differs between root nodule and arbuscular mycorrhizal symbioses. Homology modeling and mutagenesis studies showed that the hydrogen bond network including Thr265 has an important role in the regulation of CCaMK. Based on these genetic, biochemical, and structural studies, we propose an activation mechanism of CCaMK in which root nodule and arbuscular mycorrhizal symbioses are distinguished by differential regulation of CCaMK by CaM binding.  相似文献   

12.
Yoneyama K  Yoneyama K  Takeuchi Y  Sekimoto H 《Planta》2007,225(4):1031-1038
Plant derived sesquiterpene strigolactones, which have previously been characterized as germination stimulants for root parasitic plants, have recently been identified as the branching factors which induce hyphal branching morphogenesis, a critical step in host recognition by arbuscular mycorrhizal (AM) fungi. We show here that, in red clover plants (Trifolium pratense L.), which is known as a host for both AM fungi and the root holoparasitic plant Orobanche minor Sm., reduced supply of phosphorus (P) but not of other elements examined (N, K, Mg, Ca) in the culture medium significantly promotes the release of a strigolactone, orobanchol, by the roots of this plant. In red clover plants, the level of orobanchol exudation appeared to be regulated by P availability and was in good agreement with germination stimulation activity of the root exudates. This implies that under P deficiency, plant roots attract not only symbiotic fungi but also root parasitic plants through the release of strigolactones. This is the first report demonstrating that nutrient availability influences both symbiotic and parasitic interactions in the rhizosphere.  相似文献   

13.
Two isolates of Paenibacillus validus (DSM ID617 and ID618) stimulated growth of the arbuscular mycorrhizal fungus Glomus intraradices Sy167 up to the formation of fertile spores, which recolonize carrot roots. Thus, the fungus was capable of completing its life cycle in the absence of plant roots, but relied instead on the simultaneous growth of bacteria. The supernatant of a mixed batch culture of the two P. validus isolates contained raffinose and another, unidentified trisaccharide. Among the oligosaccharides tested, raffinose was most effective in stimulating hyphal mass formation on plates but could not promote growth to produce fertile spores. A suppressive subtractive hybridization library followed by reverse Northern analyses indicated that several genes with products involved in signal transduction are differentially expressed in G. intraradices SY 167 when grown in coculture with P. validus (DSM 3037). The present investigation, while likely representing a significant step forward in understanding the arbuscular mycorrhizal fungus symbioses, also confirms that its optimal establishing and functioning might rely on many, as yet unidentified factors.  相似文献   

14.
Arbuscular mycorrhizal (AM) symbiosis is an association between obligate biotrophic fungi and more than 80% of land plants. During the pre-symbiotic phase, the host plant releases critical metabolites necessary to trigger fungal growth and root colonization. We describe the isolation of a semipurified fraction from exudates of carrot hairy roots, highly active on germinating spores of Gigaspora gigantea, G. rosea, and G. margarita. This fraction, isolated on the basis of its activity on hyphal branching, contains a root factor (one or several molecules) that stimulates, directly or indirectly, G. gigantea nuclear division. We demonstrate the presence of this active factor in root exudates of all mycotrophic plant species tested (eight species) but not in those of nonhost plant species (four species). We negatively tested the hypothesis that it was a flavonoid or a compound synthesized via the flavonoid pathway. We propose that this root factor, yet to be chemically characterized, is a key plant signal for the development of AM fungi.  相似文献   

15.
Nagahashi G  Douds DD 《Mycologia》2004,96(5):948-954
Light and chemical components of the host root exudate can induce hyphal growth and branching of arbuscular mycorrhizal fungi. Compounds that induce the same morphogenetic or biochemical response as light are referred to as photo-mimetic compounds (PCs). This is the first report of a synergistic response by Gigaspora gigantea, an arbuscular mycorrhizal fungus, to blue light and naturally occurring photomimetic compounds isolated from the exudate of host roots. The blue light treatment and exposure to photomimetic compounds were effective whether applied sequentially or simultaneously. The number of hyphal branches induced by blue light and photomimetic compounds together was greater than the sum of the branches generated by each separate treatment, and the synergism was greatest at the higher levels or orders of branches. The fact that blue light and PCs, individually, triggered the same hyphal branching response and when given together, they produced a synergistic response, indicated the activation of a second messenger in the induced-branching process. Delaying the application of PCs, after the initial light exposure, showed the second messenger was stable up to 3 h.  相似文献   

16.
Most plants form root symbioses with arbuscular mycorrhizal (AM) fungi, which provide them with phosphate and other nutrients. High soil phosphate levels are known to affect AM symbiosis negatively, but the underlying mechanisms are not understood. This report describes experimental conditions which triggered a novel mycorrhizal phenotype under high phosphate supply: the interaction between pea and two different AM fungi was almost completely abolished at a very early stage, prior to the formation of hyphopodia. As demonstrated by split-root experiments, down-regulation of AM symbiosis occurred at least partly in response to plant-derived signals. Early signalling events were examined with a focus on strigolactones, compounds which stimulate pre-symbiotic fungal growth and metabolism. Strigolactones were also recently identified as novel plant hormones contributing to the control of shoot branching. Root exudates of plants grown under high phosphate lost their ability to stimulate AM fungi and lacked strigolactones. In addition, a systemic down-regulation of strigolactone release by high phosphate supply was demonstrated using split-root systems. Nevertheless, supplementation with exogenous strigolactones failed to restore root colonization under high phosphate. This observation does not exclude a contribution of strigolactones to the regulation of AM symbiosis by phosphate, but indicates that they are not the only factor involved. Together, the results suggest the existence of additional early signals that may control the differentiation of hyphopodia.  相似文献   

17.
During spore germination, arbuscular mycorrhizal (AM) fungi show limited hyphal development in the absence of a host plant (asymbiotic). In the presence of root exudates, they switch to a new developmental stage (presymbiotic) characterized by extensive hyphal branching. Presymbiotic branching of the AM fungus Gigaspora rosea was induced in liquid medium by a semipurified exudate fraction from carrot (Daucus carota) root organ cultures. Changes in RNA accumulation patterns were monitored by differential display analysis. Differentially appearing cDNA fragments were cloned and further analyzed. Five cDNA fragments could be identified that show induced RNA accumulation 1 h after the addition of root exudate. Sequence similarities of two fragments to mammalian Nco4 and mitochondrial rRNA genes suggested that root exudates could influence fungal respiratory activity. To support this hypothesis, additional putative mitochondrial related-genes were shown to be induced by root exudates. These genes were identified after subtractive hybridization and putatively encode a pyruvate carboxylase and a mitochondrial ADP/ATP translocase. The gene GrosPyc1 for the pyruvate carboxylase was studied in more detail by cloning a cDNA and by quantifying its RNA accumulation. The hypothesis that respiratory activity of AM fungi is stimulated by root exudates was confirmed by physiological and cytological analyses in G. rosea and Glomus intraradices. Oxygen consumption and reducing activity of both fungi was induced after 3 and 2 h of exposition with the root factor, respectively, and the first respiration activation was detected in G. intraradices after approximately 90 min. In addition, changes in mitochondrial morphology, orientation, and overall biomass were detected in G. rosea after 4 h. In summary, the root-exuded factor rapidly induces the expression of certain fungal genes and, in turn, fungal respiratory activity before intense branching. This defines the developmental switch from asymbiosis to presymbiosis, first by gene activation (0.5-1 h), subsequently on the physiological level (1.5-3 h), and finally as a morphological response (after 5 h).  相似文献   

18.
The biosynthesis of the recently identified novel class of plant hormones, strigolactones, is up-regulated upon phosphate deficiency in many plant species. It is generally accepted that the evolutionary origin of strigolactone up-regulation is their function as a rhizosphere signal that stimulates hyphal branching of arbuscular mycorrhizal fungi. In this work, we demonstrate that this induction is conserved in Arabidopsis (Arabidopsis thaliana), although Arabidopsis is not a host for arbuscular mycorrhizal fungi. We demonstrate that the increase in strigolactone production contributes to the changes in shoot architecture observed in response to phosphate deficiency. Using high-performance liquid chromatography, column chromatography, and multiple reaction monitoring-liquid chromatography-tandem mass spectrometry analysis, we identified two strigolactones (orobanchol and orobanchyl acetate) in Arabidopsis and have evidence of the presence of a third (5-deoxystrigol). We show that at least one of them (orobanchol) is strongly reduced in the putative strigolactone biosynthetic mutants more axillary growth1 (max1) and max4 but not in the signal transduction mutant max2. Orobanchol was also detected in xylem sap and up-regulated under phosphate deficiency, which is consistent with the idea that root-derived strigolactones are transported to the shoot, where they regulate branching. Moreover, two additional putative strigolactone-like compounds were detected in xylem sap, one of which was not detected in root exudates. Together, these results show that xylem-transported strigolactones contribute to the regulation of shoot architectural response to phosphate-limiting conditions.  相似文献   

19.
Fungal metabolites active for insects were obtained from fermentation products using okara media. The mechanisms of action of these compounds against insects were clarified using voltage clamp electrophysiology. The branching factor inducing hyphal branching in arbuscular mycorrhizal (AM) fungi was isolated from the root exudates of Lotus japonicus and identified as 5-deoxystrigol. Strigolactones were originally identified as seed germination stimulants of parasitic weeds; therefore, synthetic strigolactones were developed to exhibit the inducing activity of hyphal branching in AM fungi and diminish the stimulating activity of seed germination of parasitic weeds. Signaling molecules, acylhomoserine lactones (AHLs), in quorum sensing were identified in the fungal strain Mortierella alpina A-178, and the true producer of AHLs was clarified as symbiotic bacteria in the fungus. Since acyl-(S)-adenosylmethionine analogs may be good candidates for competitive inhibitors of AHL synthases, intermediate mimics in the biosynthesis of AHLs have been synthesized.  相似文献   

20.
Legumes form two different types of intracellular root symbioses, with fungi and bacteria, resulting in arbuscular mycorrhiza and nitrogen-fixing nodules, respectively. Rhizobial signalling molecules, called Nod factors, play a key role in establishing the rhizobium-legume association and genes have been identified in Medicago truncatula that control a Nod factor signalling pathway leading to nodulation. Three of these genes, the so-called DMI1, DMI2 and DMI3 genes, are also required for formation of mycorrhiza, indicating that the symbiotic pathways activated by both the bacterial and the fungal symbionts share common steps. To analyse possible cross-talk between these pathways we have studied the effect of treatment with Nod factors on mycorrhization in M. truncatula. We show that Nod factors increase mycorrhizal colonization and stimulate lateral root formation. The stimulation of lateral root formation by Nod factors requires both the same structural features of Nod factors and the same plant genes (NFP, DMI1, DMI2, DMI3 and NSP1) that are required for other Nod factor-induced symbiotic responses such as early nodulin gene induction and cortical cell division. A diffusible factor from arbuscular mycorrhizal fungi was also found to stimulate lateral root formation, while three root pathogens did not have the same effect. Lateral root formation induced by fungal signal(s) was found to require the DMI1 and DMI2 genes, but not DMI3. The idea that this diffusible fungal factor might correspond to a previously hypothesized mycorrhizal signal, the 'Myc factor', is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号