首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Top-down attention to spatial and temporal cues has been thoroughly studied in the visual domain. However, because the neural systems that are important for auditory top-down temporal attention (i.e., attention based on time interval cues) remain undefined, the differences in brain activity between directed attention to auditory spatial location (compared with time intervals) are unclear. Using fMRI (magnetic resonance imaging), we measured the activations caused by cue-target paradigms by inducing the visual cueing of attention to an auditory target within a spatial or temporal domain. Imaging results showed that the dorsal frontoparietal network (dFPN), which consists of the bilateral intraparietal sulcus and the frontal eye field, responded to spatial orienting of attention, but activity was absent in the bilateral frontal eye field (FEF) during temporal orienting of attention. Furthermore, the fMRI results indicated that activity in the right ventrolateral prefrontal cortex (VLPFC) was significantly stronger during spatial orienting of attention than during temporal orienting of attention, while the DLPFC showed no significant differences between the two processes. We conclude that the bilateral dFPN and the right VLPFC contribute to auditory spatial orienting of attention. Furthermore, specific activations related to temporal cognition were confirmed within the superior occipital gyrus, tegmentum, motor area, thalamus and putamen.  相似文献   

2.
Perception of movement in acoustic space depends on comparison of the sound waveforms reaching the two ears (binaural cues) as well as spectrotemporal analysis of the waveform at each ear (monaural cues). The relative importance of these two cues is different for perception of vertical or horizontal motion, with spectrotemporal analysis likely to be more important for perceiving vertical shifts. In humans, functional imaging studies have shown that sound movement in the horizontal plane activates brain areas distinct from the primary auditory cortex, in parietal and frontal lobes and in the planum temporale. However, no previous work has examined activations for vertical sound movement. It is therefore difficult to generalize previous imaging studies, based on horizontal movement only, to multidimensional auditory space perception. Using externalized virtual-space sounds in a functional magnetic resonance imaging (fMRI) paradigm to investigate this, we compared vertical and horizontal shifts in sound location. A common bilateral network of brain areas was activated in response to both horizontal and vertical sound movement. This included the planum temporale, superior parietal cortex, and premotor cortex. Sounds perceived laterally in virtual space were associated with contralateral activation of the auditory cortex. These results demonstrate that sound movement in vertical and horizontal dimensions engages a common processing network in the human cerebral cortex and show that multidimensional spatial properties of sounds are processed at this level.  相似文献   

3.
Research on the neural basis of speech-reading implicates a network of auditory language regions involving inferior frontal cortex, premotor cortex and sites along superior temporal cortex. In audiovisual speech studies, neural activity is consistently reported in posterior superior temporal Sulcus (pSTS) and this site has been implicated in multimodal integration. Traditionally, multisensory interactions are considered high-level processing that engages heteromodal association cortices (such as STS). Recent work, however, challenges this notion and suggests that multisensory interactions may occur in low-level unimodal sensory cortices. While previous audiovisual speech studies demonstrate that high-level multisensory interactions occur in pSTS, what remains unclear is how early in the processing hierarchy these multisensory interactions may occur. The goal of the present fMRI experiment is to investigate how visual speech can influence activity in auditory cortex above and beyond its response to auditory speech. In an audiovisual speech experiment, subjects were presented with auditory speech with and without congruent visual input. Holding the auditory stimulus constant across the experiment, we investigated how the addition of visual speech influences activity in auditory cortex. We demonstrate that congruent visual speech increases the activity in auditory cortex.  相似文献   

4.
Recent brain imaging studies using functional magnetic resonance imaging (fMRI) have implicated a frontal-parietal network in the top-down control of attention. However, little is known about the timing and sequence of activations within this network. To investigate these timing questions, we used event-related electrical brain potentials (ERPs) and a specially designed visual-spatial attentional-cueing paradigm, which were applied as part of a multi-methodological approach that included a closely corresponding event-related fMRI study using an identical paradigm. In the first 400 ms post cue, attention-directing and control cues elicited similar general cue-processing activity, corresponding to the more lateral subregions of the frontal-parietal network identified with the fMRI. Following this, the attention-directing cues elicited a sustained negative-polarity brain wave that was absent for control cues. This activity could be linked to the more medial frontal–parietal subregions similarly identified in the fMRI as specifically involved in attentional orienting. Critically, both the scalp ERPs and the fMRI-seeded source modeling for this orienting-related activity indicated an earlier onset of frontal versus parietal contribution (∼400 versus ∼700 ms). This was then followed (∼800–900 ms) by pretarget biasing activity in the region-specific visual-sensory occipital cortex. These results indicate an activation sequence of key components of the attentional-control brain network, providing insight into their functional roles. More specifically, these results suggest that voluntary attentional orienting is initiated by medial portions of frontal cortex, which then recruit medial parietal areas. Together, these areas then implement biasing of region-specific visual-sensory cortex to facilitate the processing of upcoming visual stimuli.  相似文献   

5.
When different objects switch identities in the multiple identity tracking (MIT) task, viewers need to rebind objects’ identity and location, which requires attention. This rebinding helps people identify the regions targets are in (where they need to focus their attention) and inhibit unimportant regions (where distractors are). This study investigated the processing of attentional tracking after identity switching in an adapted MIT task. This experiment used three identity-switching conditions: a target-switching condition (where the target objects switched identities), a distractor-switching condition (where the distractor objects switched identities), and a no-switching condition. Compared to the distractor-switching condition, the target-switching condition elicited greater activation in the frontal eye fields (FEF), intraparietal sulcus (IPS), and visual cortex. Compared to the no-switching condition, the target-switching condition elicited greater activation in the FEF, inferior frontal gyrus (pars orbitalis) (IFG-Orb), IPS, visual cortex, middle temporal lobule, and anterior cingulate cortex. Finally, the distractor-switching condition showed greater activation in the IFG-Orb compared to the no-switching condition. These results suggest that, in the target-switching condition, the FEF and IPS (the dorsal attention network) might be involved in goal-driven attention to targets during attentional tracking. In addition, in the distractor-switching condition, the activation of the IFG-Orb may indicate salient change that pulls attention away automatically.  相似文献   

6.
Cells in macaque ventral premotor cortex (area F5c) respond to observation or production of specific hand-object interactions. Studies in humans associate the left inferior frontal gyrus, including putative F5 homolog pars opercularis, with observing hand actions. Are these responses related to the realized goal of a prehensile action or to the observation of dynamic hand movements? Rapid, event-related fMRI was used to address this question. Subjects watched static pictures of the same objects being grasped or touched while performing a 1-back orienting task. In all 17 subjects, bilateral inferior frontal cortex was differentially activated in response to realized goals of observed prehensile actions. Bilaterally, precentral gyrus was most frequently activated (82%) followed by pars triangularis (73%) and pars opercularis (65%).  相似文献   

7.
To localize the neural generators of the musically elicited mismatch negativity with high temporal resolution we conducted a beamformer analysis (Synthetic Aperture Magnetometry, SAM) on magnetoencephalography (MEG) data from a previous musical mismatch study. The stimuli consisted of a six-tone melodic sequence comprising broken chords in C- and G-major. The musical sequence was presented within an oddball paradigm in which the last tone was lowered occasionally (20%) by a minor third. The beamforming analysis revealed significant right hemispheric neural activation in the superior temporal (STC), inferior frontal (IFC), superior frontal (SFC) and orbitofrontal (OFC) cortices within a time window of 100–200 ms after the occurrence of a deviant tone. IFC and SFC activation was also observed in the left hemisphere. The pronounced early right inferior frontal activation of the auditory mismatch negativity has not been shown in MEG studies so far. The activation in STC and IFC is consistent with earlier electroencephalography (EEG), optical imaging and functional magnetic resonance imaging (fMRI) studies that reveal the auditory and inferior frontal cortices as main generators of the auditory MMN. The observed right hemispheric IFC is also in line with some previous music studies showing similar activation patterns after harmonic syntactic violations. The results demonstrate that a deviant tone within a musical sequence recruits immediately a distributed neural network in frontal and prefrontal areas suggesting that top-down processes are involved when expectation violation occurs within well-known stimuli.  相似文献   

8.
Given that both auditory and visual systems have anatomically separate object identification ("what") and spatial ("where") pathways, it is of interest whether attention-driven cross-sensory modulations occur separately within these feature domains. Here, we investigated how auditory "what" vs. "where" attention tasks modulate activity in visual pathways using cortically constrained source estimates of magnetoencephalograpic (MEG) oscillatory activity. In the absence of visual stimuli or tasks, subjects were presented with a sequence of auditory-stimulus pairs and instructed to selectively attend to phonetic ("what") vs. spatial ("where") aspects of these sounds, or to listen passively. To investigate sustained modulatory effects, oscillatory power was estimated from time periods between sound-pair presentations. In comparison to attention to sound locations, phonetic auditory attention was associated with stronger alpha (7-13 Hz) power in several visual areas (primary visual cortex; lingual, fusiform, and inferior temporal gyri, lateral occipital cortex), as well as in higher-order visual/multisensory areas including lateral/medial parietal and retrosplenial cortices. Region-of-interest (ROI) analyses of dynamic changes, from which the sustained effects had been removed, suggested further power increases during Attend Phoneme vs. Location centered at the alpha range 400-600 ms after the onset of second sound of each stimulus pair. These results suggest distinct modulations of visual system oscillatory activity during auditory attention to sound object identity ("what") vs. sound location ("where"). The alpha modulations could be interpreted to reflect enhanced crossmodal inhibition of feature-specific visual pathways and adjacent audiovisual association areas during "what" vs. "where" auditory attention.  相似文献   

9.
The P300 event-related potential (ERP) is considered to be closely related to cognitive processes. In normal aging, P300 scalp latencies increase, parietal P300 scalp amplitudes decrease and the scalp potential field shifts to a relatively more frontal distribution. Based on ERPs recorded in 172 normal healthy subjects aged between 20 and 88 years in an auditory oddball paradigm, the effects of age on the electrical activity in the brain corresponding to N1 and P300 components were estimated by means of low resolution electromagnetic tomography (LORETA). This distributed approach directly computes a unique 3-dimensional electrical source distribution by assuming that neighbouring neurons are simultaneously and synchronously active. N1 LORETA generators, located predominantly in both auditory cortices and also symmetrically in prefrontal areas, increased with advancing age for standards but remained stable for targets. P300 LORETA generators, located symmetrically in the prefrontal cortex, in the parieto-occipital junction and in the inferior parietal cortex (supramarginal gyrus) and medially in the superior parietal cortex, were differentially affected by age. While age did not affect parieto-occipital sources, superior parietal and right prefrontal sources decreased pronouncedly. Thus, in normal aging, P300 current density decreased in regions were a fronto-parietal network for sustained attention was localized.  相似文献   

10.
Strelnikov K  Barone P 《PloS one》2012,7(3):e33462
This article uses the ideas of neuroenergetic and neural field theories to detect stimulation-driven energy flows in the brain during face and auditory word processing. In this analysis, energy flows are thought to create the stable gradients of the fMRI weighted summary images. The sources, from which activity spreads in the brain during face processing, were detected in the occipital cortex. The following direction of energy flows in the frontal cortex was described: the right inferior frontal = >the left inferior frontal = >the triangular part of the left inferior frontal cortex = >the left operculum. In the left operculum, a localized circuit was described. For auditory word processing, the sources of activity flows were detected bilaterally in the middle superior temporal regions, they were also detected in the left posterior superior temporal cortex. Thus, neuroenergetic assumptions may give a novel perspective for the analysis of neuroimaging data.  相似文献   

11.
When multiple persons speak simultaneously, it may be difficult for the listener to direct attention to correct sound objects among conflicting ones. This could occur, for example, in an emergency situation in which one hears conflicting instructions and the loudest, instead of the wisest, voice prevails. Here, we used cortically-constrained oscillatory MEG/EEG estimates to examine how different brain regions, including caudal anterior cingulate (cACC) and dorsolateral prefrontal cortices (DLPFC), work together to resolve these kinds of auditory conflicts. During an auditory flanker interference task, subjects were presented with sound patterns consisting of three different voices, from three different directions (45° left, straight ahead, 45° right), sounding out either the letters “A” or “O”. They were asked to discriminate which sound was presented centrally and ignore the flanking distracters that were phonetically either congruent (50%) or incongruent (50%) with the target. Our cortical MEG/EEG oscillatory estimates demonstrated a direct relationship between performance and brain activity, showing that efficient conflict resolution, as measured with reduced conflict-induced RT lags, is predicted by theta/alpha phase coupling between cACC and right lateral frontal cortex regions intersecting the right frontal eye fields (FEF) and DLPFC, as well as by increased pre-stimulus gamma (60–110 Hz) power in the left inferior fontal cortex. Notably, cACC connectivity patterns that correlated with behavioral conflict-resolution measures were found during both the pre-stimulus and the pre-response periods. Our data provide evidence that, instead of being only transiently activated upon conflict detection, cACC is involved in sustained engagement of attentional resources required for effective sound object selection performance.  相似文献   

12.
Schaefer M  Heinze HJ  Galazky I 《PloS one》2010,5(12):e15010

Background

The alien hand syndrome is a striking phenomenon characterized by purposeful and autonomous movements that are not voluntarily initiated. This study aimed to examine neural correlates of this rare neurological disorder in a patient with corticobasal degeneration and alien hand syndrome of the left hand.

Methodology/Principal Findings

We employed functional magnetic resonance imaging to investigate brain responses associated with unwanted movements in a case study. Results revealed that alien hand movements involved a network of brain activations including the primary motor cortex, premotor cortex, precuneus, and right inferior frontal gyrus. Conscious and voluntary movements of the alien hand elicited a similar network of brain responses but lacked an activation of the inferior frontal gyrus. The results demonstrate that alien and unwanted movements may engage similar brain networks than voluntary movements, but also imply different functional contributions of prefrontal areas. Since the inferior frontal gyrus was uniquely activated during alien movements, the results provide further support for a specific role of this brain region in inhibitory control over involuntary motor responses.

Conclusions/Significance

We discuss the outcome of this study as providing evidence for a distributed neural network associated with unwanted movements in alien hand syndrome, including brain regions known to be related to movement execution and planning as well as areas that have been linked to inhibition control (inferior frontal gyrus) and experience of agency (precuneus).  相似文献   

13.
Others’ gaze and emotional facial expression are important cues for the process of attention orienting. Here, we investigated with magnetoencephalography (MEG) whether the combination of averted gaze and fearful expression may elicit a selectively early effect of attention orienting on the brain responses to targets. We used the direction of gaze of centrally presented fearful and happy faces as the spatial attention orienting cue in a Posner-like paradigm where the subjects had to detect a target checkerboard presented at gazed-at (valid trials) or non gazed-at (invalid trials) locations of the screen. We showed that the combination of averted gaze and fearful expression resulted in a very early attention orienting effect in the form of additional parietal activity between 55 and 70 ms for the valid versus invalid targets following fearful gaze cues. No such effect was obtained for the targets following happy gaze cues. This early cue-target validity effect selective of fearful gaze cues involved the left superior parietal region and the left lateral middle occipital region. These findings provide the first evidence for an effect of attention orienting induced by fearful gaze in the time range of C1. In doing so, they demonstrate the selective impact of combined gaze and fearful expression cues in the process of attention orienting.  相似文献   

14.
Ozaki TJ 《PloS one》2011,6(5):e20079
Previous effective connectivity analyses of functional magnetic resonance imaging (fMRI) have revealed dynamic causal streams along the dorsal attention network (DAN) during voluntary attentional control in the human brain. During resting state, however, fMRI has shown that the DAN is also intrinsically configured by functional connectivity, even in the absence of explicit task demands, and that may conflict with effective connectivity studies. To resolve this contradiction, we performed an effective connectivity analysis based on partial Granger causality (pGC) on event-related fMRI data during Posner's cueing paradigm while optimizing experimental and imaging parameters for pGC analysis. Analysis by pGC can factor out exogenous or latent influences due to unmeasured variables. Typical regions along the DAN with greater activation during orienting than withholding of attention were selected as regions of interest (ROIs). pGC analysis on fMRI data from the ROIs showed that frontal-to-parietal top-down causal streams along the DAN appeared during (voluntary) orienting, but not during other, less-attentive and/or resting-like conditions. These results demonstrate that these causal streams along the DAN exclusively mediate voluntary covert orienting. These findings suggest that neural representations of attention in frontal regions are at the top of the hierarchy of the DAN for embodying voluntary attentional control.  相似文献   

15.

Introduction

Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) provides high spatial and temporal resolution. In this study we combined EEG and fMRI to investigate the structures involved in the processing of different sound pressure levels (SPLs).

Methods

EEG data were recorded simultaneously with fMRI from 16 healthy volunteers using MR compatible devices at 3 T. Tones with different SPLs were delivered to the volunteers and the N1/P2 amplitudes were included as covariates in the fMRI data analysis in order to compare the structures activated with high and low SPLs. Analysis of variance (ANOVA) and ROI analysis were also performed. Additionally, source localisation analysis was performed on the EEG data.

Results

The integration of averaged ERP parameters into the fMRI analysis showed an extended map of areas exhibiting covariation with the BOLD signal related to the auditory stimuli. The ANOVA and ROI analyses also revealed additional brain areas other than the primary auditory cortex (PAC) which were active with the auditory stimulation at different SPLs. The source localisation analyses showed additional sources apart from the PAC which were active with the high SPLs.

Discussion

The PAC and the insula play an important role in the processing of different SPLs. In the fMRI analysis, additional activation was found in the anterior cingulate cortex, opercular and orbito-frontal cortices with high SPLs. A strong response of the visual cortex was also found with the high SPLs, suggesting the presence of cross-modal effects.  相似文献   

16.
Neural processing of auditory looming in the human brain   总被引:2,自引:0,他引:2  
Acoustic intensity change, along with interaural, spectral, and reverberation information, is an important cue for the perception of auditory motion. Approaching sound sources produce increases in intensity, and receding sound sources produce corresponding decreases. Human listeners typically overestimate increasing compared to equivalent decreasing sound intensity and underestimate the time to contact of approaching sound sources. These characteristics could provide a selective advantage by increasing the margin of safety for response to looming objects. Here, we used dynamic intensity and functional magnetic resonance imaging to examine the neural underpinnings of the perceptual priority for rising intensity. We found that, consistent with activation by horizontal and vertical auditory apparent motion paradigms, rising and falling intensity activated the right temporal plane more than constant intensity. Rising compared to falling intensity activated a distributed neural network subserving space recognition, auditory motion perception, and attention and comprising the superior temporal sulci and the middle temporal gyri, the right temporoparietal junction, the right motor and premotor cortices, the left cerebellar cortex, and a circumscribed region in the midbrain. This anisotropic processing of acoustic intensity change may reflect the salience of rising intensity produced by looming sources in natural environments.  相似文献   

17.
Ward LM  MacLean SE  Kirschner A 《PloS one》2010,5(12):e14371
Neural synchronization is a mechanism whereby functionally specific brain regions establish transient networks for perception, cognition, and action. Direct addition of weak noise (fast random fluctuations) to various neural systems enhances synchronization through the mechanism of stochastic resonance (SR). Moreover, SR also occurs in human perception, cognition, and action. Perception, cognition, and action are closely correlated with, and may depend upon, synchronized oscillations within specialized brain networks. We tested the hypothesis that SR-mediated neural synchronization occurs within and between functionally relevant brain areas and thus could be responsible for behavioral SR. We measured the 40-Hz transient response of the human auditory cortex to brief pure tones. This response arises when the ongoing, random-phase, 40-Hz activity of a group of tuned neurons in the auditory cortex becomes synchronized in response to the onset of an above-threshold sound at its "preferred" frequency. We presented a stream of near-threshold standard sounds in various levels of added broadband noise and measured subjects' 40-Hz response to the standards in a deviant-detection paradigm using high-density EEG. We used independent component analysis and dipole fitting to locate neural sources of the 40-Hz response in bilateral auditory cortex, left posterior cingulate cortex and left superior frontal gyrus. We found that added noise enhanced the 40-Hz response in all these areas. Moreover, added noise also increased the synchronization between these regions in alpha and gamma frequency bands both during and after the 40-Hz response. Our results demonstrate neural SR in several functionally specific brain regions, including areas not traditionally thought to contribute to the auditory 40-Hz transient response. In addition, we demonstrated SR in the synchronization between these brain regions. Thus, both intra- and inter-regional synchronization of neural activity are facilitated by the addition of moderate amounts of random noise. Because the noise levels in the brain fluctuate with arousal system activity, particularly across sleep-wake cycles, optimal neural noise levels, and thus SR, could be involved in optimizing the formation of task-relevant brain networks at several scales under normal conditions.  相似文献   

18.
The processing of continuous and complex auditory signals such as speech relies on the ability to use statistical cues (e.g. transitional probabilities). In this study, participants heard short auditory sequences composed either of Italian syllables or bird songs and completed a regularity-rating task. Behaviorally, participants were better at differentiating between levels of regularity in the syllable sequences than in the bird song sequences. Inter-individual differences in sensitivity to regularity for speech stimuli were correlated with variations in surface-based cortical thickness (CT). These correlations were found in several cortical areas including regions previously associated with statistical structure processing (e.g. bilateral superior temporal sulcus, left precentral sulcus and inferior frontal gyrus), as well other regions (e.g. left insula, bilateral superior frontal gyrus/sulcus and supramarginal gyrus). In all regions, this correlation was positive suggesting that thicker cortex is related to higher sensitivity to variations in the statistical structure of auditory sequences. Overall, these results suggest that inter-individual differences in CT within a distributed network of cortical regions involved in statistical structure processing, attention and memory is predictive of the ability to detect structural structure in auditory speech sequences.  相似文献   

19.
Children with autism spectrum disorders in very rare cases display surprisingly advanced "hyperlexic" reading skills. Using functional magnetic resonance imaging (fMRI), we studied the neural basis of this precocious reading ability in a 9-year-old hyperlexic boy who reads 6 years in advance of his age. During covert reading, he demonstrated greater activity in the left inferior frontal and superior temporal cortices than both chronological age- and reading age-matched controls. Activity in the right inferior temporal sulcus was greater when compared to reading age-matched controls. These findings suggest that precocious reading is brought about by simultaneously drawing on both left hemisphere phonological and right hemisphere visual systems, reconciling the two prevailing, but seemingly contradictory, single hemisphere theories of hyperlexia. Hyperlexic reading is therefore associated with hyperactivation of the left superior temporal cortex, much in the same way as developmental dyslexia is associated with hypoactivation of this area.  相似文献   

20.

Background

Barn owls integrate spatial information across frequency channels to localize sounds in space.

Methodology/Principal Findings

We presented barn owls with synchronous sounds that contained different bands of frequencies (3–5 kHz and 7–9 kHz) from different locations in space. When the owls were confronted with the conflicting localization cues from two synchronous sounds of equal level, their orienting responses were dominated by one of the sounds: they oriented toward the location of the low frequency sound when the sources were separated in azimuth; in contrast, they oriented toward the location of the high frequency sound when the sources were separated in elevation. We identified neural correlates of this behavioral effect in the optic tectum (OT, superior colliculus in mammals), which contains a map of auditory space and is involved in generating orienting movements to sounds. We found that low frequency cues dominate the representation of sound azimuth in the OT space map, whereas high frequency cues dominate the representation of sound elevation.

Conclusions/Significance

We argue that the dominance hierarchy of localization cues reflects several factors: 1) the relative amplitude of the sound providing the cue, 2) the resolution with which the auditory system measures the value of a cue, and 3) the spatial ambiguity in interpreting the cue. These same factors may contribute to the relative weighting of sound localization cues in other species, including humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号