首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Monoglyceride lipase (MGL) influences energy metabolism by at least two mechanisms. First, it hydrolyzes monoacylglycerols (MG) into fatty acids and glycerol. These products can be used for energy production or synthetic reactions. Second, MGL degrades 2-arachidonoyl glycerol (2-AG), the most abundant endogenous ligand of cannabinoid receptors (CBR). Activation of CBR affects energy homeostasis by central orexigenic stimuli, by promoting lipid storage, and by reducing energy expenditure. To characterize the metabolic role of MGL in vivo, we generated an MGL-deficient mouse model (MGL-ko). These mice exhibit a reduction in MG hydrolase activity and a concomitant increase in MG levels in adipose tissue, brain, and liver. In adipose tissue, the lack of MGL activity is partially compensated by hormone-sensitive lipase. Nonetheless, fasted MGL-ko mice exhibit reduced plasma glycerol and triacylglycerol, as well as liver triacylglycerol levels indicative for impaired lipolysis. Despite a strong elevation of 2-AG levels, MGL-ko mice exhibit normal food intake, fat mass, and energy expenditure. Yet mice lacking MGL show a pharmacological tolerance to the CBR agonist CP 55,940 suggesting that the elevated 2-AG levels are functionally antagonized by desensitization of CBR. Interestingly, however, MGL-ko mice receiving a high fat diet exhibit significantly improved glucose tolerance and insulin sensitivity in comparison with wild-type controls despite equal weight gain. In conclusion, our observations implicate that MGL deficiency impairs lipolysis and attenuates diet-induced insulin resistance. Defective degradation of 2-AG does not provoke cannabinoid-like effects on feeding behavior, lipid storage, and energy expenditure, which may be explained by desensitization of CBR.  相似文献   

3.
Monoacylglycerol lipase (MGL) is a ubiquitously expressed enzyme that catalyzes the hydrolysis of monoacylglycerols (MGs) to yield FFAs and glycerol. MGL contributes to energy homeostasis through the mobilization of fat stores and also via the degradation of the endocannabinoid 2-arachidonoyl glycerol. To further examine the role of MG metabolism in energy homeostasis, MGL−/− mice were fed either a 10% (kilocalories) low-fat diet (LFD) or a 45% (kilocalories) high-fat diet (HFD) for 12 weeks. Profound increases of MG species in the MGL−/− mice compared with WT control mice were found. Weight gain over the 12 weeks was blunted in both diet groups. MGL−/− mice were leaner than WT mice at both baseline and after 12 weeks of LFD feeding. Circulating lipids were decreased in HFD-fed MGL−/− mice, as were the levels of several plasma peptides involved in glucose homeostasis and energy balance. Interestingly, MGL−/− mice had markedly reduced intestinal TG secretion following an oral fat challenge, suggesting delayed lipid absorption. Overall, the results indicate that global MGL deletion leads to systemic changes that produce a leaner phenotype and an improved serum metabolic profile.  相似文献   

4.
5.
Monoglyceride lipase (MGL) is required for efficient hydrolysis of the endocannabinoid 2-arachidonoylglyerol (2-AG) in the brain generating arachidonic acid (AA) and glycerol. This metabolic function makes MGL an interesting target for the treatment of neuroinflammation, since 2-AG exhibits anti-inflammatory properties and AA is a precursor for pro-inflammatory prostaglandins. Astrocytes are an important source of AA and 2-AG, and highly express MGL. In the present study, we dissected the distinct contribution of MGL in astrocytes on brain 2-AG and AA metabolism by generating a mouse model with genetic deletion of MGL specifically in astrocytes (MKOGFAP). MKOGFAP mice exhibit moderately increased 2-AG and reduced AA levels in brain. Minor accumulation of 2-AG in the brain of MKOGFAP mice does not cause cannabinoid receptor desensitization as previously observed in mice globally lacking MGL. Importantly, MKOGFAP mice exhibit reduced brain prostaglandin E2 and pro-inflammatory cytokine levels upon peripheral lipopolysaccharide (LPS) administration. These observations indicate that MGL-mediated degradation of 2-AG in astrocytes provides AA for prostaglandin synthesis promoting LPS-induced neuroinflammation. The beneficial effect of astrocyte-specific MGL-deficiency is not fully abrogated by the inverse cannabinoid receptor 1 agonist SR141716 (Rimonabant) suggesting that the anti-inflammatory effects are rather caused by reduced prostaglandin synthesis than by activation of cannabinoid receptors. In conclusion, our data demonstrate that MGL in astrocytes is an important regulator of 2-AG levels, AA availability, and neuroinflammation.  相似文献   

6.
We examined the long-term effects of dietary diacylglycerol (DG) and triacylglycerol (TG) with similar fatty acid compositions on the development of obesity in C57BL/6J mice. We also analyzed the expression of genes involved in lipid metabolism at an early stage of obesity development in these mice. Compared with mice fed the high-TG diet, mice fed the high-DG diet accumulated significantly less body fat during the 8-month study period. Within the first 10 days, dietary DG stimulated beta-oxidation and lipid metabolism-related gene expression, including acyl-CoA oxidase, medium-chain acyl-CoA dehydrogenase, and uncoupling protein-2 in the small intestine but not in the liver, skeletal muscle, or brown adipose tissue, suggesting the predominant contribution of intestinal lipid metabolism to the effects of DG. Furthermore, analysis of digestion products of [(14)C]DG and those of [(14)C]TG revealed that the radioactivity levels detected in fatty acid, 1-monoacylglycerol, and 1,3-DG in intestinal mucosa were significantly higher after intrajejunal injection of DG rather than TG. Thus, dietary DG reduces body weight gain that accompanies the stimulation of intestinal lipid metabolism, and these effects may be related to the characteristic metabolism of DG in the small intestine.  相似文献   

7.
The small intestine is a highly adaptable organ serving as both a barrier to the external environment and a conduit for nutrient absorption. Enterocytes package dietary triglycerides (TG) into chylomicrons for transport into circulation; the remaining TGs are stored in cytosolic lipid droplets (CLDs). The current study aimed to characterize the impact of diet composition on intestinal lipid handling in male and female wild-type mice. Mice were continued on their grain-based diet (GBD) and switched to either a high-fat, high cholesterol Western-style diet (WD) or a ketogenic diet (KD) for 3 or 5 weeks. KD-fed mice displayed significantly higher plasma TG levels in response to an olive oil gavage than WD- and GBD-fed mice; TG levels were ~2-fold higher in male KD-fed mice than female KD-fed mice. Poloxamer-407 experiments revealed enhanced intestinal-TG secretion rates in male mice fed a KD upon olive oil gavage, whereas secretion rates were unchanged in female mice. Surprisingly, jejunal CLD size and TG mass after oil gavage were similar among the groups. At fasting, TG mass was significantly higher in the jejunum of male KD-fed mice and the duodenum of female KD-fed mice, providing increased substrate for chylomicron formation. In addition to greater fasting intestinal TG stores, KD-fed male mice displayed longer small intestinal lengths, while female mice displayed markedly longer jejunal villi lengths. After 5 weeks of diet, 12 h fasting-2 h refeeding experiments revealed jejunal TG levels were similar between diet groups in male mice; however, in female mice, jejunal TG mass was significantly higher in KD-fed mice compared to GBD- and WD-fed mice. These experiments reveal that KD feeding promotes distinct morphological and functional changes to the murine small intestine compared to the WD diet. Moreover, changes to intestinal lipid handling in response to carbohydrate and protein restriction manifest differently in male and female mice.  相似文献   

8.
Monoacylglycerol O-acyltransferase 2 (MGAT2) catalyzes the synthesis of diacylglycerol (DG), a triacylglycerol precursor and potential peripheral target for novel anti-obesity therapeutics. High-throughput screening identified lead compounds with MGAT2 inhibitory activity. Through structural modification, a potent, selective, and orally bioavailable MGAT2 inhibitor, compound A (compA), was discovered. CompA dose-dependently inhibited postprandial increases in plasma triglyceride (TG) levels. Metabolic flux analysis revealed that compA inhibited triglyceride/diacylglycerol resynthesis in the small intestine and increased free fatty acid and acyl-carnitine with shorter acyl chains than originally labelled fatty acid. CompA decreased high-fat diet (HFD) intake in C57BL/6J mice. MGAT2-null mice showed a similar phenotype as compA-treated mice and compA did not suppress a food intake in MGAT2 KO mice, indicating that the anorectic effects were dependent on MGAT2 inhibition. Chronic administration of compA significantly prevented body weight gain and fat accumulation in mice fed HFD. MGAT2 inhibition by CompA under severe diabetes ameliorated hyperglycemia and fatty liver in HFD-streptozotocin (STZ)-treated mice. Homeostatic model assessments (HOMA-IR) revealed that compA treatment significantly improved insulin sensitivity. The proximal half of the small intestine displayed weight gain following compA treatment. A similar phenomenon has been observed in Roux-en-Y gastric bypass-treated animals and some studies have reported that this intestinal remodeling is essential to the anti-diabetic effects of bariatric surgery. These results clearly demonstrated that MGAT2 inhibition improved dyslipidemia, obesity, and diabetes, suggesting that compA is an effective therapeutic for obesity-related metabolic disorders.  相似文献   

9.
Retinol-binding protein 2 (RBP2, also known as cellular retinol-binding protein 2 (CRBP2)) is a member of the fatty acid-binding protein family and has been extensively studied for its role in facilitating dietary vitamin A (retinol) uptake and metabolism within enterocytes of the small intestine. RBP2 is present in highest concentrations in the proximal small intestine where it constitutes approximately 0.1–0.5% of soluble protein. Recent reports have established that RBP2 binds monoacylglycerols (MAGs) with high affinity, including the canonical endocannabinoid 2-arachidonoylglycerol (2-AG). Crystallographic studies reveal that retinol, 2-AG, or other long-chain MAGs alternatively can bind in the retinol-binding pocket of RBP2. It also has been demonstrated recently that Rbp2-deficient mice are more susceptible to developing obesity and associated metabolic phenotypes when exposed to a high fat diet, or as they age when fed a conventional chow diet. When subjected to an oral fat challenge, the Rbp2-deficient mice release into the circulation significantly more, compared to littermate controls, of the intestinal hormone glucose-dependent insulinotropic polypeptide (GIP). These new findings regarding RBP2 structure and actions within the intestine are the focus of this review.  相似文献   

10.
Fenofibrate, a drug in the fibrate class of amphiphathic carboxylic acids, has multiple blood lipid modifying actions, which are beneficial to the prevention of atherosclerosis. One of its benefits is in lowering fasting and postprandial blood triglyceride (TG) concentrations. The goal of this study was to determine whether the hypotriglyceridemic actions of fenofibrate in the postprandial state include alterations in TG and fatty acid metabolism in the small intestine. We found that the hypotriglyceridemic actions of fenofibrate in the postprandial state of high-fat (HF) fed mice include a decrease in supply of TG for secretion by the small intestine. A decreased supply of TG for secretion was due in part to the decreased dietary fat absorption and increased intestinal fatty acid oxidation in fenofibrate compared to vehicle treated HF fed mice. These results suggest that the effects of fenofibrate on the small intestine play a critical role in the hypotriglyceridemic effects of fenofibrate.  相似文献   

11.
Chemotherapy-induced cachexia causes severe metabolic abnormalities independently of cancer and reduces the therapeutic efficacy of chemotherapy. The underlying mechanism of chemotherapy-induced cachexia remains unclear. Here we investigated the cytarabine (CYT)-induced alteration in energy balance and its underlying mechanisms in mice. We compared energy balance-associated parameters among the three groups of mice: CON, CYT, and PF (pair-fed mice with the CYT group) that were intravenously administered vehicle or CYT. Weight gain, fat mass, skeletal muscle mass, grip strength, and nocturnal energy expenditure were significantly lowered in the CYT group than in the CON and PF groups. The CYT group demonstrated less energy intake than the CON group and higher respiratory quotient than the PF group, indicating that CYT induced cachexia independently from the anorexia-induced weight loss. Serum triglyceride was significantly lower in the CYT group than in the CON group, whereas the intestinal mucosal triglyceride levels and the lipid content within the small intestine enterocyte were higher after lipid loading in the CYT group than in the CON and PF groups, suggesting that CYT inhibited lipid uptake in the intestine. This was not associated with obvious intestinal damage. The CYT group showed increased zipper-like junctions of lymphatic endothelial vessel in duodenal villi compared to that in the CON and CYT groups, suggesting their imperative role in the CYT-induced inhibition of lipid uptake. CYT worsens cachexia independently of anorexia by inhibiting the intestinal lipid uptake, via the increased zipper-like junctions of lymphatic endothelial vessel.  相似文献   

12.
The enterocyte expresses two fatty acid-binding proteins (FABP), intestinal FABP (IFABP; FABP2) and liver FABP (LFABP; FABP1). LFABP is also expressed in liver. Despite ligand transport and binding differences, it has remained uncertain whether these intestinally coexpressed proteins, which both bind long chain fatty acids (FA), are functionally distinct. Here, we directly compared IFABP−/− and LFABP−/− mice fed high fat diets containing long chain saturated or unsaturated fatty acids, reasoning that providing an abundance of dietary lipid would reveal unique functional properties. The results showed that mucosal lipid metabolism was indeed differentially modified, with significant decreases in FA incorporation into triacylglycerol (TG) relative to phospholipid (PL) in IFABP−/− mice, whereas LFABP−/− mice had reduced monoacylglycerol incorporation in TG relative to PL, as well as reduced FA oxidation. Interestingly, striking differences were found in whole body energy homeostasis; LFABP−/− mice fed high fat diets became obese relative to WT, whereas IFABP−/− mice displayed an opposite, lean phenotype. Fuel utilization followed adiposity, with LFABP−/− mice preferentially utilizing lipids, and IFABP−/− mice preferentially metabolizing carbohydrate for energy production. Changes in body weight and fat may arise, in part, from altered food intake; mucosal levels of the endocannabinoids 2-arachidonoylglycerol and arachidonoylethanolamine were elevated in LFABP−/−, perhaps contributing to increased energy intake. This direct comparison provides evidence that LFABP and IFABP have distinct roles in intestinal lipid metabolism; differential intracellular functions in intestine and in liver, for LFABP−/− mice, result in divergent downstream effects at the systemic level.  相似文献   

13.
Free fatty acid receptor 2 (Ffar2), also known as GPR43, is activated by short-chain fatty acids (SCFA) and expressed in intestine, adipocytes, and immune cells, suggesting involvement in lipid and immune regulation. In the present study, Ffar2-deficient mice (Ffar2-KO) were given a high-fat diet (HFD) or chow diet and studied with respect to lipid and energy metabolism. On a HFD, Ffar2-KO mice had lower body fat mass and increased lean body mass. The changed body composition was accompanied by improved glucose control and lower HOMA index, indicating improved insulin sensitivity in Ffar2-KO mice. Moreover, the Ffar2-KO mice had higher energy expenditure accompanied by higher core body temperature and increased food intake. The liver weight and content of triglycerides as well as plasma levels of cholesterol were lower in the Ffar2-KO mice fed a HFD. A histological examination unveiled decreased lipid interspersed in brown adipose tissue of the Ffar2-KO mice. Interestingly, no significant differences in white adipose tissue (WAT) cell size were observed, but significantly lower macrophage content was detected in WAT from HFD-fed Ffar2-KO compared with wild-type mice. In conclusion, Ffar2 deficiency protects from HFD-induced obesity and dyslipidemia at least partly via increased energy expenditure.  相似文献   

14.
Oleoylethanolamide (OEA) has been previously reported to regulate food intake and body weight gain when administered intraperitoneally. Nevertheless, little information is available with regard to oral administration. To assess whether oral OEA can also exert a similar effect on body fat, we fed C3H mice a high-fat diet supplemented with either 10 or 100 mg/kg body weight OEA for 4 weeks. OEA supplementation significantly lowered food intake over the 4 weeks and decreased adipose tissue mass. Plasma triglyceride levels were also significantly decreased by OEA treatment. In order to identify the potential molecular targets of OEA action, we screened the expression levels of 44 genes related to body fat mass and food intake in peripheral tissues. Adipose tissue fatty acid amide hydrolase (FAAH), intestinal fatty acid transporter/cluster of differentiation 36 and the OEA receptor G-protein-coupled receptor 119 (GPR119) were among the most OEA-responsive genes. They were also associated with reduced body fat pads regardless of the dose. Adipose FAAH was found to be primarily associated with a decrease in food intake. Our data suggest that the anti-obesity activity of OEA partially relies on modulation of the FAAH pathway in adipose tissue. Another mechanism might involve modulation of the newly discovered GPR119 OEA signaling pathway in the proximal intestine. In conclusion, our study indicates that oral administration of OEA can effectively decrease obesity in the mouse model and that modulation of the endocannabinoid fatty acid ethanolamide pathway seems to play an important role both in adipose tissue and in small intestine.  相似文献   

15.
Following loss of functional small bowel surface area due to surgical resection, the remnant gut undergoes an adaptive response characterized by increased crypt cell proliferation and enhanced villus height and crypt depth, resulting in augmented intestinal nutrient absorptive capacity. Previous studies showed that expression of the immediate early gene tis7 is markedly up-regulated in intestinal enterocytes during the adaptive response. To study its role in the enterocyte, transgenic mice were generated that specifically overexpress TIS7 in the gut. Nucleotides -596 to +21 of the rat liver fatty acid-binding protein promoter were used to direct abundant overexpression of TIS7 into small intestinal upper crypt and villus enterocytes. TIS7 transgenic mice had increased total body adiposity and decreased lean muscle mass compared with normal littermates. Oxygen consumption levels, body weight, surface area, and small bowel weight were decreased. On a high fat diet, transgenic mice exhibited a more rapid and proportionately greater gain in body weight with persistently elevated total body adiposity and increased hepatic fat accumulation. Bolus fat feeding resulted in a greater increase in serum triglyceride levels and an accelerated appearance of enterocytic, lamina propria, and hepatic fat. Changes in fat homeostasis were linked to increased expression of genes involved in enterocytic triglyceride metabolism and changes in growth with decreased insulin-like growth factor-1 expression. Thus, TIS7 overexpression in the intestine altered growth, metabolic rate, adiposity, and intestinal triglyceride absorption. These results suggest that TIS7 is a unique mediator of nutrient absorptive and metabolic adaptation following gut resection.  相似文献   

16.
Intestinal acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2) is important in the cellular and physiological responses to dietary fat. To determine the effect of increased intestinal DGAT2 on cellular and physiological responses to acute and chronic dietary fat challenges, we generated mice with intestine-specific overexpression of DGAT2 and compared them with intestine-specific overexpression of DGAT1 and wild-type (WT) mice. We found that when intestinal DGAT2 is present in excess, triacylglycerol (TG) secretion from enterocytes is enhanced compared to WT mice; however, TG storage within enterocytes is similar compared to WT mice. We found that when intestinal DGAT2 is present in excess, mRNA levels of genes involved in fatty acid oxidation were reduced. This result suggests that reduced fatty acid oxidation may contribute to increased TG secretion by overexpression of DGAT2 in intestine. Furthermore, this enhanced supply of TG for secretion in Dgat2Int mice may be a significant contributing factor to the elevated fasting plasma TG and exacerbated hepatic TG storage in response to a chronic HFD. These results highlight that altering fatty acid and TG metabolism within enterocytes has the capacity to alter systemic delivery of dietary fat and may serve as an effective target for preventing and treating metabolic diseases such as hepatic steatosis.  相似文献   

17.
The endocannabinoid system plays a critical role in the control of energy homeostasis, but the identity and localization of the endocannabinoid signal involved remain unknown. In the present study, we developed transgenic mice that overexpress in forebrain neurons the presynaptic hydrolase, monoacylglycerol lipase (MGL), which deactivates the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG). MGL-overexpressing mice show a 50% decrease in forebrain 2-AG levels but no overt compensation in other endocannabinoid components. This biochemical abnormality is accompanied by a series of metabolic changes that include leanness, elevated energy cost of activity, and hypersensitivity to β(3)-adrenergic-stimulated thermogenesis, which is corrected by reinstating 2-AG activity at CB(1)-cannabinoid receptors. Additionally, the mutant mice are resistant to diet-induced obesity and express high levels of thermogenic proteins, such as uncoupling protein 1, in their brown adipose tissue. The results suggest that 2-AG signaling through CB(1) regulates the activity of forebrain neural circuits involved in the control of energy dissipation.  相似文献   

18.
Piglets are particularly susceptible to cold and nutritional stress because of their poor insulation and low body fat. The purpose of this study was to examine how ambient temperature and level of food intake affect development in piglets. Thirty-two piglets were reared individually from 14 to 56 days of age in either a cold (10 degrees C) or a warm (35 degrees C) environment. Two feeding regimens, restricted and ad libitum, were used to assess the effect of food intake on organ mass. The ad libitum fed pigs in both environments gained weight at the same rate. Paired t-tests of organ weights of ad libitum fed pigs revealed that the mass of the heart, liver, kidneys, stomach, and small intestine, and total nitrogen and the length of the small intestine were greater in cold-reared than in warm-reared littermates of the same body weight. The skin mass and total fat mass, the lengths of the body, extremities, and individual long bones, and the total surface area were greater in warm-reared than in cold-reared individuals. A regression analysis showed body weight was the most important determinant of size for all tissues measured except fat mass, which was affected slightly more by rearing temperature. Of the organs and tissue components that differed in size in warm- and cold-reared pigs, heart, kidney, stomach, skin, nitrogen, and fat mass, and small intestine length and surface area were generally affected more by rearing temperature than by level of food intake. Liver and small intestine mass and femur length were affected more by level of food intake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Dietary fat is an important mediator of atherosclerosis and obesity. Despite its importance in mediating metabolic disease, there is still much unknown about dietary fat absorption in the intestine and especially the detailed biological roles of intestinal apolipoproteins involved in that process. We were specifically interested in determining the physiological role of the intestinal apolipoprotein A-IV (A-IV) using A-IV knockout (KO) mice. A-IV is stimulated by fat absorption in the intestine and is secreted on nascent chylomicrons into intestinal lymph. We found that A-IV KO mice had reduced plasma triglyceride (TG) and cholesterol levels and that this hypolipidemia persisted on a high-fat diet. A-IV KO did not cause abnormal intestinal lipid absorption, food intake, or adiposity. Additionally, A-IV KO did not cause abnormal liver TG and cholesterol metabolism, as assessed by measuring hepatic lipid content, lipogenic and cholesterol synthetic gene expression, and in vivo VLDL secretion. Instead, A-IV KO resulted in the secretion of larger chylomicrons from the intestine into the lymph, and those chylomicrons were cleared from the plasma more slowly than wild-type chylomicrons. These data suggest that A-IV has a previously unknown role in mediating the metabolism of chylomicrons, and therefore may be important in regulating plasma lipid metabolism.  相似文献   

20.
Objective: Restriction of energy intake produces weight loss, but the rate of loss is seldom sustained. This is presumed to be a consequence of compensatory reductions in energy expenditure, although the exact contributions of different components to the energy budget remain uncertain. We examined the compensatory responses of mice to a 20% dietary restriction. Research Methods and Procedures: We measured body mass, body fatness, body temperature, and the components of daily energy expenditure for 50 MF1 mice. Forty mice were then placed on a restricted diet at 80% of their ad libitum intake for 50 days. The remaining 10 mice continued to feed ad libitum. Ten days before the end of the restriction period, the same measurements were taken. Results: There were no significant differences between the control and restricted groups in any parameters before restriction. During the restriction period, body mass increased in both the control and restricted groups, but at a slower rate in the restricted mice. The control group increased in both fat and fat free mass; however, although the restricted group increased fat to the same extent as the controls, fat free mass increased to a lesser extent. The contributions of the different components of the expended energy to compensate for the reduced energy intake were energy deposition, 2.2%; resting metabolic rate, 22.3%; and activity, 75.5%. Discussion: Mice were able to compensate almost completely for the restricted energy intake that was achieved by altering the amount of energy required for each component of the energy budget except digestive efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号