首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
α-Tocopherol (α-Toc) overload increases the risk of dying in humans (E.R. Miller III et al. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality Ann Int Med. 142 (2005) 37–46), and overload during early development leads to elevation of blood pressure at adult life, but the mechanism(s) remains unknown. We hypothesized that α-Toc overload during organogenesis affects the renal renin angiotensin system (RAS) components and renal Na+ handling, culminating with late elevated blood pressure. Pregnant Wistar rats received α-Toc or the superoxide dismutase mimetic tempol throughout pregnancy. We evaluated components of the intrarenal renin angiotensin system in neonate and juvenile offspring: Ang II-positive cells, Ang II receptors (AT1 and AT2), linked protein kinases, O2? production, NADPH oxidase abundance, lipid peroxidation and activity of Na+-transporting ATPases. In juvenile offspring we followed the evolution of arterial blood pressure. Neonates from α-Toc and tempol mothers presented with accentuated retardment in tubular development, pronounced decrease in glomerular Ang II-positive cells and AT1/AT2 ratio, intense production of O2? and upregulation of the α, ε and λ PKC isoforms. α-Toc decreased or augmented the abundance of renal (Na++K+)ATPase depending on the age and α-Toc dose. In juvenile rats the number of Ang II-positive cells returned to control values as well as PKCα, but co-existing with marked upregulation in the activity of (Na++K+) and Na+-ATPase and elevated arterial pressure at 30?days. We conclude that the mechanisms of these alterations rely on selective targeting of renal RAS components through genic and pro-oxidant effects of the vitamin.  相似文献   

3.

Background

Several studies have correlated protein restriction associated with other nutritional deficiencies with the development of cardiovascular and renal diseases. The driving hypothesis for this study was that Ang II signaling pathways in the heart and kidney are affected by chronic protein, mineral and vitamin restriction.

Methodology/Principal Findings

Wistar rats aged 90 days were fed from weaning with either a control or a deficient diet that mimics those used in impoverished regions worldwide. Such restriction simultaneously increased ouabain-insensitive Na+-ATPase and decreased (Na++K+)ATPase activity in the same proportion in cardiomyocytes and proximal tubule cells. Type 1 angiotensin II receptor (AT1R) was downregulated by that restriction in both organs, whereas AT2R decreased only in the kidney. The PKC/PKA ratio increased in both tissues and returned to normal values in rats receiving Losartan daily from weaning. Inhibition of the MAPK pathway restored Na+-ATPase activity in both organs. The undernourished rats presented expanded plasma volume, increased heart rate, cardiac hypertrophy, and elevated systolic pressure, which also returned to control levels with Losartan. Such restriction led to electrical cardiac remodeling represented by prolonged ventricular repolarization parameters, induced triggered activity, early after-depolarization and delayed after-depolarization, which were also prevented by Losartan.

Conclusion/Significance

The mechanisms responsible for these alterations are underpinned by an imbalance in the PKC- and PKA-mediated pathways, with participation of angiotensin receptors and by activation of the MAPK/ERK1/2 pathway. These cellular and molecular alterations culminate in cardiac electric remodeling and in the onset of hypertension in adulthood.  相似文献   

4.

Background

Several studies have correlated perinatal malnutrition with diseases in adulthood, giving support to the programming hypothesis. In this study, the effects of maternal undernutrition during lactation on renal Na+-transporters and on the local angiotensin II (Ang II) signaling cascade in rats were investigated.

Methodology/Principal Findings

Female rats received a hypoproteic diet (8% protein) throughout lactation. Control and programmed offspring consumed a diet containing 20% protein after weaning. Programming caused a decrease in the number of nephrons (35%), in the area of the Bowman''s capsule (30%) and the capillary tuft (30%), and increased collagen deposition in the cortex and medulla (by 175% and 700%, respectively). In programmed rats the expression of (Na++K+)ATPase in proximal tubules increased by 40%, but its activity was doubled owing to a threefold increase in affinity for K+. Programming doubled the ouabain-insensitive Na+-ATPase activity with loss of its physiological response to Ang II, increased the expression of AT1 and decreased the expression of AT2 receptors), and caused a pronounced inhibition (90%) of protein kinase C activity with decrease in the expression of the α (24%) and ε (13%) isoforms. Activity and expression of cyclic AMP-dependent protein kinase decreased in the same proportion as the AT2 receptors (30%). In vivo studies at 60 days revealed an increased glomerular filtration rate (GFR) (70%), increased Na+ excretion (80%) and intense proteinuria (increase of 400% in protein excretion). Programmed rats, which had normal arterial pressure at 60 days, became hypertensive by 150 days.

Conclusions/Significance

Maternal protein restriction during lactation results in alterations in GFR, renal Na+ handling and in components of the Ang II-linked regulatory pathway of renal Na+ reabsorption. At the molecular level, they provide a framework for understanding how metabolic programming of renal mechanisms contributes to the onset of hypertension in adulthood.  相似文献   

5.
Recently, our group described an AT1-mediated direct stimulatory effect of angiotensin II (Ang II) on the Na+-ATPase activity of proximal tubules basolateral membranes (BLM) [Am. J. Physiol. 248 (1985) F621]. Data in the present report suggest the participation of a protein kinase C (PKC) in the molecular mechanism of Ang II-mediated stimulation of the Na+-ATPase activity due to the following observations: (i) the stimulation of protein phosphorylation in BLM, induced by Ang II, is mimicked by the PKC activator TPA, and is completely reversed by the specific PKC inhibitor, calphostin C; (ii) the Na+-ATPase activity is stimulated by Ang II and TPA in the same magnitude, being these effects abolished by the use of the PKC inhibitors, calphostin C and sphingosine; (iii) the Na+-ATPase activity is activated by catalytic subunit of PKC (PKC-M), in a similar and nonadditive manner to Ang II; and (iv) Ang II stimulates the phosphorylation of MARCKS, a specific substrate for PKC.  相似文献   

6.
We showed previously that angiotensin-(1-7) [Ang-(1-7)] reversed stimulation of proximal tubule Na+-ATPase promoted by angiotensin II (Ang II) through a d-ala7-Ang-(1-7) (A779)-sensitive receptor. Here we investigated the signaling pathway coupled to this receptor. According to our data, Ang-(1-7) produces a MAS-mediated reversal of Ang II-stimulated Na+-ATPase by a Gs/PKA pathway because: (1) the Ang-(1-7) effect is reversed by GDPβS, an inhibitor of trimeric G protein and Gs polyclonal antibody. Cholera toxin, an activator of Gs protein, mimicked it; (2) in the presence of Ang II, Ang-(1-7) increased the PKA activity 10-fold; (3) the peptide inhibitor of PKA blocked the Ang-(1-7) effect on Ang II-stimulated Na+-ATPase; (4) Ang-(1-7) reverses the Ang II-stimulated PKC activity; (5) cAMP mimicked the Ang-(1-7) effect on the Ang II-stimulated Na+-ATPase. Our results provide new understanding about the signaling mechanisms coupled to MAS receptor-mediated renal Ang-(1-7) effects.  相似文献   

7.
Angiotensin II (Ang II) stimulates the proximal tubule Na+-ATPase through the AT1 receptor/phosphoinositide phospholipase Cβ (PI-PLCβ)/protein kinase C (PKC) pathway. However, this pathway alone does not explain the sustained effect of Ang II on Na+-ATPase activity for 30 min. The aim of the present work was to elucidate the molecular mechanisms involved in the sustained effect of Ang II on Na+-ATPase activity. Ang II induced fast and correlated activation of Na+-ATPase and PKC activities with the maximal effect (115%) observed at 1 min and sustained for 30 min, indicating a pivotal role of PKC in the modulation of Na+-ATPase by Ang II. We observed that the sustained activation of PKC by Ang II depended on the sequential activation of phospholipase D and Ca2+-insensitive phospholipase A2, forming phosphatidic acid and lysophosphatidic acid, respectively. The results indicate that PKC could be the final target and an integrator molecule of different signaling pathways triggered by Ang II, which could explain the sustained activation of Na+-ATPase by Ang II.  相似文献   

8.
Clinical and experimental data show an increase in sodium reabsorption on the proximal tubule (PT) in essential hypertension. It is well known that there is a link between essential hypertension and renal angiotensin II (Ang II). The present study was designed to examine ouabain-insensitive Na+-ATPase activity and its regulation by Ang II in spontaneously hypertensive rats (SHR). We observed that Na+-ATPase activity was enhanced in 14-week-old but not in 6-week-old SHR. The addition of Ang II from 10− 12 to 10− 6 mol/L decreased the enzyme activity in SHR to a level similar to that obtained in WKY. The Ang II inhibitory effect was completely reversed by a specific antagonist of AT2 receptor, PD123319 (10− 8 mol/L) indicating that a system leading to activation of the enzyme in SHR is inhibited by AT2-mediated Ang II. Treatment of SHR with losartan for 10 weeks (weeks 4-14) prevents the increase in Na+-ATPase activity observed in 14-week-old SHR. These results indicate a correlation between AT1 receptor activation in SHR and increased ouabain-insensitive Na+-ATPase activity. Our results open new possibilities towards our understanding of the pathophysiological mechanisms involved in the increased sodium reabsorption in PT found in essential hypertension.  相似文献   

9.
10.

Background

Acute renal failure is a serious complication of human envenoming by Bothrops snakes. The ion pump Na+/K+-ATPase has an important role in renal tubule function, where it modulates sodium reabsorption and homeostasis of the extracellular compartment. Here, we investigated the morphological and functional renal alterations and changes in Na+/K+-ATPase expression and activity in rats injected with Bothrops alternatus snake venom.

Methods

Male Wistar rats were injected with venom (0.8 mg/kg, i.v.) and renal function was assessed 6, 24, 48 and 72 h and 7 days post-venom. The rats were then killed and renal Na+/K+-ATPase activity was assayed based on phosphate release from ATP; gene and protein expressions were assessed by real time PCR and immunofluorescence microscopy, respectively.

Results

Venom caused lobulation of the capillary tufts, dilation of Bowman's capsular space, F-actin disruption in Bowman's capsule and renal tubule brush border, and deposition of collagen around glomeruli and proximal tubules that persisted seven days after envenoming. Enhanced sodium and potassium excretion, reduced proximal sodium reabsorption, and proteinuria were observed 6 h post-venom, followed by a transient decrease in the glomerular filtration rate. Gene and protein expressions of the Na+/K+-ATPase α1 subunit were increased 6 h post-venom, whereas Na+/K+-ATPase activity increased 6 h and 24 h post-venom.

Conclusions

Bothrops alternatus venom caused marked morphological and functional renal alterations with enhanced Na+/K+-ATPase expression and activity in the early phase of renal damage.

General significance

Enhanced Na+/K+-ATPase activity in the early hours after envenoming may attenuate the renal dysfunction associated with venom-induced damage.  相似文献   

11.
Previous studies have reported that perinatal nicotine exposure causes development of hypertensive phenotype in adult offspring.

Aims

The present study was to determine whether perinatal nicotine exposure causes an epigenetic programming of vascular Angiotensin II receptors (ATRs) and their-mediated signaling pathway leading to heightened vascular contraction in adult offspring.

Main methods

Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps from day 4 of gestation to day 10 after birth. The experiments were conducted at 5 months of age of male offspring.

Key Findings

Nicotine treatment enhanced Angitension II (Ang II)-induced vasoconstriction and 20-kDa myosin light chain phosphorylation (MLC20-P) levels. In addition, the ratio of Ang II-induced tension/MLC-P was also significantly increased in nicotine-treated group compared with the saline group. Nicotine-mediated enhanced constrictions were not directly dependent on the changes of [Ca2+]i concentrations but dependent on Ca2+ sensitivity. Perinatal nicotine treatment significantly enhanced vascular ATR type 1a (AT1aR) but not AT1bR mRNA levels in adult rat offspring, which was associated with selective decreases in DNA methylation at AT1aR promoter. Contrast to the effect on AT1aR, nicotine decreased the mRNA levels of vascular AT2R gene, which was associated with selective increases in DNA methylation at AT2R promoter.

Significance

Our results indicated that perinatal nicotine exposure caused an epigenetic programming of vascular ATRs and their-mediated signaling pathways, and suggested that differential regulation of AT1R/AT2R gene expression through DNA methylation mechanism may be involved in nicotine-induced heightened vasoconstriction and development of hypertensive phenotype in adulthood.  相似文献   

12.
Angiotensin‐converting enzyme (ACE) is upregulated in the diabetic kidney and contributes to renal injury. This study investigates the possible beneficial effects of the ACE inhibitor (ACEI), enalapril and the AT1 receptor blocker (ARB), valsartan, on renal ACE expression, renal structure, and function in streptozotocin (STZ)‐induced diabetic rats. Male Wistar rats were allocated into four groups: control, STZ‐diabetic rats, and STZ‐diabetic rats treated with either enalapril (10 mg/kg/day) or valsartan (50 mg/kg/day) for 8 weeks. Enalapril and valsartan reduced renal ACE mRNA and protein expression, Na+/K+‐ATPase activity, oxidative stress, and serum transforming growth factor‐β1 levels compared to the diabetic group. Both treatments normalized renal nitrate/nitrite levels and ameliorated the observed histopathological changes. In conclusion, ACE downregulation by ACEI and ARB indicates that angiotensin II upregulates ACE through AT1 receptor. Prevention of diabetes‐induced changes in ACE expression and Na+/K+‐ATPase activity could be a new explanation of the renoprotective effects of ACEIs and ARBs. © 2013 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:378‐387, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21500  相似文献   

13.
Glutathionylation of the Na+-K+ pump’s β1-subunit is a key molecular mechanism of physiological and pathophysiological pump inhibition in cardiac myocytes. Its contribution to Na+-K+ pump regulation in other tissues is unknown, and cannot be assumed given the dependence on specific β-subunit isoform expression and receptor-coupled pathways. As Na+-K+ pump activity is an important determinant of vascular tone through effects on [Ca2+]i, we have examined the role of oxidative regulation of the Na+-K+ pump in mediating angiotensin II (Ang II)-induced increases in vascular reactivity. β1-subunit glutathione adducts were present at baseline and increased by exposure to Ang II in rabbit aortic rings, primary rabbit aortic vascular smooth muscle cells (VSMCs), and human arterial segments. In VSMCs, Ang II-induced glutathionylation was associated with marked reduction in Na+-K+ATPase activity, an effect that was abolished by the NADPH oxidase inhibitory peptide, tat-gp91ds. In aortic segments, Ang II-induced glutathionylation was associated with decreased K+-induced vasorelaxation, a validated index of pump activity. Ang II-induced oxidative inhibition of Na+-K+ ATPase and decrease in K+-induced relaxation were reversed by preincubation of VSMCs and rings with recombinant FXYD3 protein that is known to facilitate deglutathionylation of β1-subunit. Knock-out of FXYD1 dramatically decreased K+-induced relaxation in a mouse model. Attenuation of Ang II signaling in vivo by captopril (8 mg/kg/day for 7 days) decreased superoxide-sensitive DHE levels in the media of rabbit aorta, decreased β1-subunit glutathionylation, and enhanced K+-induced vasorelaxation. Ang II inhibits the Na+-K+ pump in VSMCs via NADPH oxidase-dependent glutathionylation of the pump’s β1-subunit, and this newly identified signaling pathway may contribute to altered vascular tone. FXYD proteins reduce oxidative inhibition of the Na+-K+ pump and may have an important protective role in the vasculature under conditions of oxidative stress.  相似文献   

14.
The basolateral membranes of kidney proximal tubule cells have (Na++K+)-ATPase and Na+-ATPase activities, involved in Na+ reabsorption. We showed that ceramide (Cer) modulates protein kinase A (PKA) and protein kinase C (PKC), which are involved in regulating ion transporters. Here we show that ceramide, promotes 60% inhibition of Na+-ATPase activity (I50 ≈ 100 nM). This effect was completely reversed by inhibiting PKA but did not involve the classic PKC signaling pathway. In these membranes we found the Cer-activated atypical PKC zeta (PKCζ) isoform. When PKCζ is inhibited, Cer ceases to inhibit the Na+-ATPase, allowing the cAMP/PKA signaling pathway to recover its stimulatory effect on the pump. There were no effects on the (Na++K+)-ATPase. These results reveal Cer as a potent physiological modulator of the Na+-ATPase, participating in a regulatory network in kidney cells and counteracting the stimulatory effect of PKA via PKCζ.  相似文献   

15.
The hypothesis that amiloride-sensitive Na+ channel complexes immunopurified from bovine renal papillary collecting tubules contain, as their core conduction component, an ENaC subunit, was tested by functional and immunological criteria. Disulfide bond reduction with dithiothreitol (DTT) of renal Na+ channels incorporated into planar lipid bilayers caused a reduction of single channel conductance from 40 pS to 13 pS, and uncoupled PKA regulation of this channel. The cation permeability sequence, as assessed from bi-ionic reversal potential measurements, and apparent amiloride equilibrium dissociation constant (K amil i ) of the Na+ channels were unaltered by DTT treatment. Like ENaC, the DTT treated renal channel became mechanosensitive, and displayed a substantial decrease in K amil i following stretch (0.44 ± 0.12 μm versus 6.9 ± 1.0 μm). Moreover, stretch activation induced a loss in the channel's ability to discriminate between monovalent cations, and even allowed Ca2+ to permeate. Polyclonal antibodies generated against a fusion protein of αbENaC recognized a 70 kDa polypeptide component of the renal Na+ channel complex. These data suggest that ENaC is present in the immunopurified renal Na+ channel protein complex, and that PKA sensitivity is conferred by other associated proteins. Received: 5 June 1995/Revised: 29 September 1995  相似文献   

16.
Previous hypertension studies have shown that low levels of vitamin D are linked to elevated renin–angiotensin system. The heat shock protein 70 regulates signaling pathways for cellular oxidative stress responses. Hsp70 has been shown to protect against angiotensin II-induced hypertension and exert a cytoprotective effect. Here, we wanted to evaluate whether the vitamin D receptor (VDR) associated with Hsp70/AT1 expression may be involved in the mechanism by which paricalcitol provides renal protection in spontaneously hypertensive rats (SHRs). One-month-old female SHRs were treated for 4 months with vehicle, paricalcitol, enalapril, or a combination of both paricalcitol and enalapril. The following were determined: blood pressure; biochemical parameters; fibrosis; apoptosis; mitochondrial morphology; and VDR, AT1 receptor, and Hsp70 expression in the renal cortex. Blood pressure was markedly reduced by enalapril or the combination but not by paricalcitol alone. However, VDR activation, enalapril or combination, prevented fibrosis, the number of TUNEL-positive apoptotic cells, mitochondrial damage, and NADPH oxidase activity in SHRs. Additionally, high AT1 receptor expression, like low Hsp70 expression (immunohistochemical/immunofluorescence studies), was reversed in the renal cortices of paricalcitol- and/or enalapril-treated animals (SHRs), and these changes were most marked in the combination therapy group. Finally, all of the recovery parameters were consistent with an improvement in VDR expression. Data suggest that Hsp70/AT1 modulated by VDR is involved in the mechanism by which paricalcitol provides renal protection in SHRs. We propose that low AT1 expression through VDR induction could be a consequence of the heat shock response Hsp70-mediated cell protection.  相似文献   

17.
Isoform 3 of the Na+-Ca2+ exchanger (NCX3) participates in the Ca2+ fluxes across the plasma membrane. Among the NCX family, NCX3 carries out a peculiar role due to its specific functions in skeletal muscle and the immune system and to its neuroprotective effect under stress exposure. In this context, proper understanding of the regulation of NCX3 is primordial to consider its potential use as a drug target. In this study, we demonstrated the regulation of NCX3 by protein kinase A (PKA) and C (PKC). Disparity in regulation has been previously reported among the splice variants of NCX3 therefore the activity of Ca2+ uptake and extrusion of the two murine variants was measured using fura-2-based Ca2+ imaging and revealed that both variants are similarly regulated. PKC stimulation diminished the Ca2+ uptake performed by NCX3 in the reverse mode, triggered by a rise in [Ca2+]i or [Na+]i, whereas an opposite response was observed upon PKA stimulation, with a significant increase of the Ca2+ uptake after a rise in [Ca2+]i. The latter stimulation affected similarly the efflux capacity of NCX3 whereas Ca2+ extrusion capacity remained unaffected under activation of PKC. Next, using site-directed mutagenesis, the sensitivity of NCX3 to PKC was abolished by singly mutating its predicted phosphorylation sites T529 or S695. The sensitivity to PKC might be due to the influence of T529 phosphorylation on the Ca2+-binding domain 1. Additionally, we showed that stimulation of NCX3 by PKA occurred through residue S524. This effect may well participate in the fight-or-flight response in skeletal muscle and the long-term potentiation in hippocampus.  相似文献   

18.
Considerable evidence indicates that the renal Na+,K+-ATPase is regulated through phosphorylation/dephosphorylation reactions by kinases and phosphatases stimulated by hormones and second messengers. Recently, it has been reported that amino acids close to the NH2-terminal end of the Na+,K+-ATPase α-subunit are phosphorylated by protein kinase C (PKC) without apparent effect of this phosphorylation on Na+,K+-ATPase activity. To determine whether the α-subunit NH2-terminus is involved in the regulation of Na+,K+-ATPase activity by PKC, we have expressed the wild-type rodent Na+,K+-ATPase α-subunit and a mutant of this protein that lacks the first thirty-one amino acids at the NH2-terminal end in opossum kidney (OK) cells. Transfected cells expressed the ouabain-resistant phenotype characteristic of rodent kidney cells. The presence of the α-subunit NH2-terminal segment was not necessary to express the maximal Na+,K+-ATPase activity in cell membranes, and the sensitivity to ouabain and level of ouabain-sensitive Rb+-transport in intact cells were the same in cells transfected with the wild-type rodent α1 and the NH2-deletion mutant cDNAs. Activation of PKC by phorbol 12-myristate 13-acetate increased the Na+,K+-ATPase mediated Rb+-uptake and reduced the intracellular Na+ concentration of cells transfected with wild-type α1 cDNA. In contrast, these effects were not observed in cells expressing the NH2-deletion mutant of the α-subunit. Treatment with phorbol ester appears to affect specifically the Na+,K+-ATPase activity and no evidence was observed that other proteins involved in Na+-transport were affected. These results indicate that amino acid(s) located at the α-subunit NH2-terminus participate in the regulation of the Na+,K+-ATPase activity by PKC. Received: 10 July 1996/Revised: 19 September 1996  相似文献   

19.

Background

Recent attention has focused on understanding the role of the brain-renin-angiotensin-system (RAS) in stroke and neurodegenerative diseases. Direct evidence of a role for the brain-RAS in Parkinson's disease (PD) comes from studies demonstrating the neuroprotective effect of RAS inhibitors in several neurotoxin based PD models. In this study, we show that an antagonist of the angiotensin II (Ang II) type 1 (AT1) receptor, losartan, protects dopaminergic (DA) neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity both in primary ventral mesencephalic (VM) cultures as well as in the substantia nigra pars compacta (SNpc) of C57BL/6 mice (Fig. 1).

Results

In the presence of exogenous Ang II, losartan reduced MPP+ (5 μM) induced DA neuronal loss by 72% in vitro. Mice challenged with MPTP showed a 62% reduction in the number of DA neurons in the SNpc and a 71% decrease in tyrosine hydroxylase (TH) immunostaining of the striatum, whereas daily treatment with losartan lessened MPTP-induced loss of DA neurons to 25% and reduced the decrease in striatal TH+ immunostaining to 34% of control.

Conclusion

Our study demonstrates that the brain-RAS plays an important neuroprotective role in the MPTP model of PD and points to AT1 receptor as a potential novel target for neuroprotection.  相似文献   

20.
Summary We have analyzed the mechanism of Na+-dependent pHi; recovery from an acid load in A6 cells (an amphibian distal nephron cell line) by using the intracellular pH indicator 27-bis(2-carboxyethyl)5, 6 carboxyfluorescein (BCECF) and single cell microspectrofluorometry. A6 cells were found to express Na+/H+-exchange activity only on the basolateral membrane: Na+/H+-exchange activity follows simple saturation kinetics with an apparent K mfor Na+ of approximately 11 mm; it is inhibited in a competitive manner by ethylisopropylamiloride (EIPA). This Na+/H+-exchange activity is inhibited by pharmacological activation of protein kinase A (PKA) as well as of protein kinase C (PKC). Addition of arginine vasopressin (AVP) either at low (subnanomolar) or at high (micromolar) concentrations inhibits Na+/H+-exchange activity; AVP stimulates IP3 production at low concentrations, whereas much higher concentrations are required to stimualte cAMP formation. These findings suggest that in A6 cells (i) Na+/H+-exchange is located in the basolateral membrane and (ii) PKC activation (heralded by IP3 turnover) is likely to be the mediator of AVP action at low AVP concentrations.This work was supported by the Swiss National Science Foundation (Grant No. 32-30785.91), the Stiftung für wissenschaftliche Forschung an der Universität Zürich, the Hartmann-Müller Stiftung, the Sandoz-Stiftung, the Roche Research Foundation, and the Geigy Jubiläumsstiftung. Prof. Dr. V. Casavola and Dr. R. Guerra were supported by a research grant, No. 91.02470.CT14 of the Consiglio Nazionale della Ricerche (C.N.R.) We are grateful to Prof. Dr. B.C. Rossier of the Institute of Pharmacology of Lausanne (Switzerland) for the gift of the A6 cells, to H.P. Gaeggeler for the supply of the necessary culture media and to Jutka Forgo for her excellent help in the day-to-day culturing of the A6 cells. The secretarial assistance of D. Rossi is gratefully acknowledged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号