首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The use of synthetic long peptides (SLP) has been proven to be a promising approach to induce adaptive immune responses in vaccination strategies. Here, we analyzed whether the efficiency to activate cytotoxic T cells by SLP-based vaccinations can be increased by conjugating SLPs to mannose residues. We could demonstrate that mannosylation of SLPs results in increased internalization by the mannose receptor (MR) on murine antigen-presenting cells. MR-mediated internalization targeted the mannosylated SLPs into early endosomes, from where they were cross-presented very efficiently compared to non-mannosylated SLPs. The influence of SLP mannosylation was specific for cross-presentation, as no influence on MHC II-restricted presentation was observed. Additionally, we showed that vaccination of mice with mannosylated SLPs containing epitopes from either ovalbumin or HPV E7 resulted in enhanced proliferation and activation of antigen-specific CD8+ T cells. These findings demonstrate that mannosylation of SLPs augments the induction of a cytotoxic T cell response in vitro and in vivo and might be a promising approach to induce cytotoxic T cell responses in e.g. cancer therapy and anti-viral immunity.  相似文献   

4.
There is an increasing body of evidence suggesting that the transfer of preformed MHC class I:peptide complexes between a virus-infected cell and an uninfected APC, termed cross-dressing, represents an important mechanism of Ag presentation to CD8(+) T cells in host defense. However, although it has been shown that memory CD8(+) T cells can be activated by uninfected dendritic cells (DCs) cross-dressed by Ag from virus-infected parenchymal cells, it is unknown whether conditions exist during virus infection in which naive CD8(+) T cells are primed and differentiate to cytolytic effectors through cross-dressing, and indeed which DC subset would be responsible. In this study, we determine whether the transfer of MHC class I:peptide complexes between infected and uninfected murine DC plays a role in CD8(+) T cell priming to viral Ags in vivo. We show that MHC class I:peptide complexes from peptide-pulsed or virus-infected DCs are indeed acquired by splenic CD8α(-) DCs in vivo. Furthermore, the acquired MHC class I:peptide complexes are functional in that they induced Ag-specific CD8(+) T cell effectors with cytolytic function. As CD8α(-) DCs are poor cross-presenters, this may represent the main mechanism by which CD8α(-) DCs present exogenously encountered Ag to CD8(+) T cells. The sharing of Ag as preformed MHC class I:peptide complexes between infected and uninfected DCs without the restraints of Ag processing may have evolved to accurately amplify the response and also engage multiple DC subsets critical in the generation of strong antiviral immunity.  相似文献   

5.
Mouse T cell clone 2C recognizes two different major histocompatibility (MHC) ligands, the self MHC Kb and the allogeneic MHC Ld. Two distinct peptides, SIY (SIYRYYGL) and QL9 (QLSPFPFDL), act as strong and specific agonists when bound to Kb and Ld, respectively. To explore further the mechanisms involved in peptide potency and specificity, here we examined a collection of single amino acid peptide variants of SIY and QL9 for 1) T cell activity, 2) binding to their respective MHC, and 3) binding to the 2C T cell receptor (TCR) and high affinity TCR mutants. Characterization of SIY binding to MHC Kb revealed significant effects of three SIY residues that were clearly embedded within the Kb molecule. In contrast, QL9 binding to MHC Ld was influenced by the majority of peptide side chains, distributed across the entire length of the peptide. Binding of the SIY-Kb complex to the TCR involved three SIY residues that were pointed toward the TCR, whereas again the majority of QL9 residues influenced binding of TCRs, and thus the QL9 residues had impacts on both Ld and TCR binding. In general, the magnitude of T cell activity mediated by a peptide variant was influenced more by peptide binding to MHC than by binding the TCR, especially for higher affinity TCRs. Findings with both systems, but QL9-Ld in particular, suggest that many single-residue substitutions, introduced into peptides to improve their binding to MHC and thus their vaccine potential, could impair T cell reactivity due to their dual impact on TCR binding.  相似文献   

6.
7.
8.
The overall CD8 T cell response to human/simian immunodeficiency virus (HIV/SIV) targets a collection of discrete epitope specificities. Some of these epitope-specific CD8 T cells emerge in the weeks and months following infection and rapidly select for sequence variants, whereas other CD8 T cell responses develop during the chronic infection phase and rarely select for sequence variants. In this study, we tested the hypothesis that acute-phase CD8 T cell responses that do not rapidly select for escape variants are unable to control viral replication in vivo as well as those that do rapidly select for escape variants. We created a derivative of live attenuated SIV (SIVmac239Δnef) in which we ablated five epitopes that elicit early CD8 T cell responses and rapidly accumulate sequence variants in SIVmac239-infected Mauritian cynomolgus macaques (MCMs) that are homozygous for the M3 major histocompatibility complex (MHC) haplotype. This live attenuated SIV variant was called m3KOΔnef. Viremia was significantly higher in M3 homozygous MCMs infected with m3KOΔnef than in either MHC-mismatched MCMs infected with m3KOΔnef or MCMs infected with SIVmac239Δnef. Three CD8 T cell responses, including two that do not rapidly select for escape variants, predominated during early m3KOΔnef infection in the M3 homozygous MCMs, but these animals were unable to control viral replication. These results provide evidence that acute-phase CD8 T cell responses that have the potential to rapidly select for escape variants in the early phase of infection are needed to establish viral control in vivo.  相似文献   

9.
Influenza virus infection and the resulting complications are a significant global public health problem. Improving humoral immunity to influenza is the target of current conventional influenza vaccines, however, these are generally not cross-protective. On the contrary, cell-mediated immunity generated by primary influenza infection provides substantial protection against serologically distinct viruses due to recognition of cross-reactive T cell epitopes, often from internal viral proteins conserved between viral subtypes. Efforts are underway to develop a universal flu vaccine that would stimulate both the humoral and cellular immune responses leading to long-lived memory. Such a universal vaccine should target conserved influenza virus antibody and T cell epitopes that do not vary from strain to strain. In the last decade, immunoproteomics, or the direct identification of HLA class I presented epitopes, has emerged as an alternative to the motif prediction method for the identification of T cell epitopes. In this study, we used this method to uncover several cross-specific MHC class I specific T cell epitopes naturally presented by influenza A-infected cells. These conserved T cell epitopes, when combined with a cross-reactive antibody epitope from the ectodomain of influenza M2, generate cross-strain specific cell mediated and humoral immunity. Overall, we have demonstrated that conserved epitope-specific CTLs could recognize multiple influenza strain infected target cells and, when combined with a universal antibody epitope, could generate virus specific humoral and T cell responses, a step toward a universal vaccine concept. These epitopes also have potential as new tools to characterize T cell immunity in influenza infection, and may serve as part of a universal vaccine candidate complementary to current vaccines.  相似文献   

10.
The human cellular immune response against 14 distantly related yeast species was analyzed by intracellular cytokine staining of lymphocytes after ex vivo stimulation of whole blood. While the CD4 T cell response was marginal, extensive MHC class I-restricted CD8 T cell responses were detected against a number of species including spoiling, environmental and human pathogenic yeasts. The yeast-specific CD8 T cells expressed interferon-gamma but lacked expression of CD27 and CCR7, indicating that they were end-differentiated effector memory cells. Mainly intact yeast cells rather than spheroplasts were able to induce cytokine expression in T cells demonstrating that the dominant immunogens were located in the yeast cell wall. Together these data underline the importance of the cellular immune response in protecting humans against yeast and fungal infections. And, from another perspective, recombinant yeast suggests itself as a potential vaccine candidate to efficiently induce antigen-specific CD8 T cell responses.  相似文献   

11.
Chagas’ disease is a major public health problem affecting nearly 10 million in Latin America. Despite several experimental vaccines have shown to be immunogenic and protective in mouse models, there is not a current vaccine being licensed for humans or in clinical trial against T. cruzi infection. Towards this goal, we used the backbone of Yellow Fever (YF) 17D virus, one of the most effective and well-established human vaccines, to express an immunogenic fragment derived from T. cruzi Amastigote Surface Protein 2 (ASP-2). The cDNA sequence of an ASP-2 fragment was inserted between E and NS1 genes of YF 17D virus through the construction of a recombinant heterologous cassette. The replication ability and genetic stability of recombinant YF virus (YF17D/ENS1/Tc) was confirmed for at least six passages in Vero cells. Immunogenicity studies showed that YF17D/ENS1/Tc virus elicited neutralizing antibodies and gamma interferon (IFN-γ) producing-cells against the YF virus. Also, it was able to prime a CD8+ T cell directed against the transgenic T. cruzi epitope (TEWETGQI) which expanded significantly as measured by T cell-specific production of IFN-γ before and after T. cruzi challenge. However, most important for the purposes of vaccine development was the fact that a more efficient protective response could be seen in mice challenged after vaccination with the YF viral formulation consisting of YF17D/ENS1/Tc and a YF17D recombinant virus expressing the TEWETGQI epitope at the NS2B-3 junction. The superior protective immunity observed might be due to an earlier priming of epitope-specific IFN-γ-producing T CD8+ cells induced by vaccination with this viral formulation. Our results suggest that the use of viral formulations consisting of a mixture of recombinant YF 17D viruses may be a promising strategy to elicit protective immune responses against pathogens, in general.  相似文献   

12.
The association between the host immune environment and the size of the HIV reservoir during effective antiretroviral therapy is not clear. Progress has also been limited by the lack of a well-accepted assay for quantifying HIV during therapy. We examined the association between multiple measurements of HIV and T cell activation (as defined by markers including CD38, HLA-DR, CCR5 and PD-1) in 30 antiretroviral-treated HIV-infected adults. We found a consistent association between the frequency of CD4+ and CD8+ T cells expressing HLA-DR and the frequency of resting CD4+ T cells containing HIV DNA. This study highlights the need to further examine this relationship and to better characterize the biology of markers commonly used in HIV studies. These results may also have implications for reactivation strategies.  相似文献   

13.
14.
Human cytomegalovirus (HCMV) is an important human pathogen. It is a leading cause of congenital infection and a leading infectious threat to recipients of solid organ transplants as well as of allogeneic hematopoietic cell transplants. Moreover, it has recently been suggested that HCMV may promote tumor development. Both CD4+ and CD8+ T cell responses are important for long-term control of the virus, and adoptive transfer of HCMV-specific T cells has led to protection from reactivation and HCMV disease. Identification of HCMV-specific T cell epitopes has primarily focused on CD8+ T cell responses against the pp65 phosphoprotein. In this study, we have focused on CD4+ and CD8+ T cell responses against the immediate early 1 and 2 proteins (IE1 and IE2). Using overlapping peptides spanning the entire IE1 and IE2 sequences, peripheral blood mononuclear cells from 16 healthy, HLA-typed, donors were screened by ex vivo IFN-γ ELISpot and in vitro intracellular cytokine secretion assays. The specificities of CD4+ and CD8+ T cell responses were identified and validated by HLA class II and I tetramers, respectively. Eighty-one CD4+ and 44 CD8+ T cell responses were identified representing at least seven different CD4 epitopes and 14 CD8 epitopes restricted by seven and 11 different HLA class II and I molecules, respectively, in total covering 91 and 98% of the Caucasian population, respectively. Presented in the context of several different HLA class II molecules, two epitope areas in IE1 and IE2 were recognized in about half of the analyzed donors. These data may be used to design a versatile anti-HCMV vaccine and/or immunotherapy strategy.  相似文献   

15.
There is an ultimate need for efficacious vaccines against human cytomegalovirus (HCMV), which causes severe morbidity and mortality among neonates and immunocompromised individuals. In this study we explored synthetic long peptide (SLP) vaccination as a platform modality to protect against mouse CMV (MCMV) infection in preclinical mouse models. In both C57BL/6 and BALB/c mouse strains, prime-booster vaccination with SLPs containing MHC class I restricted epitopes of MCMV resulted in the induction of strong and polyfunctional (i.e., IFN-γ+, TNF+, IL-2+) CD8+ T cell responses, equivalent in magnitude to those induced by the virus itself. SLP vaccination initially led to the formation of effector CD8+ T cells (KLRG1hi, CD44hi, CD127lo, CD62Llo), which eventually converted to a mixed central and effector-memory T cell phenotype. Markedly, the magnitude of the SLP vaccine-induced CD8+ T cell response was unrelated to the T cell functional avidity but correlated to the naive CD8+ T cell precursor frequency of each epitope. Vaccination with single SLPs displayed various levels of long-term protection against acute MCMV infection, but superior protection occurred after vaccination with a combination of SLPs. This finding underlines the importance of the breadth of the vaccine-induced CD8+ T cell response. Thus, SLP-based vaccines could be a potential strategy to prevent CMV-associated disease.  相似文献   

16.
Programmed T cell differentiation is critically influenced by the complement of costimulatory and coinhibitory signals transmitted during initial antigen encounter. We previously showed that selective CD28 blockade with novel domain antibodies that leave CTLA-4-mediated coinhibitory signaling intact resulted in more profound attenuation of donor-reactive T cell responses and improved graft survival in a murine transplant model. Selective CD28 blockade was also associated with decreased ICOS expression on donor-reactive CD8+ T cell responses as compared to CTLA-4 Ig, but the functional importance of this reduced ICOS expression was not known. In this study, we created retrogenic donor-reactive CD8+ T cells that overexpress ICOS in order to determine whether reduced ICOS expression mechanistically underlies the increased efficacy of selective CD28 blockade in controlling graft-specific T cell responses as compared to conventional costimulation blockade with CTLA-4 Ig. Results indicated that the ability of selective CD28 blockade to blunt donor-reactive CD8+ T cell expansion following transplantation was independent of its ability to inhibit ICOS expression. Furthermore, we have previously published that 2B4 coinhibitory signals are functionally important for controlling graft-specific CD8+ T cell responses in mice treated with CD28 blockade. Here we used a co-adoptive transfer approach to determine that 2B4 coinhibitory signals on antigen-specific CD8+ T cells function in a cell-intrinsic manner to limit ICOS expression in the setting of selective CD28 blockade.  相似文献   

17.
International Journal of Peptide Research and Therapeutics - Tumor cells in breast cancer are immunogenic and express proteins that can induce immune responses. One important antigen is human...  相似文献   

18.
19.
Mycobacterium tuberculosis survival in cells requires mycobactin siderophores. Recently, the search for lipid antigens presented by the CD1a antigen-presenting protein led to the discovery of a mycobactin-like compound, dideoxymycobactin (DDM). Here we synthesize DDMs using solution phase and solid phase peptide synthesis chemistry. Comparison of synthetic standards to natural mycobacterial mycobactins by nuclear magnetic resonance and mass spectrometry allowed identification of an unexpected α-methyl serine unit in natural DDM. This finding further distinguishes these pre-siderophores as foreign compounds distinct from conventional peptides, and we provide evidence that this chemical variation influences the T cell response. One synthetic DDM recapitulated natural structures and potently stimulated T cells, making it suitable for patient studies of CD1a in infectious disease. DDM analogs differing in the stereochemistry of their butyrate or oxazoline moieties were not recognized by human T cells. Therefore, we conclude that T cells show precise specificity for both arms of the peptide, which are predicted to lie at the CD1a-T cell receptor interface.Pathogens are detected by the host when antigenic molecules directly contact immune receptors during the early stages of infection. The strategy of intracellular infection allows viruses, certain bacteria and protozoa to partially cloak themselves from the immune response by physically encapsulating their antigens within host cells. Intracellular residence also takes advantage of immune tolerance mechanisms that prevent autoimmune destruction of self. T cells play a central role in immunity to intracellular pathogens because they can respond to antigens that are generated inside cells and then transported to the surface of infected cells after binding to antigen-presenting molecules. The antigen-presenting molecules encoded in the major histocompatibility complex are widely known for presenting peptide fragments of proteins (1). More recently, human and mouse members of the CD1 (cluster of differentiation 1) system have been shown to present small amphipathic molecules, including a variety of membrane lipids, glycolipids, and lipopeptides, greatly expanding the molecular structures recognized by the cellular immune system (2, 3).Among human CD1 proteins (CD1a, CD1b, CD1c, CD1d, and CD1e), each CD1 isoform is expressed on a different spectrum of antigen-presenting cells. Human CD1a proteins are distinguished from other CD1 proteins by high expression levels on the surface of intradermal Langerhans cells, which play a role in barrier immune function (4). Human T cell clones have been shown to directly recognize CD1a proteins in the presence of exogenous foreign antigens (5) or in the presence of sulfatide and other self lipids (6, 7), suggesting a role for CD1a in T cell activation. In addition, mycobacteria and other intracellular pathogens have been shown to increase CD1a expression in lesions found in leprosy and tuberculosis patients, implying a possible role for CD1a in the response to infection, especially at mucosal or skin sites (810). Analysis of the molecular target recognized by CD1a-restricted T cell clone (CD8-2) allowed the identification of a foreign antigen presented by CD1a as dideoxymycobactin (DDM) (11).2Mycobactin binds iron to promote Mycobacterium tuberculosis survival. DDM was initially isolated (11) from antigenic lipid extracts of M. tuberculosis, a pathogen that kills ∼1.7 million humans annually on a worldwide basis (12). The determination of DDM structure was based on mass spectrometric and NMR studies of limiting amounts of natural material derived from the pathogenic organisms, so that not all elements of its chemical structure could be formally determined. Instead, its assigned structure was facilitated by obvious parallels of dideoxymycobactin with mycobactin, a lipopeptide siderophore (13, 14). Iron is required for reduction-oxidation reactions involving respiration and other basic metabolic pathways in bacterial pathogens (13). Environmental mycobacteria have at least two iron uptake pathways, but mycobactin and the related molecule carboxymycobactin represent the only known dedicated iron uptake pathway for pathogenic species like M. tuberculosis (15, 16). Highlighting the physiological importance of the mycobactin pathway, deletion of mycobactin synthase B limits M. tuberculosis survival in cells (13, 14). Also, mammalian innate immune systems produce siderocalin, a 20-kDa lipocalin that binds both ferric and apo siderophores, preventing their uptake and subsequent iron delivery to microbes (1720). The small available yields of natural material highlighted the need for a straightforward method to synthesize DDM for studies of its role in mycobacterial iron acquisition and testing T cell responses in human populations, as well as to provide authentic standards to investigate unknown aspects of natural DDM stereochemistry. Here we report two syntheses for production of DDM in solution phase and solid phase. Comparison of synthetic and natural DDMs gives unexpected insight into the stereochemical structures of the methylserine, oxazoline, and butyrate moieties of DDM and provides direct evidence that the T cell response is highly specific for a unique aspect of DDM structure that protrudes from the surface of the CD1a-DDM complexes.  相似文献   

20.
过继免疫治疗(adoptive cell transfer,ACT)是肿瘤治疗中一种有效的免疫治疗手段,但是在没有化疗或者放疗等辅助治疗手段时,过继免疫治疗缓解肿瘤生长的效果非常短暂.为了探索一种更为有效的过继免疫治疗手段,我们使用白介素15(IL-15)体外扩增OT-ⅠCD8 T细胞,使其分化成为中央记忆性T细胞(central memory T cells,TCM),并将其过继转移至携带B16-OVA肿瘤的小鼠中.我们发现,与IL-2体外扩增的CD8 T细胞(effector T cells,TEFF)相比,TCM对肿瘤的生长具有长时间的缓解作用,而IL-2分化的TEFFs治疗肿瘤在短暂的缓解后反弹性生长.进一步的研究发现,TCM治疗的小鼠脾脏内肿瘤抗原特异性的T细胞数量和比例明显高于TEFF组,并且RT-PCR分析表明TCM治疗的小鼠肿瘤内细胞高表达MHCⅠ类分子.这些现象提示了抗原提呈对过继细胞转移治疗的效果具有重要作用.我们的研究对于发展更为有效的肿瘤免疫治疗具有提示意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号