首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kang W  Tong JH  Chan AW  Lung RW  Chau SL  Wong QW  Wong N  Yu J  Cheng AS  To KF 《PloS one》2012,7(3):e33919
Stathmin1 (STMN1) is a candidate oncoprotein and prognosis marker in several kinds of cancers. This study was aimed to analyze its expression and biological functions in gastric cancer. The expression of STMN1 was evaluated by qRT-PCR, western blot and immunohistochemistry. The biological function of STMN1 was determined by MTT proliferation assays, monolayer colony formation and cell invasion assays using small interference RNA technique in gastric cancer cell lines. We also explored the regulation of STMN1 expression by microRNA-223. STMN1 was upregulated in gastric cancer cell lines and primary gastric adenocarcinomas. STMN1-positive tumors were more likely to be found in old age group and associated with p53 nuclear expression. In diffuse type gastric adenocarcinomas, STMN1 expression was correlated with age (p = 0.043), T stage (p = 0.004) and lymph node metastasis (p = 0.046). Expression of STMN1 in diffuse type gastric adenocarcinoma was associated with poor disease specific survival by univariate analysis (p = 0.01). STMN1 knockdown in AGS and MKN7 cell lines suppressed proliferation (p<0.001), reduced monolayer colony formation (p<0.001), inhibited cell invasion and migration ability (p<0.001) and induced G1 phase arrest. siSTMN1 could also suppress cell growth in vivo (p<0. 01). We finally confirmed that STMN1 is a putative downstream target of miR-223 in gastric cancer. Our findings supported an oncogenic role of STMN1 in gastric cancer. STMN1 might serve as a prognostic marker and a potential therapeutic target for gastric cancer.  相似文献   

2.
Multiple studies have shown that bipolar (BP) electric pulses in the microsecond range are more effective at permeabilizing cells while maintaining similar cell survival rates as compared to monopolar (MP) pulse equivalents. In this paper, we investigated whether the same advantage existed for BP nanosecond-pulsed electric fields (nsPEF) as compared to MP nsPEF. To study permeabilization effectiveness, MP or BP pulses were delivered to single Chinese hamster ovary (CHO) cells and the response of three dyes, Calcium Green-1, propidium iodide (PI), and FM1-43, was measured by confocal microscopy. Results show that BP pulses were less effective at increasing intracellular calcium concentration or PI uptake and cause less membrane reorganization (FM1-43) than MP pulses. Twenty-four hour survival was measured in three cell lines (Jurkat, U937, CHO) and over ten times more BP pulses were required to induce death as compared to MP pulses of similar magnitude and duration. Flow cytometry analysis of CHO cells after exposure (at 15 min) revealed that to achieve positive FITC-Annexin V and PI expression, ten times more BP pulses were required than MP pulses. Overall, unlike longer pulse exposures, BP nsPEF exposures proved far less effective at both membrane permeabilization and cell killing than MP nsPEF.  相似文献   

3.
High power, nanosecond pulsed electric field (nsPEF) effects have been focused on bacterial decontamination, but the impact on mammalian cells is now being revealed. During nsPEF applications, electrical pulses of 10, 60 or 300 ns durations were applied to cells using electric field amplitudes as high as 300 kV/cm. Because of the ultra-short pulse durations, the energy transferred to cells is negligible, and only non-thermal effects are observed. We investigated the genotoxicity of nsPEF on adherent and non-adherent cell lines including 10 human lines and one mouse cell line with different origin and growth characteristics. We present data examining the effects of nsPEF exposure on cell survival assessed by clonogenic formation or live cell count; DNA damage determined by the comet assay and chromosome aberrations; and cell cycle parameters by measuring the mitotic indices of exposed cells. Using each of these indicators, we observed differential effects among cell types with non-adherent cells being more sensitive to the genotoxic effects of nsPEF exposures than adherent cells. Non-adherent cultures showed a rapid decrease in cell viability (90%), induction of DNA damage, and a decrease in the number of cells reaching mitosis after one 60 ns pulse with an electric field intensity of 60 kV/cm. These effects were not observed in cells grown as adherent cultures, with the exception of the mouse 3T3 cell line, which showed survival characteristics similar to non-adherent cultures. These data suggest that nsPEF genotoxicity may be cell type specific, and therefore have potential applications in the selective removal of one cell type from another, for example, in diseased states.  相似文献   

4.
Xu H  Wu Q  Dang S  Jin M  Xu J  Cheng Y  Pan M  Wu Y  Zhang C  Zhang Y 《PloS one》2011,6(12):e27399
The link between inflammation and colorectal carcinoma has been acknowledged. However, the impact of bacterial lipopolysaccharide (LPS) binding to Toll-like receptor 4 (TLR4) on chemokine receptors in human colorectal carcinoma cells still remains to be elucidated. The present study shows that exposure to LPS elevated CXC chemokine receptor 7 (CXCR7) expression in colorectal carcinoma SW480 and Colo 205 cell lines expressing TLR4/myeloid differential protein (MD-2). CXCR7 is associated with SW480 cell proliferation and migration. However, exposure of SW480 and Colo 205 cells to LPS had no effect on CXCR4 expression. To further support the above results, the expression of TLR4, MD-2, and CXCR7 was analyzed in human colorectal carcinoma tissues. Higher rates of TLR4 (53%), MD-2 (70%), and CXCR7 (29%) expression were found in colorectal carcinoma tissues than in normal tissues. We demonstrated that the recombination of TLR4, MD-2 and CXCR7 strongly correlated with tumor size, lymph node metastasis and distant metastasis in colorectal carcinoma tissue samples (p = 0.037, p = 0.002, p = 0.042, resp.). Accordingly, simultaneous examination of the expression of TLR4, MD-2 and CXCR7 in cancer tissues of colorectal carcinoma may provide valuable prognostic diagnosis of carcinoma growth and metastasis. Interplay of TLR4, MD-2 and CXCR7 may be of interest in the context of novel immunomodulatory therapies for colorectal carcinoma.  相似文献   

5.
MicroRNAs (miRNAs) play important roles in the regulation of genes associated with cancer development and progression. By the more deeply characterization of miRNAs’ effect in cancer development, it requires a useful tool to investigate expression and distribution of a miRNA in cancer cells and tissues. To fulfill this application demand, we developed a miRNA in situ hybridization (MISH) approach using the 2′-Fluoro modified miRNA probe in combination with enzyme-labeled fluorescence (ELF) signal amplification approach. MISH was used to study expression of miR-375 in esophageal squamous cell carcinoma (ESCC) cell lines and tissues using a tissue microarray (TMA) containing 300 cases. The results showed that our MISH approach is a practical way to detect expression and distribution of a tested miRNA in both cultured cells and archive tissue sections. MISH results also showed that miR-375 was frequently downregulated in ESCCs, which was significantly associated with advanced clinical stage (p = 0.003) tumor metastasis (p = 0.04) and poor outcome (p = 0.04) of ESCC. Moreover, the accuracy of MISH results could be confirmed by QRT-PCR. Our results demonstrated that MISH is a useful and reliable tool to study miRNA expression in solid tumors. Downregulation of miR-375 can be used as a biomarker to predict the outcome of ESCC.  相似文献   

6.

Purpose

To examine the in vitro and in vivo efficacy of the dual PI3K/mTOR inhibitor NVP-BEZ235 in treatment of PIK3CA wild-type colorectal cancer (CRC).

Experimental Design

PIK3CA mutant and wild-type human CRC cell lines were treated in vitro with NVP-BEZ235, and the resulting effects on proliferation, apoptosis, and signaling were assessed. Colonic tumors from a genetically engineered mouse (GEM) model for sporadic wild-type PIK3CA CRC were treated in vivo with NVP-BEZ235. The resulting effects on macroscopic tumor growth/regression, proliferation, apoptosis, angiogenesis, and signaling were examined.

Results

In vitro treatment of CRC cell lines with NVP-BEZ235 resulted in transient PI3K blockade, sustained decreases in mTORC1/mTORC2 signaling, and a corresponding decrease in cell viability (median IC50 = 9.0–14.3 nM). Similar effects were seen in paired isogenic CRC cell lines that differed only in the presence or absence of an activating PIK3CA mutant allele. In vivo treatment of colonic tumor-bearing mice with NVP-BEZ235 resulted in transient PI3K inhibition and sustained blockade of mTORC1/mTORC2 signaling. Longitudinal tumor surveillance by optical colonoscopy demonstrated a 97% increase in tumor size in control mice (p = 0.01) vs. a 43% decrease (p = 0.008) in treated mice. Ex vivo analysis of the NVP-BEZ235-treated tumors demonstrated a 56% decrease in proliferation (p = 0.003), no effects on apoptosis, and a 75% reduction in angiogenesis (p = 0.013).

Conclusions

These studies provide the preclinical rationale for studies examining the efficacy of the dual PI3K/mTOR inhibitor NVP-BEZ235 in treatment of PIK3CA wild-type CRC.  相似文献   

7.
Kim KW  Moretti L  Lu B 《PloS one》2008,3(5):e2275

Background

Lung cancer remains the leading cause of cancer death worldwide. Radioresistance of lung cancer cells results in unacceptable rate of loco-regional failure. Although radiation is known to induce apoptosis, our recent study showed that knockdown of pro-apoptotic proteins Bak and Bax resulted in an increase in autophagic cell death and lung cancer radiosensitivity in vitro. To further explore the potential of apoptosis inhibition as a way to sensitize lung cancer for therapy, we tested M867, a novel chemical and reversible caspase-3 inhibitor, in combination with ionizing radiation in vivo and in vitro.

Methods and Findings

M867 reduced clonogenic survival in H460 lung cancer cells (DER = 1.27, p = 0.007) compared to the vehicle-treated treated cells. We found that administration of M867 with ionizing radiation in an in vivo mouse hind limb lung cancer model was well tolerated, and produced a significant tumor growth delay compared to radiation alone. A dramatic decrease in tumor vasculature was observed with M867 and radiation using von Willebrand factor staining. In addition, Ki67 index showed >5-fold reduction of tumor proliferation in the combination therapy group, despite the reduced levels of apoptosis observed with terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining. Radiosensitizing effect of M867 through inhibiting caspases was validated using caspase-3/-7 double-knockout (DKO) mouse embryonic fibroblasts (MEF) cell model. Consistent with our previous study, autophagy contributed to the mechanism of increased cell death, following inhibition of apoptosis. In addition, matrigel assay showed a decrease in in vitro endothelial tubule formation during the M867/radiation combination treatment.

Conclusions

M867 enhances the cytotoxic effects of radiation on lung cancer and its vasculature both in vitro and in vivo. M867 has the potential to prolong tumor growth delay by inhibiting tumor proliferation. Clinical trials are needed to determine the potential of this combination therapy in patients with locally advanced lung cancer.  相似文献   

8.
The p53 target gene WIG-1 (ZMAT3) is located in chromosomal region 3q26, that is frequently amplified in human tumors, including cervical cancer. We have examined the status of WIG-1 and the encoded Wig-1 protein in cervical carcinoma cell lines and tumor tissue samples. Our analysis of eight cervical cancer lines (Ca Ski, ME-180, MS751, SiHa, SW756, C-4I, C-33A, and HT-3) by spectral karyotype, comparative genomic hybridization and Southern blotting revealed WIG-1 is not the primary target for chromosome 3 gains. However, WIG-1/Wig-1 were readily expressed and WIG-1 mRNA expression was higher in the two HPV-negative cervical cell lines (C33-A, HT-3) than in HPV-positive lines. We then assessed Wig-1 expression by immunohistochemistry in 38 cervical tumor samples. We found higher nuclear Wig-1 expression levels in HPV-negative compared to HPV positive cases (p = 0.002) and in adenocarcinomas as compared to squamous cell lesions (p<0.0001). Cases with moderate nuclear Wig-1 staining and positive cytoplasmic Wig-1 staining showed longer survival than patients with strong nuclear and negative cytoplasmic staining (p = 0.042). Nuclear Wig-1 expression levels were positively associated with age at diagnosis (p = 0.023) and histologic grade (p = 0.034). These results are consistent with a growth-promoting and/or anti-cell death function of nuclear Wig-1 and suggest that Wig-1 expression can serve as a prognostic marker in cervical carcinoma.  相似文献   

9.
Intense nanosecond pulsed electric fields (nsPEFs) interact with cellular membranes and intracellular structures. Investigating how cells respond to nanosecond pulses is essential for a) development of biomedical applications of nsPEFs, including cancer therapy, and b) better understanding of the mechanisms underlying such bioelectrical effects. In this work, we explored relatively mild exposure conditions to provide insight into weak, reversible effects, laying a foundation for a better understanding of the interaction mechanisms and kinetics underlying nsPEF bio-effects. In particular, we report changes in the nucleus of Jurkat cells (human lymphoblastoid T cells) exposed to single pulses of 60 ns duration and 1.0, 1.5 and 2.5 MV/m amplitudes, which do not affect cell growth and viability. A dose-dependent reduction in alkaline comet-assayed DNA migration is observed immediately after nsPEF exposure, accompanied by permeabilization of the plasma membrane (YO-PRO-1 uptake). Comet assay profiles return to normal within 60 minutes after pulse delivery at the highest pulse amplitude tested, indicating that our exposure protocol affects the nucleus, modifying DNA electrophoretic migration patterns.  相似文献   

10.
In this publication, we demonstrate that exposure of Jurkat and U937 cells to nanosecond pulsed electrical fields (nsPEF) can modulate the extrinsic-mediated apoptotic pathway via the Fas/CD95 death receptor. An inherent difference in survival between these two cell lines in response to 10 ns exposures has been previously reported (Jurkat being more sensitive to nsPEF than U937), but the reason for this sensitivity difference remains unknown. We found that exposure of each cell line to 100, 10 ns pulses at 50 kV/cm caused a marked increase in expression of cFLIP (extrinsic apoptosis inhibitor) in U937 and FasL (extrinsic apoptosis activator) in Jurkat, respectively. Measurement of basal expression levels revealed an inherent difference between U937 cells, having a higher expression of cFLIP, and Jurkat cells, having a higher expression of FasL. From these data, we hypothesize that the sensitivity difference between the cells to nsPEF exposure may be directly related to expression of extrinsic apoptotic regulators. To validate this hypothesis, we used siRNA to knockdown cFLAR (coding for cFLIP protein) expression in U937, and FasL expression in Jurkat and challenged them to 100, 10 ns pulses at 150 kV/cm, a typical lethal dose. We observed that U937 survival was reduced nearly 60 % in the knockdown population while Jurkat survival improved ~40 %. These findings support the hypothesis that cell survival following 10 ns pulse exposures depends on extrinsic apoptotic regulators. Interestingly, pretreatment of U937 with a 100-pulse, 50 kV/cm exposure (to amplify cFLAR expression) significantly reduced the lethality of a 150 kV/cm, 100-pulse exposure applied 24 h later. From these data, we conclude that the observed survival differences between cells, exposed to 10 ns pulsed electric fields, is due to inherent cell biochemistry rather than the biophysics of the exposure itself. Understanding cell sensitivity to nsPEF may provide researchers/clinicians with a predicable way to control or avoid unintended cell death during nsPEF exposure.  相似文献   

11.
H Yu  Z Liu  YJ Huang  M Yin  LE Wang  Q Wei 《PloS one》2012,7(7):e41853

Background

Excision repair cross-complementation group 4 gene (ERCC4/XPF) plays an important role in nucleotide excision repair and participates in removal of DNA interstrand cross-links and DNA double-strand breaks. Single nucleotide polymorphisms (SNPs) in ERCC4 may impact repair capacity and affect cancer susceptibility.

Methodology/Principal Findings

In this case-control study, we evaluated associations of four selected potentially functional SNPs in ERCC4 with risk of squamous cell carcinoma of the head and neck (SCCHN) in 1,040 non-Hispanic white patients with SCCHN and 1,046 cancer-free matched controls. We found that the variant GG genotype of rs2276466 was significantly associated with a decreased risk of SCCHN (OR = 0.69, 95% CI 0.50–0.96), and that the variant TT genotype of rs3136038 showed a borderline significant decreased risk with SCCHN (OR = 0.76, 95% CI: 0.58–1.01) in the recessive model. Such protective effects were more evident in oropharyngeal cancer (OR = 0.61, 95% CI: 0.40–0.92 for rs2276466; OR = 0.69, 95% CI: 0.48–0.98 for rs3136038). No significant associations were found for the other two SNPs (rs1800067 and rs1799798). In addition, individuals with the rs2276466 GG or with the rs3136038 TT genotypes had higher levels of ERCC4 mRNA expression than those with the corresponding wild-type genotypes in 90 Epstein-Barr virus-transformed lymphoblastoid cell lines derived from Caucasians.

Conclusions

These results suggest that these two SNPs (rs2276466 and rs3136038) in ERCC4 may be functional and contribute to SCCHN susceptibility. However, our findings need to be replicated in further large epidemiological and functional studies.  相似文献   

12.
High-amplitude electric pulses of nanosecond duration, also known as nanosecond pulsed electric field (nsPEF), are a novel modality with promising applications for cell stimulation and tissue ablation. However, key mechanisms responsible for the cytotoxicity of nsPEF have not been established. We show that the principal cause of cell death induced by 60- or 300-ns pulses in U937 cells is the loss of the plasma membrane integrity (“nanoelectroporation”), leading to water uptake, cell swelling, and eventual membrane rupture. Most of this early necrotic death occurs within 1–2 hr after nsPEF exposure. The uptake of water is driven by the presence of pore-impermeable solutes inside the cell, and can be counterbalanced by the presence of a pore-impermeable solute such as sucrose in the medium. Sucrose blocks swelling and prevents the early necrotic death; however the long-term cell survival (24 and 48 hr) does not significantly change. Cells protected with sucrose demonstrate higher incidence of the delayed death (6–24 hr post nsPEF). These cells are more often positive for the uptake of an early apoptotic marker dye YO-PRO-1 while remaining impermeable to propidium iodide. Instead of swelling, these cells often develop apoptotic fragmentation of the cytoplasm. Caspase 3/7 activity increases already in 1 hr after nsPEF and poly-ADP ribose polymerase (PARP) cleavage is detected in 2 hr. Staurosporin-treated positive control cells develop these apoptotic signs only in 3 and 4 hr, respectively. We conclude that nsPEF exposure triggers both necrotic and apoptotic pathways. The early necrotic death prevails under standard cell culture conditions, but cells rescued from the necrosis nonetheless die later on by apoptosis. The balance between the two modes of cell death can be controlled by enabling or blocking cell swelling.  相似文献   

13.
MicroRNAs (miRNAs) play an important role in carcinogenesis through the regulation of their target genes. miRNA-related single nucleotide polymorphisms (miR-SNPs) can affect miRNA biogenesis and target sites and can alter microRNA expression and functions. We examined 11 miR-SNPs, including 5 in microRNA genes, 3 in microRNA binding sites and 3 in microRNA-processing machinery components, and evaluated time to recurrence (TTR) according to miR-SNP genotypes in 175 surgically resected non-small-cell lung cancer (NSCLC) patients. Significant differences in TTR were found according to KRT81 rs3660 (median TTR: 20.3 months for the CC genotype versus 86.8 months for the CG or GG genotype; P = 0.003) and XPO5 rs11077 (median TTR: 24.7 months for the AA genotype versus 73.1 months for the AC or CC genotypes; P = 0.029). Moreover, when patients were divided according to stage, these differences were maintained for stage I patients (P = 0.002 for KRT81 rs3660; P<0.001 for XPO5 rs11077). When patients were divided into sub-groups according to histology, the effect of the KRT81 rs3660 genotype on TTR was significant in patients with squamous cell carcinoma (P = 0.004) but not in those with adenocarcinoma. In the multivariate analyses, the KRT81 rs3660 CC genotype (OR = 1.8; P = 0.023) and the XPO5 rs11077 AA genotype (OR = 1.77; P = 0.026) emerged as independent variables influencing TTR. Immunohistochemical analyses in 80 lung specimens showed that 95% of squamous cell carcinomas were positive for KRT81, compared to only 19% of adenocarcinomas (P<0.0001). In conclusion, miR-SNPs are a novel class of SNPs that can add useful prognostic information on the clinical outcome of resected NSCLC patients and may be a potential key tool for selecting high-risk stage I patients. Moreover, KRT81 has emerged as a promising immunohistochemical marker for the identification of squamous cell lung carcinoma.  相似文献   

14.
Diverse effects of nanosecond pulsed electric fields on cells and tissues   总被引:11,自引:0,他引:11  
The application of pulsed electric fields to cells is extended to include nonthermal pulses with shorter durations (10-300 ns), higher electric fields (< or =350 kV/cm), higher power (gigawatts), and distinct effects (nsPEF) compared to classical electroporation. Here we define effects and explore potential application for nsPEF in biology and medicine. As the pulse duration is decreased below the plasma membrane charging time constant, plasma membrane effects decrease and intracellular effects predominate. NsPEFs induced apoptosis and caspase activation that was calcium-dependent (Jurkat cells) and calcium-independent (HL-60 and Jurkat cells). In mouse B10-2 fibrosarcoma tumors, nsPEFs induced caspase activation and DNA fragmentation ex vivo, and reduced tumor size in vivo. With conditions below thresholds for classical electroporation and apoptosis, nsPEF induced calcium release from intracellular stores and subsequent calcium influx through store-operated channels in the plasma membrane that mimicked purinergic receptor-mediated calcium mobilization. When nsPEF were applied after classical electroporation pulses, GFP reporter gene expression was enhanced above that observed for classical electroporation. These findings indicate that nsPEF extend classical electroporation to include events that primarily affect intracellular structures and functions. Potential applications for nsPEF include inducing apoptosis in cells and tumors, probing signal transduction mechanisms that determine cell fate, and enhancing gene expression.  相似文献   

15.
Hung JH  Teng YN  Wang LH  Su IJ  Wang CC  Huang W  Lee KH  Lu KY  Wang LH 《PloS one》2011,6(12):e28977

Background

Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide with poor prognosis due to resistance to conventional chemotherapy and limited efficacy of radiotherapy. Our previous studies have indicated that expression of Hepatitis B virus pre-S2 large mutant surface antigen (HBV pre-S2Δ) is associated with a significant risk of developing HCC. However, the relationship between HBV pre-S2Δ protein and the resistance of chemotherapeutic drug treatment is still unclear.

Methodology/Principal Findings

Here, we show that the expression of HBV pre-S2Δ mutant surface protein in Huh-7 cell significantly promoted cell growth and colony formation. Furthermore, HBV pre-S2Δ protein increased both mRNA (2.7±0.5-fold vs. vehicle, p = 0.05) and protein (3.2±0.3-fold vs. vehicle, p = 0.01) levels of Bcl-2 in Huh-7 cells. HBV pre-S2Δ protein also enhances Bcl-2 family, Bcl-xL and Mcl-1, expression in Huh-7 cells. Meanwhile, induction of NF-κB p65, ERK, and Akt phosphorylation, and GRP78 expression, an unfolded protein response chaperone, were observed in HBV pre-S2Δ and HBV pre-S-expressing cells. Induction of Bcl-2 expression by HBV pre-S2Δ protein resulted in resistance to 5-fluorouracil treatment in colony formation, caspase-3 assay, and cell apoptosis, and can enhance cell death by co-incubation with Bcl-2 inhibitor. Similarly, transgenic mice showed higher expression of Bcl-2 in liver tissue expressing HBV pre-S2Δ large surface protein in vivo.

Conclusion/Significance

Our result demonstrates that HBV pre-S2Δ increased Bcl-2 expression which plays an important role in resistance to 5-fluorouracil-caused cell death. Therefore, these data provide an important chemotherapeutic strategy in HBV pre-S2Δ-associated tumor.  相似文献   

16.
A milieu of cytokines and signaling molecules are involved in the induction of UV-induced immune suppression and thus the etiology of non-melanoma skin cancer (NMSC). Targeting the UV-induced immunosuppression pathway, and using a large population based study of NMSC, we have investigated the risk associated with functional variants in 10 genes (IL10, IL4, IL4R, TNF, TNFR2, HTR2A, HRH2, IL12B, PTGS2, and HAL). The most prominent single genetic effect was observed for IL10. There was increasing risk for both basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) with increasing number of variant IL10 haplotypes (BCC: ptrend = 0.0048; SCC: ptrend = 0.031). Having two IL10 GC haplotypes was associated with increased odds ratios of BCC and SCC (ORBCC = 1.5, 95% CI 1.1–1.9; ORSCC = 1.4, 95% CI 1.0–1.9), and these associations were largely confined to women (ORBCC = 2.2, 95% CI 1.4–3.4; SCC: ORSCC = 1.8, 95% CI 1.1–3.0). To examine how combinations of these variants contribute to risk of BCC and SCC, we used multifactor dimensionality reduction (MDR) and classification and regression trees (CART). Results from both of these methods found that in men, a combination of skin type, burns, IL10, IL4R, and possibly TNFR2 were important in both BCC and SCC. In women, skin type, burns, and IL10 were the most critical risk factors in SCC, with risk of BCC involving these same factors plus genetic variants in HTR2A, IL12B and IL4R. These data suggest differential genetic susceptibility to UV-induced immune suppression and skin cancer risk by gender.  相似文献   

17.
Up-regulated Dicer expression in patients with cutaneous melanoma   总被引:1,自引:0,他引:1  

Background

MicroRNAs (miRNAs) are small non-coding RNAs (18–24 nucleotides) that have recently been shown to regulate gene expression during cancer progression. Dicer, a central enzyme in the multi-component miRNA biogenesis pathway, is involved in cutting precursor miRNAs to functionally mature forms. Emerging evidence shows that Dicer expression is deregulated in some human malignancies and it correlates with tumor progression, yet this role has not yet been investigated in skin cancers.

Methods and Findings

Using an anti-human monoclonal antibody against Dicer and immunohistochemistry, we compared the expression of Dicer protein among 404 clinically annotated controls and skin tumors consisting of melanocytic nevi (n = 71), a variety of melanomas (n = 223), carcinomas (n = 73) and sarcomas (n = 12). Results showed a cell-specific up-regulated Dicer in 81% of cutaneous, 80% of acrolentiginous and 96% of metastatic melanoma specimens compared to carcinoma or sarcoma specimens (P<0.0001). The expression of Dicer was significantly higher in melanomas compared to benign melanocytic nevi (P<0.0001). In patients with cutaneous melanomas, Dicer up-regulation was found to be significantly associated with an increased tumor mitotic index (P = 0.04), Breslow''s depth of invasion (P = 0.03), nodal metastasis (P = 0.04) and a higher American Joint Committee on Caner (AJCC) clinical stage (P = 0.009). Using western blot analysis, we confirmed the cell-specific up-regulation of Dicer protein in vitro. A pooled-analysis on mRNA profiling in cutaneous tumors showed up-regulation of Dicer at the RNA level in cutaneous melanoma, also showing deregulation of other enzymes that participate in the biogenesis and maturation of canonical miRNAs.

Conclusions

Increased Dicer expression may be a clinically useful biomarker for patients with cutaneous melanoma. Understanding deregulation of Dicer and its influence on miRNA maturation is needed to predict the susceptibility of melanoma patients to miRNA-based therapy in the future.  相似文献   

18.
Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancies in the head and neck region. CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) has been recently implicated as a tumor suppressor gene in several cancer types. Herein, we examined the expression and function of CMTM5 in oral squamous cell carcinoma. CMTM5 was down-regulated in oral squamous cell lines and tumor samples from patients with promoter methylation. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored CMTM5 expression. In the OSCC cell lines CAL27 and GNM, the ectopic expression of CMTM5-v1 strongly inhibited cell proliferation and migration and induced apoptosis. In addition, CMTM5-v1 inhibited tumor formation in vivo. Therefore, CMTM5 might act as a putative tumor suppressor gene through promoter methylation in oral squamous cell carcinoma.  相似文献   

19.
The oncogene FOXM1 has been implicated in all major types of human cancer. We recently showed that aberrant FOXM1 expression causes stem cell compartment expansion resulting in the initiation of hyperplasia. We have previously shown that FOXM1 regulates HELLS, a SNF2/helicase involved in DNA methylation, implicating FOXM1 in epigenetic regulation. Here, we have demonstrated using primary normal human oral keratinocytes (NOK) that upregulation of FOXM1 suppressed the tumour suppressor gene p16INK4A (CDKN2A) through promoter hypermethylation. Knockdown of HELLS using siRNA re-activated the mRNA expression of p16INK4A and concomitant downregulation of two DNA methyltransferases DNMT1 and DNMT3B. The dose-dependent upregulation of endogenous FOXM1 (isoform B) expression during tumour progression across a panel of normal primary NOK strains (n = 8), dysplasias (n = 5) and head and neck squamous cell carcinoma (HNSCC) cell lines (n = 11) correlated positively with endogenous expressions of HELLS, BMI1, DNMT1 and DNMT3B and negatively with p16INK4A and involucrin. Bisulfite modification and methylation-specific promoter analysis using absolute quantitative PCR (MS-qPCR) showed that upregulation of FOXM1 significantly induced p16INK4A promoter hypermethylation (10-fold, P<0.05) in primary NOK cells. Using a non-bias genome-wide promoter methylation microarray profiling method, we revealed that aberrant FOXM1 expression in primary NOK induced a global hypomethylation pattern similar to that found in an HNSCC (SCC15) cell line. Following validation experiments using absolute qPCR, we have identified a set of differentially methylated genes, found to be inversely correlated with in vivo mRNA expression levels of clinical HNSCC tumour biopsy samples. This study provided the first evidence, using primary normal human cells and tumour tissues, that aberrant upregulation of FOXM1 orchestrated a DNA methylation signature that mimics the cancer methylome landscape, from which we have identified a unique FOXM1-induced epigenetic signature which may have clinical translational potentials as biomarkers for early cancer screening, diagnostic and/or therapeutic interventions.  相似文献   

20.

Background

Given the high incidence of metastatic esophageal squamous cell carcinoma, especially in Asia, we screened for the presence of somatic mutations using OncoMap platform with the aim of defining subsets of patients who may be potential candidate for targeted therapy.

Methods and Materials

We analyzed 87 tissue specimens obtained from 80 patients who were pathologically confirmed with esophageal squamous cell carcinoma and received 5-fluoropyrimidine/platinum-based chemotherapy. OncoMap 4.0, a mass-spectrometry based assay, was used to interrogate 471 oncogenic mutations in 41 commonly mutated genes. Tumor specimens were prepared from primary cancer sites in 70 patients and from metastatic sites in 17 patients. In order to test the concordance between primary and metastatic sites from the patient for mutations, we analyzed 7 paired (primary-metastatic) specimens. All specimens were formalin-fixed paraffin embedded tissues and tumor content was >70%.

Results

In total, we have detected 20 hotspot mutations out of 80 patients screened. The most frequent mutation was PIK3CA mutation (four E545K, five H1047R and one H1047L) (N = 10, 11.5%) followed by MLH1 V384D (N = 7, 8.0%), TP53 (R306, R175H and R273C) (N = 3, 3.5%), BRAF V600E (N = 1, 1.2%), CTNNB1 D32N (N = 1, 1.2%), and EGFR P733L (N = 1, 1.2%). Distributions of somatic mutations were not different according to anatomic sites of esophageal cancer (cervical/upper, mid, lower). In addition, there was no difference in frequency of mutations between primary-metastasis paired samples.

Conclusions

Our study led to the detection of potentially druggable mutations in esophageal SCC which may guide novel therapies in small subsets of esophageal cancer patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号