首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
Autophagy is a degradation system in which cellular components are digested via vacuoles/lysosomes, and involved in differentiation in addition to helping cells to survive starvation. The autophagic process is composed of several steps: induction of autophagy, formation of autophagosomes, transportation to vacuoles, and degradation of autophagic bodies. To further understand autophagy in the filamentous fungus Aspergillus oryzae, we first constructed A. oryzae mutants defective for the Aoatg13, Aoatg4, and Aoatg15 genes and examined the resulting phenotypes. The ΔAoatg13 mutant developed conidiophores and conidia, although the number of conidia was decreased compared with the wild-type strain, while conidiation in the ΔAoatg4 and ΔAoatg15 mutants was not detected. The ΔAoatg15 mutants displayed a marked reduction of development of aerial hyphae. Moreover, autophagy in these mutants was examined by observation of the behavior of enhanced green fluorescent protein (EGFP)-AoAtg8. In the ΔAoatg13 mutant, the slight accumulation of EGFP-AoAtg8 in vacuoles, preautophagosomal structures (PAS), and autophagosomes was observed, whereas only PAS-like structures were detected in the ΔAoatg4 mutant. In the ΔAoatg15 mutant, autophagic bodies accumulated in vacuoles, suggesting that the uptake process proceeded. We therefore propose that the level of autophagy is closely correlated with the degree of differentiation in A. oryzae.  相似文献   

5.
The Magnaporthe oryzae genome contains two homologous CYP51 genes, MoCYP51A and MoCYP51B, that putatively encode sterol 14α-demethylase enzymes. Targeted gene deletion mutants of MoCYP51A were morphologically indistinguishable from the isogenic wild type M. oryzae strain Guy11 in vegetative culture, but were impaired in both conidiation and virulence. Deletion of MoCYP51B did not result in any obvious phenotypic changes compared with Guy11. The Δmocyp51A mutants were also highly sensitive to sterol demethylation inhibitor (DMI) fungicides, while Δmocyp51B mutants were unchanged in their sensitivity to these fungicides. Expression of both MoCYP51A and MoCYP51B was significantly induced by exposure to DMI fungicides. Analysis of intracellular localization of MoCyp51A showed that MoCyp51A was mainly localized to the cytoplasm of hyphae and conidia. Taken together, our results indicate that MoCYP51A is required for efficient conidiogenesis, full virulence and for mediating DMI sensitivity by the rice blast fungus.  相似文献   

6.
7.
Head blight caused by Fusarium graminearum is an important disease of wheat and barley. Its genome contains chromosomal regions with higher genetic variation and enriched for genes expressed in planta, suggesting a role of chromatin modification in the regulation of infection-related genes. In a previous study, the FTL1 gene was characterized as a novel virulence factor in the head blight fungus. FTL1 is homologous to yeast SIF2, which is a component of the Set3 complex. Many members of the yeast Set3 complex, including Hos2 histone deacetylase (HDAC), are conserved in F. graminearum. In this study, we characterized the HDF1 gene that is orthologous to HOS2. HDF1 physically interacted with FTL1 in yeast two-hybrid assays. Deletion of HDF1 resulted in a significant reduction in virulence and deoxynivalenol (DON) production. The Δhdf1 mutant failed to spread from the inoculation site to other parts of wheat heads or corn stalks. It was defective in sexual reproduction and significantly reduced in conidiation. Expression of HDF1 was highest in conidia in comparison with germlings and hyphae. Deletion of HDF1 also resulted in a 60% reduction in HDAC activity. Microarray analysis revealed that 149 and 253 genes were down- and upregulated, respectively, over fivefold in the Δhdf1 mutant. Consistent with upregulation of putative catalase and peroxidase genes, the Δhdf1 mutant was more tolerant to H(2)O(2) than the wild type. Deletion of the other two class II HDAC genes had no obvious effect on vegetative growth and resulted in only a minor reduction in conidiation and virulence in the Δhdf2 mutant. Overall, our results indicate that HDF1 is the major class II HDAC gene in F. graminearum. It may interact with FTL1 and function as a component in a well-conserved HDAC complex in the regulation of conidiation, DON production, and pathogenesis.  相似文献   

8.
9.
The conidiation of the entomopathogenic fungus Beauveria bassiana (Hyphomycete) is a complex process that involves the stage- and cell-type-specific expression of hundreds of genes. The suppression subtractive hybridization method was used to target genes involved in conidiation. Seventeen genes were cloned that potentially were involved in conidia formation. Six of them demonstrated differential expression between conidial and vegetative cultures. Sequence analysis showed three cDNA fragments had similarity to known genes involved in either cellular metabolism or cell regulatory processes. The other cDNA fragments showed low or no similarity to any genes previously described. The full-length cDNA and genomic sequence of a gene designated A43 was isolated. The A43 protein is composed of 180 amino acids and has 34% identity to a RNA-binding region-containing protein. The temporal expression pattern was consistent with the gene being involved in conidiation. The colony morphology of the A43 knock-out mutant had more floccus mycelium than the wild-type and also produced fewer conidia, indicating the A43 gene is involved in B. bassiana conidiation.  相似文献   

10.
11.
12.
13.
14.
15.
生物钟参与调控植物所有的生长阶段和发育活动。维持植物生物钟稳定的基因在这一过程中起着决定性作用。在克隆了ES1 (EARLY SENESCENCE 1)基因并证明该基因影响水稻(Oryza sativa)叶片失水的基础上, 以前期分离得到的水稻突变体es1-1作为研究对象, 对es1-1及其野生型(日本晴)苗期的地上部分和地下部分进行基因芯片分析。结果表明, es1-1主要的上调基因有42个, 下调基因有14个, 这些差异基因涉及24种代谢途径, 包括调节水稻生物钟的途径(4个)、甲烷代谢途径(3个)和苯基丙氨酸代谢途径(3个)等。进一步对水稻生物钟相关基因进行表达图谱分析, 结果表明, 与野生型相比, es1-1中生物钟相关基因出现了不同程度的差异表达。对es1-1和野生型进行冷胁迫处理, 结果表明es1-1表现更加耐冷, 且冷处理后生物钟基因在日本晴(NPB)和es1-1中都表现出不同程度的差异表达。此外, 在分蘖盛期接种白叶枯菌, 发现es1-1对特定的白叶枯菌具有一定的抗性。由此推测ES1基因参与调控水稻生物钟基因的表达以及响应水稻部分逆境胁迫, 这为更深入研究水稻生物钟基因提供了新线索。  相似文献   

16.
17.
Gene silencing by RNA interference in the koji mold Aspergillus oryzae   总被引:1,自引:0,他引:1  
We found the orthologous genes required for RNA interference (RNAi) in the Aspergillus oryzae genome database, and constructed a set of tools for gene silencing using RNAi in A. oryzae. This system utilizes compatible restriction enzyme sites so that only a single target gene fragment is required to create the hairpin RNA cassette. For ease of handling, we also separated the construction of the hairpin RNA cassette for the target gene from its subsequent introduction into the expression vector. Using the brlA gene as a target for RNAi, we detected decreased mRNA levels and a delayed conidiation phenotype in the transformants. Furthermore, even though A. oryzae possesses three copies of the alpha-amylase gene, a single copy of an alpha-amylase RNAi construct was sufficient to downregulate the mRNA levels and decrease the enzymatic activity to 10% of control levels. Gene silencing by RNAi should provide a powerful genetic tool for post-genomic studies of the industrially important fungus A. oryzae.  相似文献   

18.
The potential for sexual reproduction in Aspergillus oryzae was assessed by investigating the presence and functionality of MAT genes. Previous genome studies had identified a MAT1-1 gene in the reference strain RIB40. We now report the existence of a complementary MAT1-2 gene and the sequencing of an idiomorphic region from A. oryzae strain AO6. This allowed the development of a PCR diagnostic assay, which detected isolates of the MAT1-1 and MAT1-2 genotypes among 180 strains assayed, including industrial tane-koji isolates. Strains used for sake and miso production showed a near-1:1 ratio of the MAT1-1 and MAT1-2 mating types, whereas strains used for soy sauce production showed a significant bias toward the MAT1-2 mating type. MAT1-1 and MAT1-2 isogenic strains were then created by genetic manipulation of the resident idiomorph, and gene expression was compared by DNA microarray and quantitative real-time PCR (qRT-PCR) methodologies under conditions in which MAT genes were expressed. Thirty-three genes were found to be upregulated more than 10-fold in either the MAT1-1 host strain or the MAT1-2 gene replacement strain relative to each other, showing that both the MAT1-1 and MAT1-2 genes functionally regulate gene expression in A. oryzae in a mating type-dependent manner, the first such report for a supposedly asexual fungus. MAT1-1 expression specifically upregulated an α-pheromone precursor gene, but the functions of most of the genes affected were unknown. The results are consistent with a heterothallic breeding system in A. oryzae, and prospects for the discovery of a sexual cycle are discussed.  相似文献   

19.
Kikuma T  Arioka M  Kitamoto K 《Autophagy》2007,3(2):128-129
Filamentous fungi form aerial hyphae on solid medium, and some of these differentiate into conidiophores for asexual sporulation (conidiation). In the filamentous deuteromycete, Aspergillus oryzae, aerial hyphae are formed from the foot cells and some differentiate into conidiophores, which are composed of vesicles, phialides and conidia. Recently, we isolated the yeast ATG8 gene homologue Aoatg8 from A. oryzae, and visualized autophagy by the expression of an EGFP (enhanced green fluorescent protein)-AoAtg8 fusion protein and DsRed2 protein in this fungus. Furthermore, by constructing the Aoatg8 deletion and conditional mutants, we demonstrated that autophagy functions during the process of differentiation of aerial hyphae, conidiation and conidial germination in A. oryzae. Here, we discuss the contribution of autophagy towards the differentiation and germination processes in filamentous fungi.  相似文献   

20.
We have recently reported the gene expression profile of Pasteurella multocida during growth in the blood of chickens with fowl cholera. Here we report the gene expression profile of P. multocida during growth in the livers of similarly infected chickens. We compared expression profiles of bacteria harvested from the livers of infected chickens with late-stage fowl cholera with those of bacteria grown in rich medium. Independent analysis of bacterial expression profiles from three individual chickens indicated that 93 P. multocida genes were always differentially expressed during growth in liver tissue. Of these 93 genes, 49 were upregulated and 44 downregulated in the host. Many of the upregulated genes were involved in energy production and conversion (9/49) and carbohydrate transport and metabolism (8/49), and a number of these have been shown to be induced under anaerobic conditions in other species. The downregulated genes were generally of unknown or poorly characterised functions (14/44). Comparison of the differentially regulated gene sets identified for growth in liver with those identified previously for growth in blood allowed the identification of a core set of 13 upregulated and 16 downregulated genes that were differentially regulated in at least five of the six infections studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号