首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most studies of climate-driven changes in avian breeding phenology have focused on temperate passerines, yet the consequences of such environmental change may be more deleterious for other avian taxa, such as arctic and sub-arctic waders (Charadrii). We therefore examine large-scale climatic correlates of the breeding phenology of one such species (golden plover Pluvialis apricaria), and the timing of emergence of their adult tipulid prey, to assess the potential for climate change to disrupt breeding performance. Golden plover first-laying dates were negatively correlated with both March and April temperature, the mean laying date of first clutches was additionally negatively correlated with March rainfall. The timing of final laying dates were negatively correlated with April temperature only. The timing of tipulid emergence was negatively correlated with May temperature. In combination with historical climatic data, these models suggest a 9-day advancement of golden plover first-laying dates occurred during the 1990s, although this remains within the range of natural variation for the twentieth century. The magnitudes of predicted changes in mean and final laying dates, and the timing of tipulid emergence, were smaller. Climate predictions for 2070-2099 suggest potential advances in first-laying dates by 25 days, whilst the timings of mean and final laying dates are predicted to change by 18 days and 13 days, and tipulid emergence by 12 days. Given the importance of adult tipulids to young golden plover chicks, these changes may result in a mismatch between the timing of first-laying dates and tipulid emergence, so reducing the success of early breeding attempts. Modelling suggests that these changes could reduce breeding success in a South Pennines population by about 11%.  相似文献   

2.
In temperate regions, seasonal epidemics of many mosquito-borne viruses are triggered when mosquito populations shift from feeding on avian to mammalian hosts. We investigated effects of temperature on the timing of bird-to-mammal shifts using an 8 year dataset of blood-meals from a mosquito (Culex erraticus) in Alabama, USA. As expected, Cx. erraticus shifted from avian to mammalian hosts each year. The timing of the shift, however, varied considerably among years. Harshness of the preceding winter (chill accumulation) explained 93 per cent of the variation in the timing of bird-to-mammal shifts, with shifts occurring later in years following harsher winters. We hypothesize that winter temperatures drive the timing of bird-to-mammal shifts through effects on host reproductive phenology. Because mosquitoes target birds during the nesting season, and bird nesting occurs later in years following colder winters, later nesting dates result in a concomitant delay in the timing of bird-to-mammal host shifts. Global increases in winter temperatures could cause significant changes in the timing of seasonal host shifts by mosquitoes, with prolonged periods of epidemic transmission of mosquito-borne diseases.  相似文献   

3.
Seasonal declines in avian clutch size are well documented, but seasonal variation in other reproductive parameters has received less attention. For example, the probability of complete brood mortality typically explains much of the variation in reproductive success and often varies seasonally, but we know little about the underlying cause of that variation. This oversight is surprising given that nest predation influences many other life-history traits and varies throughout the breeding season in many songbirds. To determine the underlying causes of observed seasonal decreases in risk of nest predation, we modeled nest predation of Dusky Flycatchers (Empidonax oberholseri) in northern California as a function of foliage phenology, energetic demand, developmental stage, conspecific nest density, food availability for nest predators, and nest predator abundance. Seasonal variation in the risk of nest predation was not associated with seasonal changes in energetic demand, conspecific nest density, or predator abundance. Instead, seasonal variation in the risk of nest predation was associated with foliage density (early, but not late, in the breeding season) and seasonal changes in food available to nest predators. Supplemental food provided to nest predators resulted in a numerical response by nest predators, increasing the risk of nest predation at nests that were near supplemental feeders. Our results suggest that seasonal changes in foliage density and factors associated with changes in food availability for nest predators are important drivers of temporal patterns in risk of avian nest predation.  相似文献   

4.
Timing of reproduction in temperate-zone birds is strongly correlated with spring temperature, with an earlier onset of breeding in warmer years. Females adjust their timing of egg laying between years to be synchronized with local food sources and thereby optimize reproductive output. However, climate change currently disrupts the link between predictive environmental cues and spring phenology. To investigate direct effects of temperature on the decision to lay and its genetic basis, we used pairs of great tits (Parus major) with known ancestry and exposed them to simulated spring scenarios in climate-controlled aviaries. In each of three years, we exposed birds to different patterns of changing temperature. We varied the timing of a temperature change, the daily temperature amplitude, and the onset and speed of a seasonal temperature rise. We show that females fine-tune their laying in response to a seasonal increase in temperature, whereas mean temperature and daily temperature variation alone do not affect laying dates. Luteinizing hormone concentrations and gonadal growth in early spring were not influenced by temperature or temperature rise, possibly posing a constraint to an advancement of breeding. Similarities between sisters in their laying dates indicate genetic variation in cue sensitivity. These results refine our understanding of how changes in spring climate might affect the mismatch in avian timing and thereby population viability.  相似文献   

5.
Observed phenological changes can be explained either by individual phenotypic plasticity or by evolutionary changes, but there is more evidence pointing towards phenotypic plasticity to explain the mechanism behind changes in bird phenology. However, most studies on phenology have been conducted on insectivorous bird species for which breeding is closely tied to temperature and insect emergence. In this study, we examined the consequences of climatic conditions on the nesting phenology of temperate breeding Canada Geese Branta canadensis maxima, which rely on a continuous food supply, during a 14‐year period (2003–16). We determined whether laying dates were plastically adjusted to spring environmental conditions, and whether this adjustment resulted in a laying date advancement. We further estimated the strength and shape of selection acting on breeding timing, by looking at the effect of laying date on the relative number of young successfully hatched in a nest. We found that Geese plastically adjusted their laying date to spring maximum temperature (and not to precipitation or ice break‐up), resulting in a 9‐day advancement of laying date in the population for that period. Laying date was also moderately repeatable (r = 0.23) and subject to directional selection, but stabilizing selection was negligible. We thus demonstrate how Canada Geese plastically adjust laying dates to temperature, which may further be beneficial to nesting success. Evolutionary change of laying date to selection related to climate change, however, is still possible.  相似文献   

6.
Climate warming is pronounced in the Arctic and migratory birds are expected to be among the most affected species. We examined the effects of local and regional climatic variations on the breeding phenology and reproductive success of greater snow geese ( Chen caerulescens atlantica ), a migratory species nesting in the Canadian Arctic. We used a long-term dataset based on the monitoring of 5447 nests and the measurements of 19 234 goslings over 16 years (1989–2004) on Bylot Island. About 50% of variation in the reproductive phenology of individuals was explained by spring climatic factors. High mean temperatures and, to a lesser extent, low snow cover in spring were associated with an increase in nest density and early egg-laying and hatching dates. High temperature in spring and high early summer rainfall were positively related to nesting success. These effects may result from a reduction in egg predation rate when the density of nesting geese is high and when increased water availability allows females to stay close to their nest during incubation recesses. Summer brood loss and production of young at the end of the summer increased when values of the summer Arctic Oscillation (AO) index were either very positive (low temperatures) or very negative (high temperatures), indicating that these components of the breeding success were most influenced by the regional summer climate. Gosling mass and size near fledging were reduced in years with high spring temperatures. This effect is likely due to a reduced availability of high quality food in years with early spring, either due to food depletion resulting from high brood density or a mismatch between hatching date of goslings and the timing of the peak of plant quality. Our analysis suggests that climate warming should advance the reproductive phenology of geese, but that high spring temperatures and extreme values of the summer AO index may decrease their reproductive success up to fledging.  相似文献   

7.
ARA MONADJEM  ANDREW J. BAMFORD 《Ibis》2009,151(2):344-351
A decline in breeding success with later laying dates throughout a nesting season is a widespread phenomenon in species living in environments with distinct seasonality, with evidence that some environmental correlate of timing is at least partly responsible in many species. This correlate is often thought to be food availability, which is often related to climatic factors; however, few studies have examined the role of climate. We studied a breeding colony of Marabou Storks Leptoptilos crumeniferus in Southern Africa over five breeding seasons. Timing of breeding was related to rainfall preceding the breeding season. Fecundity (chicks fledged per nest) declined through each season. The probability of an individual hatchling fledging was influenced by rainfall during the hatchling period, temperature during the hatchling period and laying date, three variables that were strongly intercorrelated. To disentangle the three effects, inter‐annual variation in each was compared with the large inter‐annual variation in breeding success, with rainfall providing the greatest explanatory power. Rainfall, which tends to increase through the breeding season, seems to be at least partly responsible for the seasonal decline in breeding success. We were unable to find evidence for the influence of other factors, such as colony size and nest re‐use, known to affect nest success in this and other colonial breeding storks.  相似文献   

8.
Changes in phenology, the timing of seasonal activities, are among the most frequently observed responses to environmental disturbances and in marine species are known to occur in response to climate changes that directly affects ocean temperature, biogeochemical composition and sea level. We examined nesting seasonality data from long-term studies at 8 green turtle (Chelonia mydas) rookeries that include 21 specific nesting sites in the South-West Indian Ocean (SWIO). We demonstrated that temperature drives patterns of nesting seasonality at the regional scale. We found a significant correlation between mean annual Sea Surface Temperature (SST) and dates of peak nesting with rookeries exposed to higher SST having a delayed nesting peak. This supports the hypothesis that temperature is the main factor determining peak nesting dates. We also demonstrated a spatial synchrony in nesting activity amongst multiple rookeries in the northern part of the SWIO (Aldabra, Glorieuses, Mohéli, Mayotte) but not with the eastern and southern rookeries (Europa, Tromelin), differences which could be attributed to females with sharply different adult foraging conditions. However, we did not detect a temporal trend in the nesting peak date over the study period or an inter-annual relation between nesting peak date and SST. The findings of our study provide a better understanding of the processes that drive marine species phenology. The findings will also help to predict their ability to cope with climate change and other environmental perturbations. Despite demonstrating this spatial shift in nesting phenology, no trend in the alteration of nesting dates over more than 20 years was found.  相似文献   

9.
Geophagy, the consumption of soil, is common in many species, but the drivers of geophagy are not well understood. The best‐studied example of avian geophagy is the parrots of the western Amazon Basin, but even here, there is debate over what drives the behaviour. There are two possible explanations: (1) extra nutritional demands of reproduction drive an increase in geophagy, which would predict that geophagy should be highest during the breeding season, and (2) consumption of naturally toxic plant foods increases the need for the toxin protection effects of soil, which would predict that geophagy should be highest when food availability is low and animals are forced to consume more toxic foods. We used long‐term data from lowland Amazonia to compare seasonal fluctuations in rainfall, food availability, parrot breeding and parrot geophagy, and conducted novel tests of these hypotheses. Our analyses of annual patterns suggested that seasonal changes in rainfall drive plant fruiting, the resulting food availability patterns drive the timing of parrot breeding, and breeding drives seasonal patterns of geophagy. Surprisingly, chicks of the largest psittacine species fledged as food supplies approach their annual lows, suggesting that future climatic changes that alter peaks in food availability could have unexpected impacts on the reproduction of large psittacines in this system. Our tests found no evidence to support the toxin‐protection hypothesis. Instead, we found that the peak of geophagy occurred during species’ breeding seasons, which strongly supports the supplemental nutrients hypothesis. Our findings join a growing body of biochemical, physiological, behavioural, ecological and biogeographical evidence suggesting that a need for sodium is driving soil consumption in this classic model system of avian geophagy.  相似文献   

10.
Under temperature-dependent sex determination (TSD), temperatures experienced by embryos during development determine the sex of the offspring. Consequently, populations of organisms with TSD have the potential to be strongly impacted by climatic warming that could bias offspring sex ratio, a fundamental demographic parameter involved in population dynamics. Moreover, many taxa with TSD are imperiled, so research on this phenomenon, particularly long-term field study, has assumed great urgency. Recently, turtles with TSD have joined the diverse list of taxa that have demonstrated population-level changes in breeding phenology in response to recent climate change. This raises the possibility that any adverse impacts of climate change on populations may be alleviated by individual plasticity in nesting phenology. Here, we examine data from a long-term study on a population of painted turtles (Chrysemys picta) to determine whether changes in phenology are due to individual plasticity and whether individual plasticity in the timing of nesting has the capacity to offset the sex ratio effects of a rise in climatic temperature. We find that individual females show plasticity in the date of first nesting each year, and that this plasticity depends on the climate from the previous winter. First nesting date is not repeatable within individuals, suggesting that it would not respond to selection. Sex ratios of hatchlings within a nest declined nonsignificantly over the nesting season. However, small increases in summer temperature had a much stronger effect on nest sex ratios than did laying nests earlier in the season. For this and other reasons, it seems unlikely that individual plasticity in the timing of nesting will offset the effects of climate change on sex ratios in this population, and we hypothesize that this conclusion applies to other populations with TSD.  相似文献   

11.
We examined long-term (1943–2003) variability in laying dates and clutch sizes in a Finnish population of the pied flycatcher Ficedula hypoleuca Pallas, and analysed whether potential changes were explained by changes in climatic factors at the wintering area in Africa, at migration route or at breeding grounds. Among-year variation in both mean and skewness of laying dates increased, which for mean laying date appeared to be explained by variability of temperatures at the breeding grounds and for skewness by variable temperature trends along the migration route. Pied flycatchers bred earlier in warm springs, but despite a warming trend in pre-laying temperatures, the laying dates tended to delay. Laying dates became continuously later in relation to the phenology of the environment. Mean clutch size decreased with time when mean laying date was controlled for, but the climatic factors did not appear to explain the decrease. The advancement of spring phenology may have shifted some food sources needed for egg-laying, thus leading to later laying and smaller clutches. Variation in clutch size increased when wintering conditions were favourable so that clutch size distribution was skewed with a tail of small clutches when there had been lot of rainfall (more vegetation and insects) in the wintering area. We suggest that when ecological conditions during winter were good, the tail of small clutches represented low-quality individuals that were not able to breed after bad winters. Our analyses demonstrate that measures of spread and symmetry give different information about population level changes than means, and thus complement the understanding of the potential influences of climate change on populations.  相似文献   

12.
Phenological advances and trophic mismatches are frequently reported ecological consequences of climate warming. Trophic mismatches occur when phenological responses to environmental conditions differ among trophic levels such that the timing of resource demand by consumers becomes decoupled from supply. We used 25 years of demographic measurements of a migratory songbird (the black‐throated blue warbler Setophaga caerulescens) to compare its breeding phenology to the phenology of both its caterpillar prey and the foliage on which caterpillars feed. Caterpillar biomass in this forest did not show a predictable seasonal pulse. Nest initiation by warblers in this northern hardwood forest was therefore not timed to coincide with a peak in food availability for nestlings. Nonetheless, timing of first clutches was strongly associated with spring leaf expansion (slope ± SE = 0.56 ± 0.08 days per day of change in leaf phenology, R2 = 0.66). Warblers adjusted the timing of breeding to early springs mainly by shortening the interval between arrival and clutch initiation, but this likely has limits because recent early springs are approaching the relatively inflexible dates when birds arrive on the breeding grounds. Although the timing of first nests did not match 1:1 with leaf‐out phenology, the adjustments in breeding time maximized mean annual reproductive success. Nest predation had the greatest effect on annual reproductive success, but the ability of nesting warblers to appropriately track leaf phenology accounted for effects on annual reproductive success comparable to the influence of variation in caterpillar abundance and conspecific density. Nesting phenology in black‐throated blue warblers was generally well matched to the timing of leaf‐out, even though the match was not 1:1. Without measurements of reproductive success, these unequal phenological shifts might otherwise have been interpreted as having negative ecological consequences.  相似文献   

13.
Studies of variation in breeding parameters are often based on temporal analyses of a single population. However, to differentiate between the effects of regional and local factors, neighboring populations with limited interpopulational dispersal need to be compared. We studied two nearby (< 5 km apart) populations of House Wrens (Troglodytes aedon bonariae) at two ranches (Los Zorzales, 10 years; La Esperanza, 13 years) in south-temperate Argentina to assess the possible effects of regional and local factors on breeding phenology. For each breeding season, we recorded laying dates, clutch sizes, and length of the breeding season, and estimated the reproductive synchrony of first and second breeding attempts. We examined how these breeding parameters were affected by weather, population density, and rates of nest failure. With favorable temperatures during the pre-reproductive period (September–October), wrens in both populations initiated first breeding attempts earlier. However, ordinal laying dates were also affected by local factors, with wrens at Los Zorzales initiating breeding attempts earlier than those at La Esperanza. We found a spatial correlation in clutch sizes between populations for the 2007–2012 breeding seasons, but clutch sizes of first and second nesting attempts showed low variability. Reproductive synchrony of first nesting attempts varied among years, suggesting an effect of regional factors. However, we detected no synchronization between populations and were unable to identify environmental variables that explained the temporal variation. Ordinal laying dates of second clutches were strongly correlated with the ordinal laying dates of first clutches. We also found that the length of breeding seasons was longer when daily nest mortality rates were lower. Although environmental factors seemed to affect the decision of when to start breeding, pairs with successful first nesting attempts were more likely to initiate second nests, thus affecting the length of the breeding season. The spatial variation and temporal variation of the breeding parameters of House Wrens in our study provide evidence of marked plasticity in their breeding decisions and allowed us to identify local and regional environmental factors related to this variation.  相似文献   

14.
Climate warming has been shown to affect the timing of the onset of breeding of many bird species across the world. However, for multi‐brooded species, climate may also affect the timing of the end of the breeding season, and hence also its duration, and these effects may have consequences for fitness. We used 28 years of field data to investigate the links between climate, timing of breeding, and breeding success in a cooperatively breeding passerine, the superb fairy‐wren (Malurus cyaneus). This multi‐brooded species from southeastern Australia has a long breeding season and high variation in phenology between individuals. By applying a “sliding window” approach, we found that higher minimum temperatures in early spring resulted in an earlier start and a longer duration of breeding, whereas less rainfall and more heatwaves (days > 29°C) in late summer resulted in an earlier end and a shorter duration of breeding. Using a hurdle model analysis, we found that earlier start dates did not predict whether or not females produced any young in a season. However, for successful females who produced at least one young, earlier start dates were associated with higher numbers of young produced in a season. Earlier end dates were associated with a higher probability of producing at least one young, presumably because unsuccessful females kept trying when others had ceased. Despite larger scale trends in climate, climate variables in the windows relevant to this species’ phenology did not change across years, and there were no temporal trends in phenology during our study period. Our results illustrate a scenario in which higher temperatures advanced both start and end dates of individuals’ breeding seasons, but did not generate an overall temporal shift in breeding times. They also suggest that the complexity of selection pressures on breeding phenology in multi‐brooded species may have been underestimated.  相似文献   

15.
Organisms living today are descended from ancestors that experienced considerable climate change in the past. However, they are currently presented with many new, man-made challenges, including rapid climate change. Migration and reproduction of many avian species are controlled by endogenous mechanisms that have been under intense selection over time to ensure that arrival to and departure from breeding grounds is synchronized with moderate temperatures, peak food availability and availability of nesting sites. The timing of egg laying is determined, usually by both endogenous clocks and local factors, so that food availability is near optimal for raising young. Climate change is causing mismatches in food supplies, snow cover and other factors that could severely impact successful migration and reproduction of avian populations unless they are able to adjust to new conditions. Resident (non-migratory) birds also face challenges if precipitation and/or temperature patterns vary in ways that result in mismatches of food and breeding. Predictions that many existing climates will disappear and novel climates will appear in the future suggest that communities will be dramatically restructured by extinctions and changes in range distributions. Species that persist into future climates may be able to do so in part owing to the genetic heritage passed down from ancestors who survived climate changes in the past.  相似文献   

16.
Variation in the phenology of avian taxa has long been studied to understand how a species reacts to environmental changes over both space and time. Penguins (Sphenicidae) serve as an important example of how biotic and abiotic factors influence certain stages of seabird phenology because of their large ranges and the extreme, dynamic conditions present in their Southern Ocean habitats. Here, we examined the phenology of gentoo (Pygoscelis papua) and chinstrap penguins (Pygoscelis antarctica) at 17 sites across the Scotia arc, including the first documented monitoring of phenology on the South Sandwich Islands, to determine which breeding phases are intrinsic, or rather vary across a species range and between years. We used a novel method to measure seabird breeding phenology and egg and chick survival: time‐lapse cameras. Contrary to the long‐standing theory that these phases are consistent between colonies, we found that latitude and season had a predominant influence on the length of the nest establishment, incubation, and guard durations. We observe a trend toward longer incubation times occurring farther south, where ambient temperatures are colder, which may indicate that exposure to cold slows embryo growth. Across species, in colonies located farther south, parents abandoned nests later when eggs were lost or chicks died and the latest record of eggs or chicks in the nest occurred earlier during the breeding period. The variation in both space and time observed in penguin phenology provides evidence that the duration of phases within the annual cycle of birds is not fundamental, or genetic, as previously understood. Additionally, the recorded phenology dates should inform field researchers on the best timing to count colonies at the peak of breeding, which is poorly understood.  相似文献   

17.
Using daily counts of birds seen at six coastal bird observatories in southern and eastern England, we explored the migration phenology of turtle doves during the period 1963 to 2000. Annual totals increased threefold up to the late 1970s then decreased again, in accordance with the BTO Common Birds Census (CBC) index of abundance. Median annual spring arrival and autumn departure dates of turtle doves were not related to abundance (CBC index) or mean temperature in spring or summer respectively. Although median annual spring arrival date has not altered over the 38-year period, median annual autumn departure date has become earlier by 8 days. This has resulted in a shortening of the breeding season by 12 days, which ties in with a reduction in average number of nesting attempts per pair observed by a recent autecological study. It is possible that breeding turtle doves are now out of phase with peaks in food availability. This may have resulted in reduced breeding performance and earlier termination of the breeding season, and may have partly contributed to the decline of the species.  相似文献   

18.
Capsule Folivorous caterpillars constituted the majority of nestlings’ food in a primeval forest. Blue Tit broods only partially matched the caterpillar peak, and the mismatch did not affect food composition or nesting success.

Aims To describe factors influencing the timing of reproduction in Blue Tits under primeval conditions (Bia?owie?a National Park, Poland) and to check whether they schedule breeding so as to synchronize broods with a seasonal caterpillar peak.

Methods We gathered information on phenology of leaf development, seasonal availability of folivorous caterpillars (frass collection), timing of Blue Tit breeding, composition of its nestling food, and nest fate over a three-year period.

Results Caterpillars constituted c. 74% of nestling diet, but only 17–65% of broods matched the caterpillar peak in any season. Neither total nest loss, nor frequency of brood reduction depended on the level of mismatch. Caterpillar availability was probably adequate every year, regardless of the amount of mismatch, and no selective advantage of precise matching was detectable. Phenological events at all trophic levels occurred earlier in warmer springs. Egg-laying coincided with tree bud burst and appearance of caterpillars, but was not critically dependent on their timing.

Conclusion The observations are consistent with the view that Blue Tits under primeval conditions in Bia?owie?a National Park, Poland, breed as early as possible, rather than synchronizing their breeding with the caterpillar peak later in the season.  相似文献   

19.
Global climate change has affected avian migration patterns and nesting phenology. Changes in one phase of a bird's cycle will most likely affect other stages, but few studies focus simultaneously on multiple life‐history events. We used western North American ringing records and Christmas Bird Counts to examine whether changes in migration patterns were concordant with advancing American kestrel Falco sparverius nesting phenology. Consistent with previous findings, male kestrels migrated shorter distances than female kestrels, and kestrels nesting in southern latitudes migrated shorter distances than kestrels nesting in more northern areas. In addition, kestrel migration distance decreased significantly from 1960 to 2009 and was negatively associated with winter minimum temperatures. Christmas Birds Counts from the same time period showed increasing indices of overwintering kestrel abundance in northern states (Washington, Idaho, and Utah), where winter minimum temperatures have increased significantly, and concomitant decreases in southern states (California and Arizona). Finally, changes in nesting phenology of kestrels in southwestern Idaho were best explained by warmer winters, not springs. Warmer winters may decrease energetic demands on migrants by allowing for shorter migration distances, decreasing thermoregulatory costs, or both. Decreased energy demands during winter may allow birds to gain resources necessary for reproduction earlier in the nesting season. Higher winter temperatures that decrease (former) constraints on early nesting may be a particularly important mechanism leading to advancing nesting phenology for species with strong seasonal declines in fecundity or intense early season competition for high‐quality nesting areas.  相似文献   

20.
Seasonal declines in breeding performance are widespread in wild animals, resulting from temporal changes in environmental conditions or from individual variation. Seasonal declines might drive selection for early breeding, with implications for other stages of the annual cycle. Alternatively, selection on the phenology of nonbreeding stages could constrain timing of the breeding season and lead to seasonal changes in reproductive performance. We studied 25 taxa of migratory shorebirds (including five subspecies) at 16 arctic sites in Russia, Alaska, and Canada. We investigated seasonal changes in four reproductive traits, and developed a novel Bayesian risk‐partitioning model of daily nest survival to examine seasonal trends in two causes of nest failure. We found strong seasonal declines in reproductive traits for a subset of species. The probability of laying a full four‐egg clutch declined by 8–78% in 12 of 25 taxa tested, daily nest survival rates declined by 1–12% in eight of 22 taxa, incubation duration declined by 2.0–2.5% in two of seven taxa, and mean egg volume declined by 5% in one of 15 taxa. Temporal changes were not fully explained by individual variation. Across all species, the proportion of failed nests that were depredated declined over the season from 0.98 to 0.60, while the proportion abandoned increased from 0.01 to 0.35 and drove the seasonal declines in nest survival. An increase in abandonment of late nests is consistent with a life‐history tradeoff whereby either adult mortality increased or adults deserted the breeding attempt to maximize adult survival. In turn, seasonal declines in clutch size and incubation duration might be adaptive to hasten hatching of later nests. In other species of shorebirds, we found no seasonal patterns in breeding performance, suggesting that some species are not subject to selective pressure for early breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号