首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L Ding  JI Gold 《Neuron》2012,75(5):865-874
In contrast to the well-established roles of the striatum in movement generation and value-based decisions, its contributions to perceptual decisions lack direct experimental support. Here, we show that electrical microstimulation in the monkey caudate nucleus influences both choice and saccade response time on a visual motion discrimination task. Within a drift-diffusion framework, these effects consist of two components. The perceptual component biases choices toward ipsilateral targets, away from the neurons' predominantly contralateral response fields. The choice bias is consistent with a nonzero starting value of the diffusion process, which increases and decreases decision times for contralateral and ipsilateral choices, respectively. The nonperceptual component decreases and increases nondecision times toward contralateral and ipsilateral targets, respectively, consistent with the caudate's role in saccade generation. The results imply a causal role for the caudate in perceptual decisions used to select saccades that may be distinct from its role in executing those saccades. VIDEO ABSTRACT:  相似文献   

2.
The most common lethal accidents in General Aviation are caused by improperly executed landing approaches in which a pilot descends below the minimum safe altitude without proper visual references. To understand how expertise might reduce such erroneous decision-making, we examined relevant neural processes in pilots performing a simulated landing approach inside a functional MRI scanner. Pilots (aged 20–66) were asked to “fly” a series of simulated “cockpit view” instrument landing scenarios in an MRI scanner. The scenarios were either high risk (heavy fog–legally unsafe to land) or low risk (medium fog–legally safe to land). Pilots with one of two levels of expertise participated: Moderate Expertise (Instrument Flight Rules pilots, n = 8) or High Expertise (Certified Instrument Flight Instructors or Air-Transport Pilots, n = 12). High Expertise pilots were more accurate than Moderate Expertise pilots in making a “land” versus “do not land” decision (CFII: d′ = 3.62±2.52; IFR: d′ = 0.98±1.04; p<.01). Brain activity in bilateral caudate nucleus was examined for main effects of expertise during a “land” versus “do not land” decision with the no-decision control condition modeled as baseline. In making landing decisions, High Expertise pilots showed lower activation in the bilateral caudate nucleus (0.97±0.80) compared to Moderate Expertise pilots (1.91±1.16) (p<.05). These findings provide evidence for increased “neural efficiency” in High Expertise pilots relative to Moderate Expertise pilots. During an instrument approach the pilot is engaged in detailed examination of flight instruments while monitoring certain visual references for making landing decisions. The caudate nucleus regulates saccade eye control of gaze, the brain area where the “expertise” effect was observed. These data provide evidence that performing “real world” aviation tasks in an fMRI provide objective data regarding the relative expertise of pilots and brain regions involved in it.  相似文献   

3.
本文利用[~3H]-2脱氧葡萄糖定量放射自显影方法,研究了电刺激大鼠尾核头部镇痛时中枢神经系统有关结构的葡萄糖代谢率变化。结果表明,痛刺激后,皮层躯体感觉Ⅰ,Ⅱ区、扣带回皮质、丘脑束旁核、丘脑中央中核、丘脑腹后核、尾核、外侧缰核、外侧隔核、中缝背核及中脑导水管周围灰质等结等的葡萄糖代谢率均明显升高(P<0.05)。电刺激大鼠尾核头部后,中缝大核及延髓旁巨细胞网状外侧核的葡萄糖代谢率显著升高,中脑导水管周围灰质和中缝背核的葡萄糖代谢率亦有升高趋势。电刺激大鼠尾核头部可部份降低痛刺激引起的有关结构葡萄糖代谢率升高(如皮层躯体感觉Ⅰ、Ⅱ区、扣带回皮质、丘脑束旁核、丘脑中央中核、丘脑腹后核、外侧隔核及外侧缰核等)。上述结果提示,电刺激大鼠尾核头部镇痛时抑制了与痛感觉有关的结构,同时激活了与镇痛有关的结构。中缝大核、中缝背核、中脑导水管周围灰质及延髓旁巨细胞网状外侧核等结构是实现尾核镇痛的重要环节。  相似文献   

4.
胡中庭  王庆平 《生理学报》1992,44(4):355-361
Sokoloff's 2-deoxyglucose (2-DG) autoradiographic technique was used to identify changes of glucose metabolic rate in the rat brain following unilateral stimulation of the head of the caudate nucleus. The results were as follows. The local glucose metabolic rate after noxious stimulation was increased in the somatosensory cortex, cingulate cortex, ventroposterior and parafascicular nucleus of the thalamus, septal area, habenular nucleus, head of caudate nucleus, periaqueductal gray (PAG) and dorsal raphe nucleus (P < 0.05). After stimulating the head of the caudate nucleus, the local glucose metabolic rate of nucleus raphe magnus (rm) and nucleus paragigantocellularis (pgcl) was increased significantly and that of the PAG and dorsal raphe nucleus had a tendency to increase, while stimulation of the head of caudate nucleus could partially abolish the increased glucose metabolic rate in the somatosensory cortex, cingulate cortex, ventroposterior and parafascicular nucleus of the thalamus, septal area and habenular nucleus as induced by noxious stimulation. These results suggest that caudate stimulation is able to depress the activation of some brain structures related to nociception and to activate those related to antinociception. The pgcl, rm, PAG and dorsal raphe nucleus might be the key structures participating in the caudate stimulation produced analgesia.  相似文献   

5.

Background

Current healthcare systems have extended the evidence-based medicine (EBM) approach to health policy and delivery decisions, such as access-to-care, healthcare funding and health program continuance, through attempts to integrate valid and reliable evidence into the decision making process. These policy decisions have major impacts on society and have high personal and financial costs associated with those decisions. Decision models such as these function under a shared assumption of rational choice and utility maximization in the decision-making process.

Discussion

We contend that health policy decision makers are generally unable to attain the basic goals of evidence-based decision making (EBDM) and evidence-based policy making (EBPM) because humans make decisions with their naturally limited, faulty, and biased decision-making processes. A cognitive information processing framework is presented to support this argument, and subtle cognitive processing mechanisms are introduced to support the focal thesis: health policy makers' decisions are influenced by the subjective manner in which they individually process decision-relevant information rather than on the objective merits of the evidence alone. As such, subsequent health policy decisions do not necessarily achieve the goals of evidence-based policy making, such as maximizing health outcomes for society based on valid and reliable research evidence.

Summary

In this era of increasing adoption of evidence-based healthcare models, the rational choice, utility maximizing assumptions in EBDM and EBPM, must be critically evaluated to ensure effective and high-quality health policy decisions. The cognitive information processing framework presented here will aid health policy decision makers by identifying how their decisions might be subtly influenced by non-rational factors. In this paper, we identify some of the biases and potential intervention points and provide some initial suggestions about how the EBDM/EBPM process can be improved.  相似文献   

6.
Navigation through familiar environments can rely upon distinct neural representations that are related to different memory systems with either the hippocampus or the caudate nucleus at their core. However, it is a fundamental question whether and how these systems interact during route recognition. To address this issue, we combined a functional neuroimaging approach with a naturally occurring, well-controlled human model of caudate nucleus dysfunction (i.e., preclinical and early-stage Huntington's disease). Our results reveal a noncompetitive interaction so that the hippocampus compensates for gradual caudate nucleus dysfunction with a gradual activity increase, maintaining normal behavior. Furthermore, we revealed an interaction between medial temporal and caudate activity in healthy subjects, which was adaptively modified in Huntington patients to allow compensatory hippocampal processing. Thus, the two memory systems contribute in a noncompetitive, cooperative manner to route recognition, which enables the hippocampus to compensate seamlessly for the functional degradation of the caudate nucleus.  相似文献   

7.
中缝核5-羟色胺能神经元通过其广泛的神经投射影响大脑多方面的功能,包括抑郁和焦虑、睡眠-觉醒周期、奖赏、决策中的耐心以及性别取向等.背侧中缝核和中央中缝核的5-羟色胺能神经元对嗅球有密集的神经投射,从而调控嗅觉信息的初步表征和编码.近年来,随着电生理、光学成像及光遗传技术的应用,关于中缝核5-羟色胺能神经元对嗅球的调制作用研究不断出现,大量离体和在体实验证据表明中缝核5-羟色胺能神经元对嗅球及嗅觉相关行为有广泛的调制.本文从嗅球不同神经元类型角度,就中缝核5-羟色胺能神经投射对嗅球的调控作用及其神经机制研究进展进行了总结.  相似文献   

8.
We look at the possibility of integrating the percepts from multiple non-communicating observers as a means of achieving better joint perception and better group decisions. Our approach involves the combination of a brain-computer interface with human behavioural responses. To test ideas in controlled conditions, we asked observers to perform a simple matching task involving the rapid sequential presentation of pairs of visual patterns and the subsequent decision as whether the two patterns in a pair were the same or different. We recorded the response times of observers as well as a neural feature which predicts incorrect decisions and, thus, indirectly indicates the confidence of the decisions made by the observers. We then built a composite neuro-behavioural feature which optimally combines the two measures. For group decisions, we uses a majority rule and three rules which weigh the decisions of each observer based on response times and our neural and neuro-behavioural features. Results indicate that the integration of behavioural responses and neural features can significantly improve accuracy when compared with the majority rule. An analysis of event-related potentials indicates that substantial differences are present in the proximity of the response for correct and incorrect trials, further corroborating the idea of using hybrids of brain-computer interfaces and traditional strategies for improving decision making.  相似文献   

9.
Continuing progress towards automation of cervical cancer screening requires that criteria for clinical acceptability of automated systems be defined, and that methods be devised for effectively evaluating new technology. The potential roles of automation in cervical cancer detection, performance requirements, instrument evaluation and useful contributions from tuberculosis screening, automated white blood cell differential counting, signal detection theory and decision theory are discussed.  相似文献   

10.
Cai X  Kim S  Lee D 《Neuron》2011,69(1):170-182
In choosing between different rewards expected after unequal delays, humans and animals often prefer the smaller but more immediate reward, indicating that the subjective value or utility of reward is depreciated according to its delay. Here, we show that neurons in the primate caudate nucleus and ventral striatum modulate their activity according to temporally discounted values of rewards with a similar time course. However, neurons in the caudate nucleus encoded the difference in the temporally discounted values of the two alternative targets more reliably than neurons in the ventral striatum. In contrast, neurons in the ventral striatum largely encoded the sum of the temporally discounted values, and therefore, the overall goodness of available options. These results suggest a more pivotal role for the dorsal striatum in action selection during intertemporal choice.  相似文献   

11.
Dysregulation of mesolimbic dopamine transmission is implicated in a number of psychiatric illnesses characterised by disruption of reward processing and goal-directed behaviour, including schizophrenia, drug addiction and impulse control disorders associated with chronic use of dopamine agonists. Amphetamine sensitization (AS) has been proposed to model the development of this aberrant dopamine signalling and the subsequent dysregulation of incentive motivational processes. However, in humans the effects of AS on the dopamine-sensitive neural circuitry associated with reward processing remains unclear. Here we describe the effects of acute amphetamine administration, following a sensitising dosage regime, on blood oxygen level dependent (BOLD) signal in dopaminoceptive brain regions during a rewarded gambling task performed by healthy volunteers. Using a randomised, double-blind, parallel-groups design, we found clear evidence for sensitization to the subjective effects of the drug, while rewarded reaction times were unchanged. Repeated amphetamine exposure was associated with reduced dorsal striatal BOLD signal during decision making, but enhanced ventromedial caudate activity during reward anticipation. The amygdala BOLD response to reward outcomes was blunted following repeated amphetamine exposure. Positive correlations between subjective sensitization and changes in anticipation- and outcome-related BOLD signal were seen for the caudate nucleus and amygdala, respectively. These data show for the first time in humans that AS changes the functional impact of acute stimulant exposure on the processing of reward-related information within dopaminoceptive regions. Our findings accord with pathophysiological models which implicate aberrant dopaminergic modulation of striatal and amygdala activity in psychosis and drug-related compulsive disorders.  相似文献   

12.
Fast-scan cyclic voltammetry at carbon fiber microelectrodes allows rapid (sub-second) measurements of dopamine release in behaving animals. Herein, we report the modification of existing technology and demonstrate the feasibility of making sub-second measurements of dopamine release in the caudate nucleus of a human subject during brain surgery. First, we describe the modification of our electrodes that allow for measurements to be made in a human brain. Next, we demonstrate in vitro and in vivo, that our modified electrodes can measure stimulated dopamine release in a rat brain equivalently to previously determined rodent electrodes. Finally, we demonstrate acute measurements of dopamine release in the caudate of a human patient during DBS electrode implantation surgery. The data generated are highly amenable for future work investigating the relationship between dopamine levels and important decision variables in human decision-making tasks.  相似文献   

13.
Abstract— —In the head of the caudate nucleus, the relative specific activity of glutamine (glutamic acid specific activity = 1) was less than 1 with intravenous [14C]leucine as the tracer metabolite. This is in contrast to observations made in other brain areas (cortex, hippocampus, thalamus, pons, and medulla) where the relative specific activity of glutamine was greater than 1. This is also in contrast to findings when [l-14C]acetate was utilized as the tracer; under these conditions, in all brain areas, including the head of the caudate nucleus, the relative specific activity of glutamine was greater than 1. It is inferred that the differences in metabolism of [14C]leucine and [14C]acetate in the head of the caudate from that in other brain areas reflect differences in compartmentation of the glutamate-glutamine system.  相似文献   

14.
To improve recognition results, decisions of multiple neural networks can be aggregated into a committee decision. In contrast to the ordinary approach of utilizing all neural networks available to make a committee decision, we propose creating adaptive committees, which are specific for each input data point. A prediction network is used to identify classification neural networks to be fused for making a committee decision about a given input data point. The jth output value of the prediction network expresses the expectation level that the jth classification neural network will make a correct decision about the class label of a given input data point. The proposed technique is tested in three aggregation schemes, namely majority vote, averaging, and aggregation by the median rule and compared with the ordinary neural networks fusion approach. The effectiveness of the approach is demonstrated on two artificial and three real data sets.  相似文献   

15.
A recent study by van Ede et al. (2012) shows that the accuracy and reaction time in humans of tactile perceptual decisions are affected by an attentional cue via distinct cognitive and neural processes. These results are controversial as they undermine the notion that accuracy and reaction time are influenced by the same latent process that underlie the decision process. Typically, accumulation-to-bound models (like the drift diffusion model) can explain variability in both accuracy and reaction time by a change of a single parameter. To elaborate the findings of van Ede et al., we fitted the drift diffusion model to their behavioral data. Results show that both changes in accuracy and reaction time can be partly explained by an increase in the accumulation of sensory evidence (drift rate). In addition, a change in non-decision time is necessary to account for reaction time changes as well. These results provide a subtle explanation of how the underlying dynamics of the decision process might give rise to differences in both the speed and accuracy of perceptual tactile decisions. Furthermore, our analyses highlight the importance of applying a model-based approach, as the observed changes in the model parameters might be ecologically more valid, since they have an intuitive relationship with the neuronal processes underlying perceptual decision making.  相似文献   

16.
By means of the light and electron microscopy methods efferent connections of the fields 5a, 5b and 7 with the caudate nucleus have been studied. These fields are predominantly projected to the dorsolateral corner of the middle and posterior head of the caudate nucleus. The fields 5b and 7, unlike the field 5a, give also origin to the fibers, terminating in the central part of the head and in the caudate nucleus body. The electron microscopic investigation proves the monosynaptic nature of the fields 5a, 5b and 7 with the dorsolateral part of the middle and posterior parts of the caudate nucleus head. The parietal cortex gives origin, mainly, to fine myelin fibers (0.665 +/- 0.029), terminating in the part mentioned of the caudate nucleus. These fibers form small terminals (0.310 +/- 0.014 to 0.430 +/- 0.020 mcm) with asymmetrical membranous thickening; these terminals end on the spines (with a poorly expressed spine apparatus) of the dendrites, evidently, of the middle spine cells. Axonal terminals of the parietal cortex form axodendritic terminals extremely seldom. Axospinous synapses on the dendrites of the middle spine cells, situating in the dorsolateral part of the caudate nucleus head are supposed to be a morphological substrate, ensuring the cortical control of the parietal cortex at the level of the caudate nucleus.  相似文献   

17.
The computer-aided detection of artefacts became an essential task with increasing automation of quantitative electroencephalogram (EEG) analysis during anaesthesiological applications. The different algorithms published so far required individual manual adjustment or have been based on limited decision criteria. In this study, we developed an artificial neural networks-(ANN-)aided method for automated detection of artefacts and EEG suppression periods. 72 hr EEG recorded before, during and after anaesthesia with propofol have been evaluated. Selected parameterized patterns of 0.25 s length were used to train the ANN (22 input, 8 hidden and 4 output neurons) with error back propagation. The detection performance of the ANN-aided method was tested with processing epochs between 1 to10 s. Related to examiner EEG evaluation, the average detection performance of the method was 72% sensitivity and 80% specificity for artefacts and 90% sensitivity and 92% specificity for EEG suppression. The improvement in signal-to-noise ratio with automated artefact processing was 1.39 times for the spectral edge frequency 95 (SEF95) and 1.89 times for the approximate entropy (ApEn). We conclude that ANN-aided preprocessing provide an useful tool for automated EEG evaluation in anaesthesiological applications.  相似文献   

18.
People are capable of robust evaluations of their decisions: they are often aware of their mistakes even without explicit feedback, and report levels of confidence in their decisions that correlate with objective performance. These metacognitive abilities help people to avoid making the same mistakes twice, and to avoid overcommitting time or resources to decisions that are based on unreliable evidence. In this review, we consider progress in characterizing the neural and mechanistic basis of these related aspects of metacognition-confidence judgements and error monitoring-and identify crucial points of convergence between methods and theories in the two fields. This convergence suggests that common principles govern metacognitive judgements of confidence and accuracy; in particular, a shared reliance on post-decisional processing within the systems responsible for the initial decision. However, research in both fields has focused rather narrowly on simple, discrete decisions-reflecting the correspondingly restricted focus of current models of the decision process itself-raising doubts about the degree to which discovered principles will scale up to explain metacognitive evaluation of real-world decisions and actions that are fluid, temporally extended, and embedded in the broader context of evolving behavioural goals.  相似文献   

19.
20.
The characteristics of formation and achievement of motor conditioned reactions were studied in seventeen dogs before and after the lesion of head or body of the caudate nucleus. It has been shown that the degree of higher nervous activity disturbances depends on the localization of injuries in the nucleus, and on the complexity of the tests used. The caudate nucleus exerts a modulating effect on the parameters of motor conditioned reflexes and takes a direct part in the structure of delayed reflexes. Lesion of the caudate nucleus body is attended with more serious disturbances of higher nervous activity than lesion of its head.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号