首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deregulation of cell signaling pathways plays a crucial role in the development of tumors. The identification of such pathways requires effective analysis tools that facilitate the interpretation of expression differences. Here, we present a novel and highly efficient method for identifying deregulated subnetworks in a regulatory network. Given a score for each node that measures the degree of deregulation of the corresponding gene or protein, the algorithm computes the heaviest connected subnetwork of a specified size reachable from a designated root node. This root node can be interpreted as a molecular key player responsible for the observed deregulation. To demonstrate the potential of our approach, we analyzed three gene expression data sets. In one scenario, we compared expression profiles of non-malignant primary mammary epithelial cells derived from BRCA1 mutation carriers and of epithelial cells without BRCA1 mutation. Our results suggest that oxidative stress plays an important role in epithelial cells of BRCA1 mutation carriers and that the activation of stress proteins may result in avoidance of apoptosis leading to an increased overall survival of cells with genetic alterations. In summary, our approach opens new avenues for the elucidation of pathogenic mechanisms and for the detection of molecular key players.  相似文献   

2.
Robustness to mutations and noise has been shown to evolve through stabilizing selection for optimal phenotypes in model gene regulatory networks. The ability to evolve robust mutants is known to depend on the network architecture. How do the dynamical properties and state-space structures of networks with high and low robustness differ? Does selection operate on the global dynamical behavior of the networks? What kind of state-space structures are favored by selection? We provide damage propagation analysis and an extensive statistical analysis of state spaces of these model networks to show that the change in their dynamical properties due to stabilizing selection for optimal phenotypes is minor. Most notably, the networks that are most robust to both mutations and noise are highly chaotic. Certain properties of chaotic networks, such as being able to produce large attractor basins, can be useful for maintaining a stable gene-expression pattern. Our findings indicate that conventional measures of stability, such as damage propagation, do not provide much information about robustness to mutations or noise in model gene regulatory networks.  相似文献   

3.
4.

Background  

Identifying large gene regulatory networks is an important task, while the acquisition of data through perturbation experiments (e.g., gene switches, RNAi, heterozygotes) is expensive. It is thus desirable to use an identification method that effectively incorporates available prior knowledge – such as sparse connectivity – and that allows to design experiments such that maximal information is gained from each one.  相似文献   

5.
The S-system model is one of the nonlinear differential equation models of gene regulatory networks, and it can describe various dynamics of the relationships among genes. If we successfully infer rigorous S-system model parameters that describe a target gene regulatory network, we can simulate gene expressions mathematically. However, the problem of finding an optimal S-system model parameter is too complex to be solved analytically. Thus, some heuristic search methods that offer approximate solutions are needed for reducing the computational time. In previous studies, several heuristic search methods such as Genetic Algorithms (GAs) have been applied to the parameter search of the S-system model. However, they have not achieved enough estimation accuracy. One of the conceivable reasons is that the mechanisms to escape local optima. We applied an Immune Algorithm (IA) to search for the S-system parameters. IA is also a heuristic search method, which is inspired by the biological mechanism of acquired immunity. Compared to GA, IA is able to search large solution space, thereby avoiding local optima, and have multiple candidates of the solutions. These features work well for searching the S-system model. Actually, our algorithm showed higher performance than GA for both simulation and real data analyses.  相似文献   

6.
7.
ABSTRACT: BACKGROUND: Various computational models have been of interest due to their use in the modelling of gene regulatory networks (GRNs). As a logical model, probabilistic Boolean networks (PBNs) consider molecular and genetic noise, so the study of PBNs provides significant insights into the understanding of the dynamics of GRNs. This will ultimately lead to advances in developing therapeutic methods that intervene in the process of disease development and progression. The applications of PBNs, however, are hindered by the complexities involved in the computation of the state transition matrix and the steady-state distribution of a PBN. For a PBN with n genes and N Boolean networks, the complexity to compute the state transition matrix is O(nN22n) or O(nN2n) for a sparse matrix. RESULTS: This paper presents a novel implementation of PBNs based on the notions of stochastic logic and stochastic computation. This stochastic implementation of a PBN is referred to as a stochastic Boolean network (SBN). An SBN provides an accurate and efficient simulation of a PBN without and with random gene perturbation. The state transition matrix is computed in an SBN with a complexity of O(nL2n), where L is a factor related to the stochastic sequence length. Since the minimum sequence length required for obtaining an evaluation accuracy approximately increases in a polynomial order with the number of genes, n, and the number of Boolean networks, N, usually increases exponentially with n, L is typically smaller than N, especially in a network with a large number of genes. Hence, the computational complexity of an SBN is primarily limited by the number of genes, but not directly by the total possible number of Boolean networks. Furthermore, a time-frame expanded SBN enables an efficient analysis of the steady-state distribution of a PBN. These findings are supported by the simulation results of a simplified p53 network, several randomly generated networks and a network inferred from a T cell immune response dataset. An SBN can also implement the function of an asynchronous PBN and is potentially useful in a hybrid approach in combination with a continuous or single-molecule level stochastic model. CONCLUSIONS: Stochastic Boolean networks (SBNs) are proposed as an efficient approach to modelling gene regulatory networks (GRNs). The SBN approach is able to recover biologically-proven regulatory behaviours, such as the oscillatory dynamics of the p53-Mdm2 network and the dynamic attractors in a T cell immune response network. The proposed approach can further predict the network dynamics when the genes are under perturbation, thus providing biologically meaningful insights for a better understanding of the dynamics of GRNs. The algorithms and methods described in this paper have been implemented in Matlab packages, which are attached as Additional files.  相似文献   

8.
Recently a state-space model with time delays for inferring gene regulatory networks was proposed. It was assumed that each regulation between two internal state variables had multiple time delays. This assumption caused underestimation of the model with many current gene expression datasets. In biological reality, one regulatory relationship may have just a single time delay, and not multiple time delays. This study employs Boolean variables to capture the existence of the time-delayed regulatory relationships in gene regulatory networks in terms of the state-space model. As the solution space of time delayed relationships is too large for an exhaustive search, a genetic algorithm (GA) is proposed to determine the optimal Boolean variables (the optimal time-delayed regulatory relationships). Coupled with the proposed GA, Bayesian information criterion (BIC) and probabilistic principle component analysis (PPCA) are employed to infer gene regulatory networks with time delays. Computational experiments are performed on two real gene expression datasets. The results show that the GA is effective at finding time-delayed regulatory relationships. Moreover, the inferred gene regulatory networks with time delays from the datasets improve the prediction accuracy and possess more of the expected properties of a real network, compared to a gene regulatory network without time delays.  相似文献   

9.
10.
11.
Logic of gene regulatory networks   总被引:1,自引:0,他引:1  
  相似文献   

12.
13.

Background  

A reverse engineering of gene regulatory network with large number of genes and limited number of experimental data points is a computationally challenging task. In particular, reverse engineering using linear systems is an underdetermined and ill conditioned problem, i.e. the amount of microarray data is limited and the solution is very sensitive to noise in the data. Therefore, the reverse engineering of gene regulatory networks with large number of genes and limited number of data points requires rigorous optimization algorithm.  相似文献   

14.
MOTIVATION: Identification of the regulatory structures in genetic networks and the formulation of mechanistic models in the form of wiring diagrams is one of the significant objectives of expression profiling using DNA microarray technologies and it requires the development and application of identification frameworks. RESULTS: We have developed a novel optimization framework for identifying regulation in a genetic network using the S-system modeling formalism. We show that balance equations on both mRNA and protein species led to a formulation suitable for analyzing DNA-microarray data whereby protein concentrations have been eliminated and only mRNA relative concentrations are retained. Using this formulation, we examined if it is possible to infer a set of possible genetic regulatory networks consistent with observed mRNA expression patterns. Two origins of changes in mRNA expression patterns were considered. One derives from changes in the biophysical properties of the system that alter the molecular-interaction kinetics and/or message stability. The second is due to gene knock-outs. We reduced the identification problem to an optimization problem (of the so-called mixed-integer non-linear programming class) and we developed an algorithmic procedure for solving this optimization problem. Using simulated data generated by our mathematical model, we show that our method can actually find the regulatory network from which the data were generated. We also show that the number of possible alternate genetic regulatory networks depends on the size of the dataset (i.e. number of experiments), but this dependence is different for each of the two types of problems considered, and that a unique solution requires fewer datasets than previously estimated in the literature. This is the first method that also allows the identification of every possible regulatory network that could explain the data, when the number of experiments does not allow identification of unique regulatory structure.  相似文献   

15.
Structural systems identification of genetic regulatory networks   总被引:2,自引:0,他引:2  
MOTIVATION: Reverse engineering of genetic regulatory networks from experimental data is the first step toward the modeling of genetic networks. Linear state-space models, also known as linear dynamical models, have been applied to model genetic networks from gene expression time series data, but existing works have not taken into account available structural information. Without structural constraints, estimated models may contradict biological knowledge and estimation methods may over-fit. RESULTS: In this report, we extended expectation-maximization (EM) algorithms to incorporate prior network structure and to estimate genetic regulatory networks that can track and predict gene expression profiles. We applied our method to synthetic data and to SOS data and showed that our method significantly outperforms the regular EM without structural constraints. AVAILABILITY: The Matlab code is available upon request and the SOS data can be downloaded from http://www.weizmann.ac.il/mcb/UriAlon/Papers/SOSData/, courtesy of Uri Alon. Zak's data is available from his website, http://www.che.udel.edu/systems/people/zak.  相似文献   

16.
17.
18.
19.
Deciphering gene expression regulatory networks   总被引:11,自引:0,他引:11  
  相似文献   

20.

Background

A fundamental problem for translational genomics is to find optimal therapies based on gene regulatory intervention. Dynamic intervention involves a control policy that optimally reduces a cost function based on phenotype by externally altering the state of the network over time. When a gene regulatory network (GRN) model is fully known, the problem is addressed using classical dynamic programming based on the Markov chain associated with the network. When the network is uncertain, a Bayesian framework can be applied, where policy optimality is with respect to both the dynamical objective and the uncertainty, as characterized by a prior distribution. In the presence of uncertainty, it is of great practical interest to develop an experimental design strategy and thereby select experiments that optimally reduce a measure of uncertainty.

Results

In this paper, we employ mean objective cost of uncertainty (MOCU), which quantifies uncertainty based on the degree to which uncertainty degrades the operational objective, that being the cost owing to undesirable phenotypes. We assume that a number of conditional probabilities characterizing regulatory relationships among genes are unknown in the Markovian GRN. In sum, there is a prior distribution which can be updated to a posterior distribution by observing a regulatory trajectory, and an optimal control policy, known as an “intrinsically Bayesian robust” (IBR) policy. To obtain a better IBR policy, we select an experiment that minimizes the MOCU remaining after applying its output to the network. At this point, we can either stop and find the resulting IBR policy or proceed to determine more unknown conditional probabilities via regulatory observation and find the IBR policy from the resulting posterior distribution. For sequential experimental design this entire process is iterated. Owing to the computational complexity of experimental design, which requires computation of many potential IBR policies, we implement an approximate method utilizing mean first passage times (MFPTs) – but only in experimental design, the final policy being an IBR policy.

Conclusions

Comprehensive performance analysis based on extensive simulations on synthetic and real GRNs demonstrate the efficacy of the proposed method, including the accuracy and computational advantage of the approximate MFPT-based design.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号