首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neural precursor cells (NPCs) have the ability to self-renew and to give rise to neuronal and glial lineages. The fate decision of NPCs between proliferation and differentiation determines the number of differentiated cells and the size of each region of the brain. However, the signals that regulate the timing of neuronal differentiation remain unclear. Here, we show that Wnt signaling inhibits the self-renewal capacity of mouse cortical NPCs, and instructively promotes their neuronal differentiation. Overexpression of Wnt7a or of a stabilized form of beta-catenin in mouse cortical NPC cultures induced neuronal differentiation even in the presence of Fgf2, a self-renewal-promoting factor in this system. Moreover, blockade of Wnt signaling led to inhibition of neuronal differentiation of cortical NPCs in vitro and in the developing mouse neocortex. Furthermore, the beta-catenin/TCF complex appears to directly regulate the promoter of neurogenin 1, a gene implicated in cortical neuronal differentiation. Importantly, stabilized beta-catenin did not induce neuronal differentiation of cortical NPCs at earlier developmental stages, consistent with previous reports indicating self-renewal-promoting functions of Wnts in early NPCs. These findings may reveal broader and stage-specific physiological roles of Wnt signaling during neural development.  相似文献   

2.
Intervertebral disc (IVD) degeneration (IDD), characterized by elevated levels of proinflammatory mediators, increased Aggrecan and collagen degradation, and increased degradation of extracellular matrix (ECM), has been widely regarded as a significant contributor to low back pain. Genetics are significant factors contribute to IDD. Based on previous data, circular RNA SEMA4B (circSEMA4B) is down-regulated in IDD specimens; herein, we demonstrated circSEMA4B overexpression could attenuate the effect of IL-1β on nucleus pulposus cell (NPC) proliferation, senescence, and ECM and Aggrecan degradation in IDD via Wnt signaling. Moreover, miR-431, a direct target of circSEMA4B, could bind to the 3′UTR of SFRP1 or GSK-3β, two inhibitory regulators of Wnt signaling, to inhibit their expression thus playing a role similar to the activator of Wnt signaling in NPCs. The effect of circSEMA4B knockdown on NPCs was partially reversed by miR-431 inhibition; circSEMA4B serves as a miR-431 sponge to compete with SFRP1 or GSK-3β for miR-431 binding, thus inhibiting IL-1β-induced degenerative process in NPCs through Wnt signaling. Rescuing circSEMA4B expression in NPCs in IDD might present a potential strategy for IDD improvement.  相似文献   

3.
4.
Accumulating evidence suggests that adult hippocampal neurogenesis relies on the controlled and continued proliferation of neural progenitor cells (NPCs). With age, neurogenesis decreases through mechanisms that remain unclear but are believed to involve changes in the NPC microenvironment. Here, we provide evidence that NPC proliferation in the adult brain is in part regulated by astrocytes via Wnt signaling and that this cellular cross-talk is modified in the aging brain, leading to decreased proliferation of NPCs. Furthermore, we show that astrocytes regulate the NPC cell cycle by acting on the expression levels of survivin, a known mitotic regulator. Among cell cycle genes found down-regulated in aged NPCs, survivin was the only one that restored NPC proliferation in the aged brain. Our results provide a mechanism for the gradual loss of neurogenesis in the brain associated with aging and suggest that targeted modulation of survivin expression directly or through Wnt signaling could be used to stimulate adult neurogenesis.  相似文献   

5.
The Wnt/β-catenin pathway promotes proliferation of neural progenitor cells (NPCs) at early stages and induces neuronal differentiation from NPCs at late stages, but the molecular mechanisms that control this stage-specific response are unclear. Pin1 is a prolyl isomerase that regulates cell signaling uniquely by controlling protein conformation after phosphorylation, but its role in neuronal differentiation is not known. Here we found that whereas Pin1 depletion suppresses neuronal differentiation, Pin1 overexpression enhances it, without any effects on gliogenesis from NPCs in vitro. Consequently, Pin1-null mice have significantly fewer upper layer neurons in the motor cortex and severely impaired motor activity during the neonatal stage. A proteomic approach identified β-catenin as a major substrate for Pin1 in NPCs, in which Pin1 stabilizes β-catenin. As a result, Pin1 knockout leads to reduced β-catenin during differentiation but not proliferation of NPCs in developing brains. Importantly, defective neuronal differentiation in Pin1 knockout NPCs is fully rescued in vitro by overexpression of β-catenin but not a β-catenin mutant that fails to act as a Pin1 substrate. These results show that Pin1 is a novel regulator of NPC differentiation by acting on β-catenin and provides a new postphosphorylation signaling mechanism to regulate developmental stage-specific functioning of β-catenin signaling in neuronal differentiation.  相似文献   

6.
In early cortical development, neural progenitor cells (NPCs) expand their population in the ventricular zone (VZ), and produce neurons. Although a series of studies have revealed the process of neurogenesis, the molecular mechanisms regulating NPC proliferation are still largely unknown. Here we found that RhoG, a member of Rho family GTPases, was expressed in the VZ at early stages of cortical development. Expression of constitutively active RhoG promoted NPC proliferation and incorporation of bromodeoxyuridine (BrdU) in vitro, and the proportion of Ki67-positive cells in vivo. In contrast, knockdown of RhoG by RNA interference suppressed the proliferation, BrdU incorporation, and the proportion of Ki67-positive cells in NPCs. However, knockdown of RhoG did not affect differentiation and survival of NPC. The RhoG-induced promotion of BrdU incorporation required phosphatidylinositol 3-kinase (PI3K) activity but not the interaction with ELMO. Taken together, these results indicate that RhoG promotes NPC proliferation through PI3K in cortical development.  相似文献   

7.
Nitric oxide (NO) is believed to act as an intercellular signal that regulates synaptic plasticity in mature neurons. We now report that NO also regulates the proliferation and differentiation of mouse brain neural progenitor cells (NPCs). Treatment of dissociated mouse cortical neuroepithelial cluster cell cultures with the NO synthase inhibitor L-NAME or the NO scavenger hemoglobin increased cell proliferation and decreased differentiation of the NPCs into neurons, whereas the NO donor sodium nitroprusside inhibited NPC proliferation and increased neuronal differentiation. Brain-derived neurotrophic factor (BDNF) reduced NPC proliferation and increased the expression of neuronal NO synthase (nNOS) in differentiating neurons. The stimulatory effect of BDNF on neuronal differentation of NPC was blocked by L-NAME and hemoglobin, suggesting that NO produced by the latter cells inhibited proliferation and induced neuronal differentiation of neighboring NPCs. A similar role for NO in regulating the switch of neural stem cells from proliferation to differentiation in the adult brain is suggested by data showing that NO synthase inhibition enhances NPC proliferation and inhibits neuronal differentiation in the subventricular zone of adult mice. These findings identify NO as a paracrine messenger stimulated by neurotrophin signaling in newly generated neurons to control the proliferation and differentiation of NPC, a novel mechanism for the regulation of developmental and adult neurogenesis.  相似文献   

8.
Presenilin 1 (PS1) regulates environmental enrichment (EE)-mediated neural progenitor cell (NPC) proliferation and neurogenesis in the adult hippocampus. We now report that transgenic mice that ubiquitously express human PS1 variants linked to early-onset familial Alzheimer's disease (FAD) neither exhibit EE-induced proliferation, nor neuronal lineage commitment of NPCs. Remarkably, the proliferation and differentiation of cultured NPCs from standard-housed mice expressing wild-type PS1 or PS1 variants are indistinguishable. On the other hand, wild-type NPCs cocultured with primary microglia from mice expressing PS1 variants exhibit impaired proliferation and neuronal lineage commitment, phenotypes that are recapitulated with mutant microglia conditioned media in which we detect altered levels of selected soluble signaling factors. These findings lead us to conclude that factors secreted from microglia play a central role in modulating hippocampal neurogenesis, and argue for non-cell-autonomous mechanisms that govern FAD-linked PS1-mediated impairments in adult hippocampal neurogenesis.  相似文献   

9.
We determined the expression profile of ~300 G protein-coupled receptors (GPCRs) in embryonic cortical neural progenitor cells (NPCs) and identified a number of highly expressed GPCRs, among which endothelin-B receptor (ET(B)-R) was expressed at the highest level. We also revealed that endothelins (ETs) were predominantly expressed in CD31-positive endothelial cells of the embryonic cerebral cortex. Activation of ET(B)-R induced NPC assembly in vitro by promoting fibronectin-dependent-motility and N-cadherin-associated cell contact. NPC assembly also required a Rho-family GTPase(s) and phosphatidylinositol-3-kinase. In the embryonic cerebral cortex, a specific ET(B)-R agonist, IRL-1620, accelerated interkinetic nuclear migration (INM) of NPCs toward the ventricular wall (VW) ex vivo. Conversely, a specific ET(B)-R antagonist, BQ788, slowed INM, thereby inducing mislocalization of phospho-histone H3-positive M-phase nuclei in the ventricular zone (VZ) and decreasing the number of Tuj1-positive newborn neurons. Our results suggest that ET(B)-R-mediated assembly signals drive INM that precedes neurogenesis.  相似文献   

10.
During cancer progression, tumor cells eventually invade the surrounding collagen-rich extracellular matrix. Here we show that squamous cell carcinoma cells strongly adhere to Type I collagen substrates but display limited motility and invasion on collagen barriers. Further analysis revealed that in addition to the α2β1 integrin, a second collagen receptor was identified as Syndecan-1 (Sdc1), a cell surface heparan sulfate proteoglycan. We demonstrate that siRNA-mediated depletion of Sdc1 reduced adhesion efficiency to collagen I, whereas knockdown of Sdc4 was without effect. Importantly, silencing Sdc1 expression caused reduced focal adhesion plaque formation and enhanced cell spreading and motility on collagen I substrates, but did not alter cell motility on other ECM substrates. Sdc1 depletion ablated adhesion-induced RhoA activation. In contrast, Rac1 was strongly activated following Sdc1 knockdown, suggesting that Sdc1 may mediate the link between integrin-induced actin remodeling and motility. Taken together, these data substantiate the existence of a co-adhesion receptor system in tumor cells, whereby Sdc1 functions as a key regulator of cell motility and cell invasion by modulating RhoA and Rac activity. Downregulation of Sdc1 expression during carcinoma progression may represent a mechanism by which tumor cells become more invasive and metastatic.  相似文献   

11.
Despite the important role of tissue plasminogen activator (tPA) as a neuromodulator in neurons, microglia, and astrocytes, its role in neural progenitor cell (NPC) development is not clear yet. We identified that tPA is highly expressed in NPCs compared with neurons. Inhibition of tPA activity or expression using tPA stop, PAI-1, or tPA siRNA inhibited neurite outgrowth from NPCs, while overexpression or addition of exogenous tPA increased neurite outgrowth. The expression of Wnt and β-catenin as well as phosphorylation of LRP5 and LRP6, which has been implicated in Wnt–β-catenin signaling, was rapidly increased after tPA treatment and was decreased by tPA siRNA transfection. Knockdown of β-catenin or LRP5/6 expression by siRNA prevented tPA-induced neurite extension. NPCs obtained from tPA KO mice showed impaired neurite outgrowth compared with WT NPCs. In ischemic rat brains, axon density was higher in the brains transplanted with WT NPCs than in those with tPA KO NPCs, suggesting increased axonal sprouting by NPC-derived tPA. tPA-mediated regulation of neuronal maturation in NPCs may play an important role during development and in regenerative conditions.  相似文献   

12.
13.
Nestin-expressing neural progenitor cells (NPCs) have been isolated from hippocampus of brains and propagated with epidermal growth factor and basic fibroblast growth factor (bFGF). However, the underlying signaling mechanisms regulating NPC proliferation remain elusive. Here we showed that neuregulinbeta1 (NRG), like bFGF, effectively promoted the proliferation of hippocampus-derived NPCs and maintained the progenitor states of NPCs. Activation of protein kinase C (PKC), a downstream effector of phospholipase C (PLC), with 12-O-tetradecanoylphorbol-13-acetate (TPA) mimicked the NRG-induced proliferation of NPCs. The synergic effect of TPA plus NRG on neurosphere growth further prompted us to find that NRG induced NPC propagation through PLC/PKC signaling pathway. ErbB4, an important functional receptor of NRG, had an interaction with PLCgamma1 protein. In addition, inactivation of PLC pathway led to severe proliferative suppression of NPCs. Our study suggests that activation of PLC/PKC pathway plays an essential role in the NRG-induced proliferation of hippocampus-derived NPCs.  相似文献   

14.
15.
Neuronal differentiation from expanded human ventral mesencephalic neural precursor cells (NPCs) is very limited. Astrocytes are known to secrete neurotrophic factors, and so in order to enhance neuronal survival from NPCs, we tested the effect of regional astrocyte-conditioned medium (ACM) from the rat cortex, hippocampus and midbrain on this process. Human NPC's were expanded in FGF-2 before differentiation for 1 or 4 weeks in ACM. The results show that ACM from the hippocampus and midbrain increase the number of neurons from expanded human NPCs, an effect that was not observed with cortical ACM. In addition, both hippocampal and midbrain ACM increased the number and length of phosphorylated neurofilaments. MALDI-TOF analysis used to determine differences in media revealed that although all three regional ACMs had cystatin C, α-2 macroglobulin, extracellular matrix glycoprotein and vimentin, only hippocampal and midbrain ACM also contained clusterin, which when immunodepleted from midbrain ACM eliminated the observed effects on neuronal differentiation. Furthermore, clusterin is a highly glycosylated protein that has no effect on cell proliferation but decreases apoptotic nuclei and causes a sustained increase in phosphorylated extracellular signal-regulated kinase, implicating its role in cell survival and differentiation. These findings further reveal differential effects of regional astrocytes on NPC behavior and identify clusterin as an important mediator of NPC-derived neuronal survival and differentiation.  相似文献   

16.
Zhao T  Zhang CP  Liu ZH  Wu LY  Huang X  Wu HT  Xiong L  Wang X  Wang XM  Zhu LL  Fan M 《The FEBS journal》2008,275(8):1824-1834
We recently reported that intermittent hypoxia facilitated the proliferation of neural stem/progenitor cells (NPCs) in the subventricule zone and hippocampus in vivo. Here, we demonstrate that hypoxia promoted the proliferation of NPCs in vitro and that hypoxia-inducible factor (HIF)-1alpha, which is one of the key molecules in the response to hypoxia, was critical in this process. NPCs were isolated from the rat embryonic mesencephalon (E13.5), and exposed to different oxygen concentrations (20% O(2), 10% O(2), and 3% O(2)) for 3 days. The results showed that hypoxia, especially 10% O(2), promoted the proliferation of NPCs as assayed by bromodeoxyuridine incorporation, neurosphere formation, and proliferation index. The level of HIF-1alpha mRNA and protein expression detected by RT-PCR and western blot significantly increased in NPCs subjected to 10% O(2). To further elucidate the potential role of HIF-1alpha in the proliferation of NPCs induced by hypoxia, an adenovirus construct was used to overexpress HIF-1alpha, and the pSilencer 1.0-U6 plasmid as RNA interference vector targeting HIF-1alpha mRNA was used to knock down HIF-1alpha. We found that overexpression of HIF-1alpha caused the same proliferative effect on NPCs under 20% O(2) as under 10% O(2). In contrast, knockdown of HIF-1alpha inhibited NPC proliferation induced by 10% O(2). These results demonstrated that moderate hypoxia was more beneficial to NPC proliferation and that HIF-1alpha was critical in this process.  相似文献   

17.
Highly conserved microRNA-9 (miR-9) has a critical role in various cellular processes including neurogenesis. However, its regulation by neurotropins that are known to mediate neurogenesis remains poorly defined. In this study, we identify platelet-derived growth factor-BB (PDGF-BB)-mediated upregulation of miR-9, which in turn downregulates its target gene monocyte chemotactic protein-induced protein 1 (MCPIP1), as a key player in modulating proliferation, neuronal differentiation as well as migration of neuronal progenitor cells (NPCs). Results indicate that miR-9-mediated NPC proliferation and neuronal differentiation involves signaling via the nuclear factor-kappa B (NF-κB) and cAMP response element-binding protein (CREB) pathways, and that NPC migration involves CREB but not the NF-κB signaling. These findings thus suggest that miR-9-mediated downregulation of MCPIP1 acts as a molecular switch regulation of neurogenesis.  相似文献   

18.
The notochord develops from notochord progenitor cells (NPCs) and functions as a major signaling center to regulate trunk and tail development. NPCs are initially specified in the node by Wnt and Nodal signals at the gastrula stage. However, the underlying mechanism that maintains the NPCs throughout embryogenesis to contribute to the posterior extension of the notochord remains unclear. Here, we demonstrate that Wnt signaling in the NPCs is essential for posterior extension of the notochord. Genetic labeling revealed that the Noto-expressing cells in the ventral node contribute the NPCs that reside in the tail bud. Robust Wnt signaling in the NPCs was observed during posterior notochord extension. Genetic attenuation of the Wnt signal via notochord-specific β-catenin gene ablation resulted in posterior truncation of the notochord. In the NPCs of such mutant embryos, the expression of notochord-specific genes was down-regulated, and an endodermal marker, E-cadherin, was observed. No significant alteration of cell proliferation or apoptosis of the NPCs was detected. Taken together, our data indicate that the NPCs are derived from Noto-positive node cells, and are not fully committed to a notochordal fate. Sustained Wnt signaling is required to maintain the NPCs’ notochordal fate.  相似文献   

19.
Interferon-β (IFN-β) is a mainstay therapy for relapse-remitting multiple sclerosis (MS). However, the direct effects of IFN-β on the central nervous system (CNS) are not well understood. To determine whether IFN-β has direct neuroprotective effects on CNS cells, we treated adult mouse neural progenitor cells (NPCs) in vitro with IFN-β and examined the effects on proliferation, apoptosis, and differentiation. We found that mouse NPCs express high levels of IFNα/β receptor (IFNAR). In response to IFN-β treatment, no effect was observed on differentiation or proliferation. However, IFN-β treated mouse NPCs demonstrated decreased apoptosis upon growth factor withdrawal. Pathway-specific polymerase chain reaction (PCR) arrays demonstrated that IFN-β treatment upregulated the STAT 1 and 2 signaling pathway, as well as GFRA2, NOD1, Caspases 1 and 12, and TNFSF10. These results suggest that IFN-β can directly affect NPC survival, possibly playing a neuroprotective role in the CNS by modulating neurotrophic factors.  相似文献   

20.
During development of the mammalian brain, many neural precursor cells (NPCs) undergo apoptosis. The regulation of such cell death, however, is poorly understood. We now show that the survival of mouse embryonic NPCs in vitro was increased by culture at a high cell density and that this effect was attributable to activation of Notch signaling. Expression of an active form of Notch1 thus markedly promoted NPC survival. Hes proteins, key effectors of Notch signaling in inhibition of neurogenesis, were not sufficient for the survival-promoting effect of Notch1. This effect of Notch1 required a region of the protein containing the RAM domain and was accompanied by up-regulation of the anti-apoptotic proteins Bcl-2 and Mcl-1. Moreover, knockdown of these proteins by RNA interference resulted in blockade of the Notch1-induced survival. These results reveal a new function of Notch, the promotion of NPC survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号