首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A polypyrrole/reduced graphene oxide (PPy/r‐GO) composite film is prepared by inducing electrochemical reduction of graphene oxide incorporated into PPy as the dopant. This film has a wrinkled surface morphology with a porous structure as revealed by scanning electron microscopy. Its porous structure is attributed to the physical nature of the GO sheets, providing a templating effect during PPy deposition. This PPy/r‐GO composite is characterized using in‐situ UV–visible spectroelectrochemistry as well as Raman and Fourier‐transform IR spectroscopy. The PPy/r‐GO material shows greatly improved electrochemical properties, i.e., a high rate capability and excellent cycling stability when used as a cathode material in a lithium ion battery. It also delivers a large reversible capacity when used as an anode material, and this is mainly attributed to the reduced graphene oxide (r‐GO) component.  相似文献   

2.
A novel glucose biosensor was developed based on the adsorption of glucose oxidase at a TiO(2)-Graphene (GR) nanocomposite electrode. A TiO(2)-GR composite was synthesized from a colloidal mixture of TiO(2) nanparticles and graphene oxide (GO) nanosheets by an aerosol assisted self-assembly (AASA). The particle morphology of all TiO(2)-GR composites was spherical in shape. It was observed that micron-sized TiO(2) particles were encapsulated by GR nanosheets and that the degree of encapsulation was proportional to the ratio of GO/TiO(2). The amperometric response of the glucose biosensor fabricated by the TiO(2)-GR composite was linear against a concentration of glucose ranging from 0 to 8mM at -0.6V. The highest sensitivity was noted at about 6.2μA/mMcm(2). The as prepared glucose biosensor based on the TiO(2)-GR composite showed higher catalytic performance for glucose redox than a pure TiO(2) and GR biosensor.  相似文献   

3.
Lu W  Luo Y  Chang G  Sun X 《Biosensors & bioelectronics》2011,26(12):4791-4797
In this paper, we report on the first preparation of well-defined SiO(2)-coated graphene oxide (GO) nanosheets (SiO(2)/GO) without prior GO functionalization by combining sonication with sol-gel technique. The functional SiO(2)/GO nanocomposites (F-SiO(2)/GO) obtained by surface functionalization with NH(2) group were subsequently employed as a support for loading Ag nanoparticles (AgNPs) to synthesize AgNP-decorated F-SiO(2)/GO nanosheets (AgNP/F-SiO(2)/GO) by two different routes: (1) direct adsorption of preformed, negatively charged AgNPs; (2) in situ chemical reduction of silver salts. The morphologies of these nanocomposites were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). It is found that the resultant AgNP/F-SiO(2)/GO exhibits remarkable catalytic performance for H(2)O(2) reduction. This H(2)O(2) sensor has a fast amperometric response time of less than 2s. The linear range is estimated to be from 1×10(-4) M to 0.26 M (r=0.998) and the detection limit is estimated to be 4 × 10(-6) M at a signal-to-noise ratio of 3, respectively. We also fabricated a glucose biosensor by immobilizing glucose oxidase (GOD) into AgNP/F-SiO(2)/GO nanocomposite-modified glassy carbon electrode (GCE) for glucose detection. Our study demonstrates that the resultant glucose biosensor can be used for the glucose detection in human blood serum.  相似文献   

4.
Polyurethane (PU) foams were coated with graphite, and pyrrole monomer was subsequently polymerized onto its surface by chemical oxidization to obtain nanostructured polyurethane/graphite/polypyrrole (PU/Graph/PPy) composites, which were used for anaerobic microorganisms grown and tested as anodes in microbial fuel cells (MFC) using municipal wastewater as fuel. The effects of oxidizing agent type (ammonium persulfate and FeCl3) used in pyrrole polymerization on the performance of electrodes in MFC were studied. Composites were characterized by Fourier Transform Infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM), and by the four-point probes to determine conductivity. It was observed from SEM analysis that globular nanostructures of PPy were formed onto PU surface with average diameters between 120 and 450 nm, which are typical of aqueous polymerization of pyrrole monomer. The highest output power density observed in MFCs was 305.5 mW/m3 for the composite synthesized using FeCl3 as the oxidant, and 128.6 mW/m3 using the composite obtained with ammonium persulfate as oxidizing; the corresponding chemical oxygen demand (COD) removal were 48.2 and 45.5%, respectively. The calculated coulombic efficiency for PU/Graph/PPy composite obtained with FeCl3 as oxidant was of 9.4%. Internal resistance of MFC using the composite obtained with FeCl3 as oxidant was determined by linear sweep voltammetry (LSV) and the variable resistance (VR) methods, giving 4.8 and 2.9 kO, respectively, with average maximum power density of 237.5 mW/m3.  相似文献   

5.
Conducting polymer polypyrrole supported bilayer lipid membranes   总被引:3,自引:0,他引:3  
Electrochemically synthesized conducting polymer polypyrrole (PPy) film on gold electrode surface was used as a novel support for bilayer lipid membranes (BLMs). Investigations by surface plasmon resonance (SPR) suggest that dimyristoyl-L-alpha-phosphatidylcholine (DMPC) and dimyristoyl-L-alpha-phosphatidyl-L-serine (DMPS) can form BLMs on PPy film surface but dimyristoyl-L-alpha-phosphatidylglycerol (DMPG) and didodecyldimethylammonium bromide (DDAB) can not do so, indicating the formation of PPy supported bilayer lipid membranes (s-BLMs) is dependent on the chemical structure of the lipids used. The self-assembly of DMPC induces a smoother topography than the PPy layer with rms roughness decreasing from 4.484 to 2.914 nm convinced by atomic force microscopy (AFM). Impedance spectroscopy measurements confirm that the deposition of BLM substantially increases the resistance of the system indicating a very densely packed BLM structures. The little change of PPy film in capacitance shows that solvent and electrolyte ions still retain within the porous PPy film after BLM deposition. Therefore, the PPy supported BLM is to some extent comparable to conventional BLM with aqueous medium retaining at its two sides. As an example and preliminary application, horseradish peroxidase (HRP) reconstituted into the s-BLM shows the expected protein activity and can transfer electron from or to the underlying PPy support for its response to electrocatalytic reduction of hydrogen peroxide in solution. Thus the system maybe possesses potential applications to biomimetic membrane studies.  相似文献   

6.
A basic investigation on the removal of cadmium(II) ions from aqueous solutions by dead Sargassum sp. was conducted in batch conditions. The influence of different experimental parameters; initial pH, shaking rate, sorption time, temperature and initial concentrations of cadmium ions on cadmium uptake was evaluated. Results indicated that cadmium uptake could be described by the Langmuir adsorption model, being the monolayer capacity negatively affected with an increase in temperature. Analogously, the adsorption equilibrium constant decreased with increasing temperature. The kinetics of the adsorption process followed a second-order adsorption, with characteristic constants increasing with increasing temperature. Activation energy of biosorption could be calculated as equal to 10 kcal/mol. The biomass used proved to be suitable for removal of cadmium from dilute solutions. Its maximum uptake capacity was 120 mg/g. It can be considered an optimal result when compared to conventional adsorbing materials. Thus Sargassum sp. has great potential for removing cadmium ions especially when concentration of this metal is low in samples such as wastewater streams.  相似文献   

7.
This study reports a simple method of integrating electroactive gold nanoparticles (Au NPs) with graphene oxide (GO) nanosheet support by layer‐by‐layer (LbL) assembly for the creation of 3‐dimensional electrocatalytic thin films that are active toward methanol oxidation. This approach involves the alternating assembly of two oppositely charged suspensions of Au NPs with GO nanosheets based on electrostatic interactions. The GO nanosheets not only serve as structural components of the multilayer thin film, but also potentially improve the utilization and dispersion of Au NPs by taking advantages of the high catalytic surface area and the electronic conduction of graphene nanosheets. Furthermore, it is found that the electrocatalytic activity of the multilayer thin films of Au NPs with graphene nanosheet is highly tunable with respect to the number of bilayers and thermal treatment, benefiting from the advantageous features of LbL assembly. Because of the highly versatile and tunable properties of LbL assembled thin films coupled with electrocatalytic NPs, we anticipate that the general concept presented here will offer new types of electroactive catalysts for direct methanol fuel cells.  相似文献   

8.
In this paper an urchinlike MnO(2) nanoparticle was synthesized by hydrothermal method and applied to the protein electrochemistry for the first time. By using a carbon ionic liquid electrode (CILE) as the basal electrode, hemoglobin (Hb) was immobilized on the surface of CILE with chitosan (CTS) and MnO(2) nanoparticle composite materials. Spectroscopic results indicated that Hb molecules retained its native structure in the composite film. A pair of well-defined redox peaks appeared on the cyclic voltammogram with the formal peak potential as -0.180 V (vs. SCE), which indicated that direct electron transfer of Hb was realized on the modified electrode. The result can be attributed to the specific characteristic of MnO(2) nanoparticle and the advantages of CILE, which facilitated the electron transfer rate. The fabricated CTS-MnO(2)-Hb/CILE showed good electrocatalytic ability to the reduction of trichloroacetic acid (TCA). Under the optimal conditions the catalytic current was in linear to TCA concentration in the range from 0.5 to 16.0 mmol L(-1) with the detection limit calculated as 0.167 mmol L(-1) (3σ). The result indicated that urchinlike MnO(2) nanoparticle had the potential application in the third generation electrochemical biosensors.  相似文献   

9.
A highly flexible nanocomposite film of bacterial cellulose (BC) and graphene oxide (GO) with a layered structure was presented using the vacuum-assisted self-assembly technique. Microscopic and X-ray diffraction measurements demonstrated that the GO nanosheets were uniformly dispersed in the BC matrix. The interactions between BC and GO were studied by Fourier transformation infrared spectroscopy. Compared with pristine BC, the integration of 5 wt% GO resulted in 10% and 20% increase in Young's modulus and tensile strength of the composite film. The electrical conductivity of the composite film containing 1 wt% GO after in situ reduction showed a remarkable increase by 6 orders of magnitude compared with the insulated BC.  相似文献   

10.
P Yin  Y Wang  Y Li  C Deng  X Zhang  P Yang 《Proteomics》2012,12(18):2784-2791
In this study, sandwich-structured graphene/mesoporous silica composites (C8-modified graphene@mSiO(2) ) were synthesized by coating mesoporous silica onto hydrophilic graphene nanosheets through a surfactant-mediated cocondensation sol-gel process. The newly prepared C8-modified graphene@mSiO(2) nanocomposites possess unique properties of extended plate-like morphology, good water dispersibility, highly open pore structure, uniform pore size (2.8 nm), high surface area (632 m(2) /g), and C8-modified-interior pore walls. The unique structure of the C8-modified graphene@mSiO(2) composite nanosheets not only provide extended planes with hydrophilic surface that prevents aggregation in solution, but also offer a huge number of C8-modified mesopores with high surface area that can ensure an efficient adsorption of peptides through hydrophobic-hydrophobic interaction between C8-moified pore walls and target molecules. The obtained C8-modified graphene@mSiO(2) materials were utilized for size selectively and specifically enriching peptides in standard peptide mixtures and endogenous peptides in real biological samples (mouse brain tissue).  相似文献   

11.
Graphene oxide (GO) has been recently attracted considerable interest for its potential applications in physical, chemical and biological properties. In the present study, the GO nanosheets were prepared by a chemical exfoliation technique using a modified Hummers method. Initially, the prepared GO nanosheets were confirmed by UV–vis spectroscopy and further characterized by FE-SEM, Edax, HR-TEM and SAED that demonstrated the formation of GO nanosheets with few layers flat sheet structure with hexagonal lattice crystalline nature. The FTIR spectra revealed the presence of various oxygen containing functional groups has been produced from graphite plane by exfoliation technique. The prepared GO nanosheets showed excellent antibiotic resistant activity against planktonic bacteria and more effective to damage the established biofilms and inhibits the biofilm formation of human clinical pathogens like E. coli and P. aeruginosa. Further, the GO nanosheets were found to be non-toxic to normal mammalian cells and there are no apparent morphological changes were observed in control and treated cells. In conclusion, GO nanosheets were effectively preventing the formation of biofilms and kills the represent bacteria that suggested the GO nanosheets could be used for the prevention and treatment of biofilm-related infections.  相似文献   

12.
A superhydrophobic manganese oxide/polystyrene (MnO2/PS) nanocomposite coating was fabricated by a facile spraying process.The mixture solution of MnO2/PS was poured into a spray gun,and then sprayed onto the copper substrate using 0.2 MPa nitrogen gas to construct superhydrophobic coating.The wettability of the composite coating was measured by sessile drop method.When the weight ratio of MnO2 to PS is 0.5:1,the maximum of contact angle (CA) (140°) is obtained at drying temperature of 180 ℃.As the content of MnO2 increases,the maximum of CA (155°) is achieved at 100 ℃.Surface morphologies and chemical composition were analyzed to understand the effect of the content of MnO2 nanorods and the drying temperature on CA.The results show that the wettability of the coating can be controlled by the content ofMnO2 nanorods and the drying temperature.Using the proposed method,the thickness of the coating can be controlled by the spraying times.If damaged,the coating can be repaired just by spraying the mixture solution again.  相似文献   

13.
An electrochemical immunoassay which minimizes nonspecific protein adsorption and improves detection sensitivity of proteomic cancer biomarker is described. Our technique comprises two novel features: (i) a high density terminally functionalized poly(N-isopropyl acrylamide) 'brush' layer is grown by surface initiated reversible addition fragmentation chain transfer (RAFT) polymerization method from the electrode surface in order to minimize nonspecific adsorption of serum proteins and other biomolecules, and (ii) a signal amplifying 'bionanoconjugate' comprised of graphene oxide nanosheets decorated with CdSe quantum dots and recombinant single-chain variable fragments towards MSLN, is used to 'physically' amplify the anodic stripping voltammetric signal. This method enabled a detection limit of ca. 1pg/mL MSLN (RSD=4.6%, n=4) spiked in serum samples. Because of the simple, specific and sensitive nature of this methodology, we feel that it may find potential use in serum-based protein diagnostics.  相似文献   

14.
A novel amperometric biosensor based on polypyrrole (PPy) nanotube array deposited on a Pt plated nano-porous alumina substrate and its performances are described. Glucose oxidase (GOx) enzyme was selected as the model enzyme in this study. Commercially available nano-porous alumina discs were used to fabricate electrodes in order to study the feasibility of enzyme entrapment by physical adsorption. A PPy/PF6- film comprising of nanotube array was synthesized using a solution containing 0.05 M Pyrrole and 0.1 M NaPF6 at a current density of 0.3 mA/cm2 for 90 s. The immobilization was done by physical adsorption of 5 microL of GOx (from a stock solution of 2 mg/mL of 210 U/mg) on each electrode. A sensitivity of 7.4 mA cm(-2) M(-1) was observed with PPy nanotube array where the maximum tube diameter was 100 nm. A linear range of 500 microM-13 mM and a response time of about 3 s were observed with a nanotube array where the maximum tube diameter was 200 nm. The synthesized nanotube arrays were characterized by galvanostatic electrochemical technique. Calculated value of apparent Michaelis-Menten constant (Km) was 7.01 mM. The use of nano-porous template electrodes leads to an efficient enzyme loading and provides an increased surface area for sensing the reaction. These factors contribute to increase the characteristic performances of the novel biosensor.  相似文献   

15.
Li L  Wang J  Zhou J  Yang F  Jin C  Qu Y  Li A  Zhang L 《Bioresource technology》2008,99(15):6908-6916
Functionalized polypyrrole (PPy) composites were prepared by incorporation of a model redox mediator, anthraquinonedisulphonate (AQDS), as doping anion during the electropolymerization of pyrrole (Py) monomer on active carbon felt (ACF) electrode. Then, the resulting composite, ACF/PPy/AQDS as a novel immobilized redox mediator for catalyzing anaerobic biotransformation of the model nitroaromatic compounds (NACs), such as nitrobenzene (NB), 2,4- and 2,6-dinitrotoluene (DNT), were investigated in detail. The results showed that ACF/PPy/AQDS exhibited good catalytic activity and stability, and its addition effectively accelerated the NACs anaerobic reduction to the corresponding amino compounds. In order to estimate the relationship between community dynamics and the function of immobilized redox mediator, a combined method based on fingerprints (ribosomal intergenic spacer analysis, RISA) and 16S rRNA gene sequencing was used. The results indicated that the existence of ACF/PPy/AQDS made the potent AQDS-reducing bacteria keeping predominant in the catalytic systems. Based on the results above, it can be concluded that this novel immobilized redox mediator is feasible and potentially useful to enhance NACs anaerobic reduction.  相似文献   

16.
Different methods of immobilization of extracellular glucose oxidase (GO) from Penicillium funiculosum 46.1 on gels of aluminum or zinc hydroxides have been compared. GO from the culture liquid filtrate (CLF) associated with Zn(OH)2 but not Al(OH)3 gels. Preparation of samples of immobilized GO does not require isolation of the enzyme (CLF may be used). GO immobilized on Zn(OH)2 gels from CLF was 1.6 times more efficient in catalyzing D-glucose oxidation than the enzyme contained in the original culture liquid. Crosslinking of gel-adsorbed CLF proteins affected the properties of GO adversely and to a considerable extent. Various means of polymerization and immobilization of GO isolated from CLF have been studied. Optimum results were obtained when GO polymeric products were pre-synthesized in solution, followed by adsorption to Al(OH)3 but not Zn(OH)2 gels. The catalytic efficiency of GO immobilized on a Zn(OH)2 gel was significantly lower than that of the enzyme associated with Al(OH)3.  相似文献   

17.
Cai H  Zhu N  Jiang Y  He P  Fang Y 《Biosensors & bioelectronics》2003,18(11):1311-1319
Synthesis of the novel Cu@Au alloy nanoparticle and its application in an electrochemical DNA hybridization detection assay is described in this article. We report a low-temperature method for generating core-shell particles consisting of a core of Cu and a thin layer of Au shell that can be readily functionalized with oligonucleotides. Core-shell Cu@Au particles were successfully labeled to a 5'-alkanethiol capped oligonucleotides probe that is related to the colitoxin gene. The DNA genetic sensing assay relies on the electrostatic adsorption of target oligonucleotides onto conducting polypyrrole (PPy) surface at the glassy carbon electrode (GCE), and its hybridization to the alloy particle-oligonucleotides DNA probe. Hybridization events between probe and target were monitored by the release of the copper metal atoms anchored on the hybrids by oxidative metal dissolution and the indirectly determination of the solubilized Cu2+ ions by sensitive anodic stripping voltammetry (ASV). The detection limit is 5.0 pmol l(-1) of target oligonucleotides. The Cu@Au core-shell nanoparticles combining the surface modification properties of Au with the good electrochemical activity of Cu core shows their perspective application in the electrochemical DNA hybridization analysis assay.  相似文献   

18.
We report the use of a simple yet highly effective magnetite-waste tea composite to remove lead(II) (Pb2+) ions from water. Magnetite-waste tea composites were dispersed in four different types of water–deionized (DI), artificial rainwater, artificial groundwater and artificial freshwater–that mimic actual environmental conditions. The water samples had varying initial concentrations (0.16–5.55 ppm) of Pb2+ ions and were mixed with the magnetite-waste tea composite for at least 24 hours to allow adsorption of the Pb2+ ions to reach equilibrium. The magnetite-waste tea composites were stable in all the water samples for at least 3 months and could be easily removed from the aqueous media via the use of permanent magnets. We detected no significant leaching of iron (Fe) ions into the water from the magnetite-waste tea composites. The percentage of Pb adsorbed onto the magnetite-waste tea composite ranged from ∼70% to 100%; the composites were as effective as activated carbon (AC) in removing the Pb2+ ions from water, depending on the initial Pb concentration. Our prepared magnetite-waste tea composites show promise as a green, inexpensive and highly effective sorbent for removal of Pb in water under environmentally realistic conditions.  相似文献   

19.
A poly(N,N-dimethylaminoethylmethacrylate) (PDMAEMA) homopolymer with both thermoresponsive and cationic characteristics was applied to a vector for use in deposition transfection. PDMAEMA with a molecular weight of 2.5 × 10(5) g mol(-1) was synthesized by photoinduced radical polymerization. Polyplexes approximately 750 nm in size were formed by mixing PDMAEMA with luciferase-encoding plasmid DNA. The polyplexes had a lower critical solution temperature (LCST) of approximately 30 °C. In addition, they exhibited excellent adsorption and durability on a polystyrene surface, as confirmed by a surface chemical compositional analysis. When HeLa cells and primary cells were cultured on a substrate coated with the polyplexes, high transgene expression and cell viability of more than 90% were obtained at low charge ratios (PDMAEMA/plasmid DNA ratio) ranging from 2 to 8. In addition, transgene expression was sustained for over 2 weeks post-transfection whereas decreased expression was observed 5 days post-transfection when the conventional solution-mediated transfection method was used. Thus, high and sustained transgene expression as well as high cell viability can be realized by using small amounts of PDMAEMA as a deposition transfection material.  相似文献   

20.
Molecularly imprinted polymeric microbeads (MIPMs) were prepared by the suspension and modified suspension polymerization methods using D-phenylalanine as the template, methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linker, toluene as the porogen, polyvinyl alcohol as the stabilizer, and sodium dodecyl sulfate as the surfactant. The addition of a surfactant to the conventional suspension polymerization mixture decreased the mean particle size of the MIPMs and increased the adsorption selectivity. For the modified suspension polymerization method, the mean particle size of the MIPMs was smaller than the particle size of MIPMs prepared via conventional suspension polymerization. Moreover, the adsorption selectivity improved considerably compared to the adsorption selectivities of MIPs reported previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号