共查询到20条相似文献,搜索用时 0 毫秒
1.
Masui Y Wang P 《Biology of the cell / under the auspices of the European Cell Biology Organization》1998,90(8):537-548
This article reviews cell cycle changes that occur during midblastula transition (MBT) in Xenopus laevis based on research carried out in the authors' laboratory. Blastomeres dissociated from the animal cap of blastulae, as well as those in an intact embryo, divide synchronously with a constant cell cycle duration in vitro, up to the 12th cell cycle regardless of their cell sizes. During this synchronous cleavage, cell sizes of blastomeres become variable because of repeated unequal cleavage. After the 12th cell cycle blastomeres require contact with an appropriate protein substrate to continue cell division. When nucleocytoplasmic (N/C) ratios of blastomeres reach a critical value during the 13th cycle, their cell cycle durations lengthen in proportion to the reciprocal of cell surface areas, and cell divisions become asynchronous due to variations in cell sizes. The same changes occur in haploid blastomeres with a delay of one cell cycle. Thus, post-MBT cell cycle control becomes dependent not only on the N/C relation but also on cell surface activities of blastomeres. Unlike cell cycle durations of pre-MBT blastomeres, which show monomodal frequency distributions with a peak at about 30 min, those of post-MBT blastomeres show polymodal frequency distributions with peaks at multiples of about 30 min, suggesting 'quantisement' of the cell cycle. Thus, we hypothesised that MPF is produced periodically during its unit cycle with 30 min period, but it titrates, and is neutralized by, an inhibitor contained in the nucleus in a quantity proportional to the genome size; however, when all of the inhibitor has been titrated, excess MPF during the last cycle triggers mitosis. At MBT, cell cycle checkpoint mechanisms begin to operate. While the operation of S phase checkpoint to monitor DNA replication is initiated by N/C relation, the initiation of M phase checkpoint operation to monitor chromosome segregation at mitosis is regulated by an age-dependent mechanism. 相似文献
2.
Suppression of PI3K/mTOR pathway rescues LLC cells from cell death induced by hypoxia 总被引:1,自引:0,他引:1
Hamanaka Y Mukai M Shimamura M Kitagawa T Nishida T Isohashi F Ito T Nishizawa Y Tatsuta M Matsuda H Inoue M 《Biochemical and biophysical research communications》2005,330(1):318-326
Cancer cells in solid tumors are challenged by various microenvironmental stresses, including hypoxia, and cancer cells in hypoxic regions are resistant to current cancer therapies. To investigate the mechanism of resistance to hypoxia in cancer cells, we examined mouse Lewis lung carcinoma (LLC) cells, which died due to necrosis at high density under hypoxic but not under normoxic conditions. Levels of mammalian target of rapamycin (mTOR), a central regulator of cellular energy, are reported to be suppressed in hypoxia. We found that phosphorylation of two molecules downstream to it, ribosomal p70 S6 kinase (S6K) and ribosomal protein S6, was markedly suppressed by hypoxia. Overexpression of the active form of S6K increased the sensitivity of LLC cells to hypoxia. On the other hand, inhibition of PI3K or mTOR dramatically reduced hypoxia-induced cell death under hypoxic conditions. Under hypoxic conditions, blockade of the PI3K or mTOR pathway increased levels of intracellular ATP and delayed decreases in pH and glucose level in culture medium, without affecting the cell cycle. 相似文献
3.
Peng Zhao Qiao Meng Ling-Zhi Liu Ning Liu Bing-Hua Jiang 《Biochemical and biophysical research communications》2010,395(2):219-224
PI3K activation is commonly observed in many human cancer cells. Survivin expression is elevated in cancer cells, and induced by some growth factors through PI3K activation. However, it is not clear whether PI3K activation is sufficient to induce survivin expression. To investigate the role of PI3K pathway in the regulation of survivin, we expressed an active form of PI3K, v-P3k in chicken embryonic fibroblast cells (CEF), and found that overexpression of PI3K-induced survivin mRNA expression. Forced expression of wild-type but not mutant tumor suppressor PTEN in CEF decreased survivin mRNA levels. PI3K regulates survivin expression through Akt activation. To further investigate downstream target of PI3K and Akt in regulating the expression of survivin mRNA, we found that PI3K and Akt-induced p70S6K1 activation and that overexpression of p70S6K1 alone was sufficient to induce survivin expression. The treatment of CEF cells by rapamycin decreased the survivin mRNA expression. This result demonstrated that p70S6K1 is an important target downstream of PI3K and Akt in regulating suvivin mRNA expression. The knockdown of survivin mRNA expression by its specific siRNA induced apoptosis of cancer cells when the cells were treated with LY294002 or taxol. Taken together, these results demonstrated that PI3K/Akt/p70S6K1 pathway is essential for regulating survivin mRNA expression. 相似文献
4.
Ronald W. Matheny Jr. 《Biochemical and biophysical research communications》2009,390(2):252-257
The PI3K/Akt/mTOR signaling pathway is critical for cellular growth and survival in skeletal muscle, and is activated in response to growth factors such as insulin-like growth factor-I (IGF-I). We found that in C2C12 myoblasts, deficiency of PI3K p110 catalytic subunits or Akt isoforms had distinct effects on phosphorylation of mTOR and p70S6K. siRNA-mediated knockdown of PI3K p110α, p110β, and simultaneous knockdown of p110α and p110β resulted in increased basal and IGF-I-stimulated phosphorylation of mTOR S2448 and p70S6K T389; however, phosphorylation of S6 was reduced in p110β-deficient cells, possibly due to reductions in total S6 protein. We found that IGF-I-stimulated Akt1 activity was enhanced in Akt2- or Akt3-deficient cells, and that knockdown of individual Akt isoforms increased mTOR/p70S6K activation in an isoform-specific fashion. Conversely, levels of IGF-I-stimulated p70S6K phosphorylation in cells simultaneously deficient in both Akt1 and Akt3 were increased beyond those seen with loss of any single Akt isoform, suggesting an alternate, Akt-independent mechanism that activates mTOR/p70S6K. Our results collectively suggest that mTOR/p70S6K is activated in a PI3K/Akt-dependent manner, but that in the absence of p110α or Akt, alternate pathway(s) may mediate activation of mTOR/p70S6K in C2C12 myoblasts. 相似文献
5.
目的:通过建立过表达PC-1的前列腺癌LNCaP细胞系及敲低PC-1表达的C4-2细胞系,探究PC-1激活AKT信号通路的分子机制。方法:将PC-1基因及针对PC-1的siRNA序列,分别克隆至慢病毒表达载体pCDH-EF1-Myc-MCS-T2A-Puro及干扰载体pSIH1-H1-Puro,包装成慢病毒后分别感染前列腺癌LNCaP及C4-2细胞,通过Western印迹鉴定PC-1过表达及敲低效果,并检测PI3K/AKT/mTOR信号通路相关蛋白S6K、AKT的磷酸化水平。结果:PC-1过表达时,S6K磷酸化水平下降,而AKT的磷酸化水平上升。结论:PC-1可以通过抑制S6K激酶活性,解除其对AKT的负反馈抑制作用,从而激活AKT激酶的活性。 相似文献
6.
Iwao Y Uchida Y Ueno S Yoshizaki N Masui Y 《Development, growth & differentiation》2005,47(5):283-294
We obtained translucent blastomeres free of yolk and pigment granules from Xenopus embryos which had been centrifuged at the beginning of the 8-cell stage with cellular integrity. They divided synchronously regardless of their cell size until they had decreased to 37.5 microm in radius; those smaller than this critical size, however, divided asynchronously with cell cycle times inversely proportional to the square of the cell radius after midblastula transition (MBT). The length of the S phase was determined as the time during which nuclear DNA fluorescence increased in Hoechst-stained blastomeres. When the cell cycle time exceeded 45 min, S and M phases were lengthened; when the cell cycle times exceeded 70 min, the G2 phase appeared; and after cell cycle times became longer than 150 min, the G1 phase appeared. Lengths of G1, S and M phases increased linearly with increasing cell cycle time. Enhanced green fluorescent protein (EGFP)-tagged proliferating cell nuclear antigen (PCNA) expressed in the blastomeres appeared in the S phase nucleus, but suddenly dispersed into the cytoplasm at the M phase. The system developed in this study is useful for examining the cell cycle behavior of the cell cycle-regulating molecules in living Xenopus blastomeres by fluorescence microscopy in real time. 相似文献
7.
Li Zhang Handong WangJianhong Zhu Jianguo XuKe Ding 《Biochemical and biophysical research communications》2014
Mollugin, a bioactive phytochemical isolated from Rubia cordifolia L., has shown preclinical anticancer efficacy in various cancer models. However the effects of mollugin in regulating cancer cell survival and death remains undefined. In the present study we found that mollugin exhibited cytotoxicity on various cancer models. The suppression of cell viability was due to the induction of mitochondria apoptosis. In addition, the presence of autophagic hallmarks was observed in mollugin-treated cells. Notably, blockade of autophagy by a chemical inhibitor or RNA interference enhanced the cytotoxicity of mollugin. Further experiments demonstrated that phosphatidylinositide 3-kinases/protein kinase B/mammalian target of rapamycin/p70S6 kinase (PI3K/AKT/mTOR/p70S6K) and extracellular regulated protein kinases (ERK) signaling pathways participated in mollugin-induced autophagy and apoptosis. Together, these findings support further studies of mollugin as candidate for treatment of human cancer cells. 相似文献
8.
The role of Arabidopsis S6 Kinase 1 (AtS6K1), a downstream target of TOR kinase, in controlling plant growth and ribosome biogenesis was characterized after generating transgenic plants expressing AtS6K1 under auxin-inducible promoter. Down regulation of selected cell cycle regulatory genes upon auxin treatment was observed in the transgenic plants, confirming the negative regulatory role of AtS6K1 in the plant cell cycle progression reported earlier. Callus tissues established from these transgenic plants grew to larger cell masses with more number of enlarged cells than untransformed control, demonstrating functional implication of AtS6K1 in the control of plant cell size. The observed negative correlation between the expression of AtS6K1 and the cell cycle regulatory genes, however, was completely reversed in protoplasts generated from the transgenic plants expressing AtS6K1, suggesting a possible existence of dual regulatory mechanism of the plant cell cycle regulation mediated by AtS6K1. An alternative method of kinase assay, termed "substrate-mediated kinase pull down", was employed to examine the additional phosphorylation on other domains of AtS6K1 and verified the phosphorylation of both amino- and carboxy-terminal domains, which is a novel finding regarding the phosphorylation target sites on plant S6Ks by upstream regulatory kinases. In addition, this kinase assay under the stress conditions revealed the salt- and sugar-dependencies of AtS6K1 phosphorylations. 相似文献
9.
《Phytomedicine》2014,21(10):1178-1188
Tenuifoliside A (TFSA) is a bioactive oligosaccharide ester component of Polygala tenuifolia Wild, a traditional Chinese medicine which was used to manage mental disorders effectively. The neuroprotective and anti-apoptotic effects of TFSA have been demonstrated in our previous studies. The present work was designed to study the molecular mechanism of TFSA on promoting the viability of rat glioma cells C6. We exposed C6 cells to TFSA (or combined with ERK, PI3K and TrkB inhibitors) to examine the effects of TFSA on the cell viability and the expression and phosphorylation of key proteins in the ERK and PI3K signaling pathway. TFSA increased levels of phospho-ERK and phospho-Akt, enhanced release of BDNF, which were blocked by ERK and PI3K inhibitors, respectively (U0126 and LY294002). Moreover, the TFSA caused the enhanced phosphorylation of cyclic AMP response element binding protein (CREB) at Ser133 site, the effect was revoked by U0126, LY294002 and K252a. Furthermore, when C6 cells were pretreated with K252a, a TrkB antagonist, known to significantly inhibit the activity of brain-derived neurotrophic factor (BDNF), blocked the levels of phospho-ERK, phospho-Akt and phosphor-CREB. Taking these results together, we suggested the neuroprotection of TFSA might be mediated through BDNF/TrkB-ERK/PI3K-CREB signaling pathway in C6 glioma cells. 相似文献
10.
FOXO-independent suppression of programmed cell death by the PI3K/Akt signaling pathway in Drosophila 总被引:2,自引:0,他引:2
Signaling through the PI3K/Akt/FOXO pathway plays an important role in vertebrates in protecting cells from programmed cell death. PI3K and Akt have been similarly shown to be involved in survival signaling in the invertebrate model organism Drosophila. However, it is not known whether PI3K and Akt execute this function by controlling a pro-apoptotic activity of Drosophila FOXO. In this study, we show that elevated signaling through PI3K and Akt can prevent developmentally controlled death in the salivary glands of the fruit fly. We further show that Drosophila FOXO is not required for normal salivary gland death and that the rescue of salivary gland death by PI3K occurs independent of FOXO. These results give support to the notion that FOXOs have acquired pro-apoptotic functions after separation of the vertebrate and invertebrate lineages. 相似文献
11.
Zhi Wang Longxiang Wu Shiyu Tong Xiheng Hu Xiongbing Zu Yuan Li 《Animal cells and systems.》2016,20(2):77-85
Resveratrol possesses a wide spectrum of pharmacological properties and has been an ideal alternative drug for the treatment of different cancers, including prostate cancer. However, the mechanisms by which resveratrol inhibits the growth of prostate cancer are still not fully elucidated. To understand the effect of resveratrol on the apoptosis and the epithelial-to-mesenchymal transition (EMT) of prostate cancer as well as its related mechanism, we investigated the potential use of resveratrol in PC-3 prostate cancer cells in vitro using real-time PCR, fluorescence-activated cell sorting, Western blotting, etc. Resveratrol suppresses the PC-3 prostate cancer cell growth and induces apoptosis. Resveratrol also influences the expression of EMT-related proteins (increased E-cadherin and decreased Vimentin expression). Finally, resveratrol also suppressed Akt phosphorylation in PC-3 cells. This study indicates that resveratrol may be a potential anti-cancer treatment for prostate cancer; moreover, it provides new evidence that resveratrol suppresses prostate cancer growth and metastasis. 相似文献
12.
13.
Radha Mukherjee Kiran G. Vanaja Jacob A. Boyer Sunyana Gadal Hilla Solomon Sarat Chandarlapaty Andre Levchenko Neal Rosen 《Molecular cell》2021,81(4):708-723.e5
- Download : Download high-res image (164KB)
- Download : Download full-size image
14.
肿瘤对人类的生存危害极大,恶性肿瘤的治疗一直是世界性的难题。肿瘤血管生成是肿瘤赖以生长、转移的基础,受多种因子的调节。目前发现有多条信号网络参与调控肿瘤血管生成,PI3K/Akt是其中比较重要的一条信号传导途径,该通路与肿瘤的发生发展密切相关。本文介绍了PI3K/Akt信号通路的结构组成与活性调控,并重点阐述PI3K/Akt信号途径与肿瘤血管生成的关系。 相似文献
15.
16.
PI3K和Akt蛋白在异丙肾上腺素所致大鼠心肌肥厚中的表达 总被引:1,自引:0,他引:1
目的研究异丙肾上腺素(ISO)致大鼠心肌肥厚中PI3K和Akt在心肌组织中的表达,为探讨心肌肥厚的信号转导机制和逆转心肌肥厚提供形态学资料.方法健康成年SD大鼠20只,随机分为实验组、对照组,每组10只.实验组给予异丙肾上腺素处理.1周后处死大鼠,取心肌组织,常规石蜡切片,HE染色,观察心肌组织的病理变化,测量心肌肥厚指标;免疫组织化学染色和免疫荧光染色,检测p-PI3K和p-Akt的表达及分布.结果实验组大鼠心肌肥厚指标与对照组相比均明显升高;免疫组织化学检测显示,实验组心肌组织p-PI3K和p-Akt蛋白表达面积和平均光密度较对照组高.免疫荧光检测实验组心肌组织p-PI3K和p-Akt蛋白表达较对照组高.结论小剂量持续给予 ISO 能建立大鼠心肌肥厚模型;p-PI3K和p-Akt蛋白表达均与心肌肥厚的发生和发展过程相关,PI3K/Akt信号通路激活,可能是导致心肌肥厚的机制之一. 相似文献
17.
18.
We recently demonstrated that the tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) helps maintenance of cell survival by regulating glycogen synthase kinase 3β (GSK3β) activity during TNF signaling. However, the molecular linkage between TRAF6 and GSK3β signaling is unknown. Herein, we showed that TRAF6 positively regulated cell survival by modulating PI3K-Akt-GSK3β cascades. In 3T3 cells lacking TRAF6, but not those lacking TRAF2, TNF stimulation led to prolonged hyperphosphorylation of Akt, which coincided with the activation of upstream PI3K. Pharmacologically blocking PI3K significantly inhibited Akt and GSK3β phosphorylation. Importantly, PI3K inhibition rescued cell death in TRAF6-null 3T3 cells. These data suggested TRAF6 regulates TNF-mediated cell survival through PI3K-Akt-GSK3β cascades. 相似文献
19.
Jianguo Feng Yi Liao Xichao Xu Qian Yi Ling He Liling Tang 《Experimental cell research》2018,362(2):394-399
hnRNP A1 acts as a critical splicing factor in regulating many alternative splicing events in various physiological and pathophysiological progressions. hnRNP A1 is capable of regulating UVB-induced hdm2 gene alternative splicing according to our previous study. However, the biological function and underlying molecular mechanism of hnRNP A1 in cell survival and cell cycle in response to UVB irradiation are still unclear. In this study, silencing hnRNP A1 expression by siRNA transfection led to decreased cell survival after UVB treatment, while promoting hnRNP A1 by lentiviruse vector resulted in increased cell survival. hnRNP A1 remarkably enhanced PI3K/Akt/mTOR signaling pathway by increasing phosphorylation of Akt, mTOR and P70S6 protein. Inhibition of PI3K/Akt signaling by LY294002 suppressed the expression of hnRNP A1. While mTOR signaling inhibitors, rapamycin and AZD8055, did not influence hnRNP A1 expression in HaCaT cells, suggesting that hnRNP A1 may be an upstream mediator of mTOR signaling. Furthermore, hnRNP A1 could alleviate UVB-provoked cell cycle arrest at G0/G1 phase and promoted cell cycle progression at G2/M phase. Our results indicate that hnRNP A1 promotes cell survival and cell cycle progression following UVB radiation. 相似文献
20.
Christina Y. Yim Emmanuel Bikorimana Ema Khan Joshua M. Warzecha Leah Shin Jennifer Rodriguez 《Cell cycle (Georgetown, Tex.)》2017,16(21):2146-2155
G0/G1 switch gene 2 (G0S2) is a direct retinoic acid target implicated in cancer biology and therapy based on frequent methylation-mediated silencing in diverse solid tumors. We recently reported that low G0S2 expression in breast cancer, particularly estrogen receptor-positive (ER+) breast cancer, correlates with increased rates of recurrence, indicating that G0S2 plays a role in breast cancer progression. However, the function(s) and mechanism(s) of G0S2 tumor suppression remain unclear. In order to determine potential mechanisms of G0S2 anti-oncogenic activity, we performed genome-wide expression analysis that revealed an enrichment of gene signatures related to PI3K/mTOR pathway activation in G0S2 null cells as compared to G0S2 wild-type cells. G0S2 null cells also exhibited a dramatic decreased sensitivity to PI3K/mTOR pathway inhibitors. Conversely, restoring G0S2 expression in human ER+ breast cancer cells decreased basal mTOR signaling and sensitized the cells to pharmacologic mTOR pathway inhibitors. Notably, we provide evidence here that the increase in recurrence seen with low G0S2 expression is especially prominent in patients who have undergone antiestrogen therapy. Further, ER+ breast cancer cells with restored G0S2 expression had a relative increased sensitivity to tamoxifen. These findings reveal that in breast cancer G0S2 functions as a tumor suppressor in part by repressing PI3K/mTOR activity, and that G0S2 enhances therapeutic responses to PI3K/mTOR inhibitors. Recent studies implicate hyperactivation of PI3K/mTOR signaling as promoting resistance to antiestrogen therapies in ER+ breast cancer. Our data establishes G0S2 as opposing this form of antiestrogen resistance. This promotes further investigation of the role of G0S2 as an antineoplastic breast cancer target and a biomarker for recurrence and therapy response. 相似文献