首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
葡萄膜黑色素瘤是成人最严重的原发性恶性肿瘤之一.传统的治疗方法,包括手术、放射治疗和化学治疗效果都不是很理想.溶瘤腺病毒H101,能够特异性地在p53突变的肿瘤细胞中复制并杀伤肿瘤细胞,同时对正常细胞影响较少,且已由中国国家食品药品监督管理总局批准上市.为了研究H101对葡萄膜黑色素瘤的治疗效果,通过体外感染葡萄膜黑色素瘤细胞,发现H101能够显著抑制葡萄膜黑色素瘤细胞的增殖并促进细胞凋亡,抑制细胞周期,而对正常的ARPE-19细胞没有影响.在体内实验中,建立了SP6.5细胞的荷瘤小鼠模型,在H101治疗后抑制了肿瘤的生长,延长了动物寿命.上述结果表明,溶瘤腺病毒H101治疗葡萄膜黑色素瘤是一种可行的方法.  相似文献   

2.
3.
D Yan  XD Dong  X Chen  S Yao  L Wang  J Wang  C Wang  DN Hu  J Qu  L Tu 《PloS one》2012,7(7):e40967
MicroRNAs (miRNAs) are endogenous small non-coding RNAs that play central roles in diverse pathological processes. In this study, we investigated the effect of microRNA-182 (miR-182) on the development of posterior uveal melanomas. Initially, we demonstrated that miR-182 expression was dependent on p53 induction in uveal melanoma cells. Interestingly, transient transfection of miR-182 into cultured uveal melanoma cells led to a significant decrease in cell growth, migration, and invasiveness. Cells transfected with miR-182 demonstrated cell cycle G1 arrest and increased apoptotic activity. Using bioinformatics, we identified three potential targets of miR-182, namely MITF, BCL2 and cyclin D2. miR-182 was shown to have activity on mRNA expression by targeting the 3' untranslated region of MITF, BCL2 and cyclin D2. Subsequent Western blot analysis confirmed the downregulation of MITF, BCL2 and cyclin D2 protein expression. The expression of oncogene c-Met and its downstream Akt and ERK1/2 pathways was also downregulated by miR-182. Concordant with the findings that miR-182 was decreased in uveal melanoma tissue samples, overexpression of miR-182 also suppressed the in vivo growth of uveal melanoma cells. Our results demonstrated that miR-182, a p53 dependent miRNA, suppressed the expression of MITF, BCL2, cyclin D2 and functioned as a potent tumor suppressor in uveal melanoma cells.  相似文献   

4.
5.
Integrin alphav is required for melanoma cell survival and tumor growth in various models. To elucidate integrin alphav-mediated melanoma cell survival mechanisms, we used a three-dimensional (3D) collagen gel model mimicking the pathophysiological microenvironment of malignant melanoma in the dermis. We found that integrin alphav inactivated p53 and that suppression of p53 activity by dominant negative p53 or p53-small interfering RNA obviated the need for integrin alphav for melanoma cell survival in 3D-collagen and for tumor growth in vivo. This indicates that integrin alphav-mediated inactivation of p53 functionally controls melanoma cell survival. Furthermore, we found that melanoma cell integrin alphav was required for MAPK kinase (MEK) 1 and extracellular signal-regulated kinase (ERK)1/2 activity in 3D-collagen, whereas inhibition of MEK1 activity induced apoptosis. Surprisingly, MEK1 and ERK1/2 activities were restored in integrin alphav-negative melanoma cells by suppression of p53, whereas concomitant block of MEK1 induced apoptosis. This suggests that integrin alphav controls melanoma cell survival in 3D-collagen through a pathway involving p53 regulation of MEK1 signaling.  相似文献   

6.
p53, the major tumor suppressor, is frequently mutated in many cancers, and up to 84% of human melanomas harbor wild-type p53, which is considered to be an ideal target for melanoma therapy. Here, we evaluated the antitumor activity of a carbazole derivative, 9-ethyl-9H-carbazole-3-carbaldehyde (ECCA), on melanoma cells. ECCA had a selectively strong inhibitory activity against the growth of BRAF-mutated and BRAF-wild-type melanoma cells but had little effect on normal human primary melanocytes. ECCA inhibited melanoma cell growth by increasing cell apoptosis, which was associated with the upregulation of caspase activities and was significantly abrogated by the addition of a caspase inhibitor. In vivo assays confirmed that ECCA suppressed melanoma growth by enhancing cell apoptosis and reducing cell proliferation, and importantly ECCA did not have any evident toxic effects on normal tissues. RNA-Seq analysis identified several pathways related to cell apoptosis that were affected by ECCA, notably, activation of the p53 signaling pathway. Biochemical assays demonstrated that ECCA enhanced the phosphorylation of p53 at Ser15 in melanoma cells harboring wild-type p53, and importantly, the knockdown or deletion of p53 in those cells counteracted the ECCA-induced apoptosis, as well as senescence. Further investigations revealed that ECCA enhanced the phosphorylation of p38-MAPK and c-Jun N-terminal kinase (JNK), and treatment with either a p38-MAPK or a JNK inhibitor rescued the cell growth inhibition elicited by ECCA, which depended on the expression of the p53 gene. Finally, the combination of ECCA with a BRAF inhibitor significantly enhanced the growth inhibition of melanoma cells. In summary, our study demonstrates that the carbazole derivative, ECCA, induces melanoma cell apoptosis and senescence through the activation of p53 to significantly and selectively suppress the growth of melanoma cells without affecting normal human melanocytes, suggesting its potential to develop a new drug for melanoma therapy.Subject terms: Melanoma, Apoptosis, Biologics  相似文献   

7.
8.
RASSF1A gene, found at the 3p21.3 locus, is a tumor suppressor gene frequently hypermethylated in human cancers. In this study, we report that compared with melanocytes in normal choroid, RASSF1A is downregulated in uveal melanoma samples and in uveal melanoma cell lines. LOH at 3p21.3 was detected in 50% of uveal melanoma. Moreover, methylation of the RASSF1A promoter was detected in 35 of 42 tumors (83%) and RASSF1A was also weakly expressed at the mRNA level. These data indicate that LOH at the RASSF1A locus or RASSF1A promoter methylation may partly account for the suppression of RASSF1A expression observed in uveal melanoma. Furthermore, following ectopic expression in three RASSF1A-deficient melanoma cell lines (OCM-1, Mel270, and 92.1), RASSF1A weakly reduces cell proliferation and anchorage-independent growth of uveal melanoma cells without effect on ERK1/2 activation, cyclin D1 and p27(Kip1) expression. This study explored biological functions and underlying mechanisms of RASSF1A in the ERK1/2 pathway in normal uveal melanocytes. We showed that siRNA-mediated depletion of RASSF1A increased ERK1/2 activation, cyclin D1 expression, and also decreased p27(Kip1) expression in normal uveal melanocytes. Moreover, that the depletion of RASSF1A induced senescence-associated β-galactosidase activity and increased p21(Cip1) expression suggests that RASSF1A plays a role in the escape of cellular senescence in normal uveal melanocytes. Interestingly, we found that RASSF1A was epigenetically inactivated in long-term culture of uveal melanocytes. Taken together, these data show that depletion of RASSF1A could be an early event observed during senescence of normal uveal melanocytes and that additional alterations are acquired during malignant transformation to uveal melanoma.  相似文献   

9.
The expression of inducible nitric-oxide synthase in melanoma tumor cells was recently shown to correlate strongly with poor patient survival after combination biochemotherapy (p<0.001). Furthermore, evidence suggests that nitric oxide, a reaction product of nitric oxide synthase, exhibits antiapoptotic activity in melanoma cells. We therefore hypothesized that nitric oxide antagonizes chemotherapy-induced apoptosis. Whether nitric oxide is capable of regulating cell growth and apoptotic responses to cisplatin treatment in melanoma cell lines was evaluated. We demonstrate herein that depletion of endogenously produced nitric oxide can inhibit melanoma proliferation and promote apoptosis. Moreover, our data indicate that the depletion of nitric oxide leads to changes in cell cycle regulation and enhances cisplatin-induced apoptosis in melanoma cells. Strikingly, we observed that the depletion of nitric oxide inhibits cisplatin-induced wild type p53 accumulation and p21(Waf1/Cip1/Sdi1) expression in melanoma cells. When cisplatin-induced p53 binding to the p21(Waf1/Cip1/Sdi1) promoter was examined, it was found that nitric oxide depletion significantly reduced the presence of p53-DNA complexes after cisplatin treatment. Furthermore, dominant negative inhibition of p53 activity enhanced cisplatin-induced apoptosis. Together, these data strongly suggest that endogenously produced nitric oxide is required for cisplatin-induced p53 activation and p21(Waf1/Cip1/Sdi1) expression, which can regulate melanoma sensitivity to cisplatin.  相似文献   

10.
11.
12.
Signaling mediated by activation of the transmembrane receptor Notch influences cell-fate decisions, differentiation, proliferation, and cell survival. Activated Notch reduces proliferation by altering cell-cycle kinetics and promotes differentiation in hematopoietic progenitor cells. Here, we investigated if the G(1) arrest and differentiation induced by activated mNotch1 are dependent on tumor suppressor p53, a critical mediator of cellular growth arrest. Multipotent wild-type p53-expressing (p53(wt)) and p53-deficient (p53(null)) hematopoietic progenitor cell lines (FDCP-mix) carrying an inducible mNotch1 system were used to investigate the effects of proliferation and differentiation upon mNotch1 signaling. While activated Notch reduced proliferation of p53(wt)-cells, no change was observed in p53(null)-cells. Activated Notch upregulated the p53 target p21(cip/waf) in p53(wt)-cells, but not in p53(null)-cells. Induction of the p21(cip/waf) gene by activated Notch was mediated by increased binding of p53 to p53-binding sites in the p21(cip/waf) promoter and was independent of the canonical RBP-J binding site. Re-expression of p53(wt) in p53(null) cells restored the inhibition of proliferation by activated Notch. Thus, activated Notch inhibits proliferation of multipotent hematopoietic progenitor cells via a p53-dependent pathway. In contrast, myeloid and erythroid differentiation was similarly induced in p53(wt) and p53(null) cells. These data suggest that Notch signaling triggers two distinct pathways, a p53-dependent one leading to a block in proliferation and a p53-independent one promoting differentiation.  相似文献   

13.
Many cell death regulators physically or functionally interact with metabolic enzymes. These interactions provide insights into mechanisms of anticancer treatments from the perspective of tumor cell metabolism and apoptosis. Recent studies have shown that zinc and p53 not only induce tumor cell apoptosis, but also regulate tumor cell metabolism. However, the underlying mechanism is complex and remains unclear, making further research imperative to provide clues for future cancer treatments. In this study, we found that hexokinase 2 (HK2), which has dual metabolic and apoptotic functions, is downstream of zinc and p53 in both prostate cancer patient tissue and prostate cancer cell lines. Notably, the mitochondrial location of HK2 is crucial for its function. We demonstrate that zinc and p53 disrupt mitochondrial binding of HK2 in prostate cancer cells by phosphorylating VDAC1, which is mediated by protein kinase B (Akt) inhibition and glycogen synthase kinase 3β (GSK3β) activation. In addition, we found that zinc combined with p53 significantly inhibited tumor growth in a prostate cancer cell xenograft model. Therefore, interference of the mitochondrial localization of HK2 by zinc and p53 may provide a new treatment approach for cancer.  相似文献   

14.
Human uveal melanoma arises in an immune privileged ocular environment in which both adaptive and innate immune effector mechanisms are suppressed. Uveal melanoma is the most common intraocular tumor in adults and is derived from tissues in the eye that produce macrophage migration-inhibitory factor (MIF), a cytokine that has recently been demonstrated to produce immediate inhibition of NK cell-mediated lytic activity. Although NK cell-mediated lysis of uveal melanomas is inhibited in the eye, melanoma cells that disseminate from the eye are at risk for surveillance by NK cells. Moreover, uveal melanoma cells demonstrate a propensity to metastasize to the liver, an organ with one of the highest levels of NK activity in the body. Therefore, we speculated that uveal melanomas produced MIF as a means of escaping NK cell-mediated lysis. Accordingly, seven primary uveal melanoma cell lines and two cell lines derived from uveal melanoma metastases were examined for their production of MIF. MIF was detected in melanoma culture supernatants by both ELISA and the classical bioassay of macrophage migration inhibition. Melanoma-derived MIF inhibited NK cell-mediated lysis of YAC-1 and uveal melanoma cells. Cell lines derived from uveal melanoma metastases produced approximately twice as much biologically active MIF as cultures from primary uveal melanomas. Inhibition of NK cell-mediated killing by uveal melanoma-derived MIF was specifically inhibited in a dose-dependent manner by anti-MIF Ab. The results suggest that human uveal melanoma cells maintain a microenvironment of immune privilege by secreting active MIF that protects against NK cell-mediated killing.  相似文献   

15.
Vitamin C has inconsistent effects on malignant tumor cells, which vary from growth stimulation to apoptosis induction. It is well known that melanoma cells are more susceptible to vitamin C than any other tumor cells, but the precise mechanism remains to be elucidated. In the present study, the proliferation of B16F10 melanoma cells was suppressed by vitamin C, which induced growth arrest in a dose-dependent manner without cytotoxic effects. Therefore, we investigated the changes in cell cycle distribution of B16F10 melanoma cells by staining DNAs with propidium iodide (PI). The growth inhibition of B16F10 melanoma by vitamin C was associated with an arrest of cell cycle distribution at G1 stage. In addition, the levels of p53-p21Waf1/Cip1 increased during G1 arrest, which were essential for vitamin C-induced cell cycle arrest. The increased p21Waf1/Cip1 inhibited CDK2. Moreover, the activity of p53-p21Waf1/Cip1 pathway was closely related with the activation of checkpoint kinase 2 (Chk2). Inhibitor of the PI3K-family, LY294002 and the ATM/ATR inhibitor, caffeine, blocked vitamin C-induced growth arrest in B16F10 melanoma cells. These results suggest that vitamin C might be a potent agent to inhibit proliferative activity of melanoma cells via the regulation of Chk2-p53-p21Waf1/Cip1 pathway.  相似文献   

16.
Stromal and cellular components within the tumor microenvironment significantly influence molecular signals mediating tumor growth and progression. We recently performed a screen to evaluate critical mediators of melanoma–endothelial communication and identified several molecular pathways associated with these cellular networks, including Notch3. Here, we evaluate the nature of melanoma–endothelial communication mediated by Notch3 and its functional significance. We find that Notch3 is specifically upregulated in melanoma–endothelial cell cocultures and is functionally associated with increased Notch signaling in melanoma cells. Furthermore, induced Notch3 signaling in melanoma cell lines leads to enhanced tumor cell migration without associated increases in tumor cell growth. Additionally, Notch3 expression is specifically associated with malignant patient samples and is not evident in benign nevi. We conclude that Notch3 mediates melanoma–endothelial cell communication and tumor cell migration and may serve as a meaningful therapeutic target for this aggressive malignancy.  相似文献   

17.
MicroRNAs (miRNAs) are a group endogenous small non-coding RNAs that inhibit protein translation through binding to specific target mRNAs. Recent studies have demonstrated that miRNAs are implicated in the development of cancer. However, the role of miR-144 in uveal melanoma metastasis remains largely unknown. MiR-144 was downregulated in both uveal melanoma cells and tissues. Transfection of miR-144 mimic into uveal melanoma cells led to a decrease in cell growth and invasion. After identification of two putative miR-144 binding sites within the 3'' UTR of the human c-Met mRNA, miR-144 was proved to inhibit the luciferase activity inMUM-2B cells with a luciferase reporter construct containing the binding sites. In addition, the expression of c-Met protein was inhibited by miR-144. Furthermore, c-Met-mediated cell proliferation and invasion were inhibited by restoration of miR-144 in uveal melanoma cells. In conclusion, miR-144 acts as a tumor suppressor in uveal melanoma, through inhibiting cell proliferation and migration. miR-144 might serve as a potential therapeutic target in uveal melanoma patients.  相似文献   

18.
Notch signaling plays a critical role in regulating cell proliferation, differentiation, and apoptosis. Our previous study showed that overexpression of Notch1 could inhibit human hepatocellular carcinoma (HCC) cell growth by arresting the cell cycle and inducing apoptosis. HCC cells are resistant to apoptotic induction by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), so new therapeutic approaches have been explored to sensitize HCC cells to TRAIL-induced apoptosis. We are wondering whether and how Notch1 signaling can enhance the sensitivity of HCC cells to TRAIL-induced apoptosis. In this study, we found that overexpression of ICN, the constitutive activated form of Notch1, up-regulated p53 protein expression in HCC cells by inhibiting proteasome degradation. p53 up-regulation was further observed in human primary hepatocellular carcinoma cells after activation of Notch signaling. Inhibition of the Akt/Hdm2 pathway by Notch1 signaling was responsible for the suppression of p53 proteasomal degradation, thus contributing to the Notch1 signaling-mediated up-regulation of p53 expression. Accordingly, Notch1 signaling could make HCC cells more sensitive to TRAIL-induced apoptosis, whereas Notch1 signaling lost the synergistic promotion of TRAIL-induced apoptosis in p53-silenced HepG2 HCC cells and p53-defective Hep3B HCC cells. The data suggest that enhancement of TRAIL-induced apoptosis by Notch1 signaling is dependent upon p53 up-regulation. Furthermore, Notch1 signaling could enhance DR5 expression in a p53-dependent manner. Taken together, Notch1 signaling sensitizes TRAIL-induced apoptosis in HCC cells by inhibiting Akt/Hdm2-mediated p53 degradation and up-regulating p53-dependent DR5 expression. Thus, our results suggest that activation of Notch1 signaling may be a promising approach to improve the therapeutic efficacy of TRAIL-resistant HCC.Notch signaling determines cell fate and affects cell proliferation, differentiation, and apoptosis during cell development (1). As a highly conserved family, Notch coordinates a signaling cascade present in all animal species studied to date (2). Mammals have four Notch receptors that bind five different ligands, among which Notch1 signaling functions in many physiological and pathophysiological processes of numerous cell types, and its dysfunction results in a variety of developmental defects, including embryonic lethality and adult disorders. For example, the Notch1/Jagged1 signaling pathway is activated during liver regeneration and is potentially contributing to signals affecting hepatocyte growth (3, 4). Inducible inactivation of Notch1 has been shown to cause nodular regenerative hyperplasia in mouse liver (5). These studies suggest that Notch1 signaling may be involved in the liver functions and the pathogenesis of liver diseases. Our previous study demonstrated that Notch1 signaling could suppress the growth of human hepatocellular carcinoma (HCC)4 cells by arresting the cell cycle and inducing apoptosis (6). However, the underlying molecular mechanisms remain to be fully understood.p53, an important tumor suppressor gene, is involved in cell cycle arrest and cellular apoptosis. Its activity is mostly regulated by complex networks of post-translational modifications, including phosphorylation, ubiquitination, and proteasome degradation. One protein that is essential for determining p53 stability is Mdm2 (mouse double minute protein 2) (7). Mdm2, a nuclear phosphoprotein and an E3 ubiquitin ligase, binds to p53 and ubiquitinates p53, leading to proteosome degradation of p53 (8). Another important mechanism of p53 stability is related to its phosphorylation status, which is Mdm2-dependent or Mdm2-independent (9). As to the regulation of p53 by Notch1, there are controversial reports that Notch1 activation increased p53 expression in neural progenitor cells (10); however, suppression of p53 by Notch signaling was also well established in lymphomagenesis (11). We also reported that Notch1 signaling significantly up-regulated p53 expression in SMMC7721 HCC cells (6); however, the molecular mechanisms remained unclear and needed to be further characterized.Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a member of a superfamily of cell death-inducing ligands, induces apoptosis in a broad range of transformed cells and tumor cells but has little or no effect on normal cells (12). Therefore, TRAIL has been regarded as a potential drug for cancer therapy (12, 13). However, several kinds of cancer, including HCC, are not sensitive to soluble TRAIL treatment (14). HCC accounts for 80–90% of liver cancers and is one of the most prevalent carcinomas throughout the world, especially in Africa and Asia. Thus, it is worthwhile to find a new strategy to overcome the resistance of HCC cells to TRAIL-induced apoptosis.Considering that Notch1 signaling up-regulates p53 and induces apoptosis of HCC cells and that there are no reports to date that address the relationship between Notch1 signaling and TRAIL-induced apoptosis, in this study, we investigated whether and how Notch1 signaling could sensitize HCC cells to TRAIL-induced apoptosis. We demonstrate that Notch1 signaling up-regulates p53 expression by inhibiting proteasome degradation via, at least in part, suppressing the phosphatidylinositol 3-kinase/Akt/Hdm2 pathway. In addition, we here report that Notch1 signaling enhances DR5 (death receptor 5) expression in a p53-dependent manner, and DR5 contributes, at least in part, to the enhancement of TRAIL-induced apoptosis by Notch1 signaling. Accordingly, Notch1 signaling sensitizes HCC cells to TRAIL-induced apoptosis.  相似文献   

19.
20.
The urokinase-type plasminogen activator receptor (uPAR) is involved in several biological processes, including proteolysis, adhesion, migration and inflammation. Increased expression of uPAR is associated with metastasis in several tumor types. We studied the biological role of uPAR in melanoma and found that inhibition of uPAR via RNA interference induced massive death in three different metastatic cell lines. Annexin-V staining and caspase activation analysis revealed induction of the mitochondrial apoptotic pathway. The expression of members of the Bcl-2 family (Bax, Bcl-2, Bak and Bcl-x(L)) was changed in a pro-apoptotic manner. uPAR inhibition induced the expression of the tumor suppressor p53 and of its downstream target gene p21. Inhibition of p53 rescued cells from apoptosis indicating that p53 was critical for apoptosis induction. Apoptosis was observed in melanoma cells carrying activating BRAF mutations and occurred in the presence of extracellular signal-regulated kinase (ERK) phosphorylation. uPAR can activate focal adhesion kinase (FAK), which is implicated in adhesion-dependent tumor cell survival. However, inhibition of FAK did not induce apoptosis. Our data suggest a new function of uPAR acting as a survival factor for melanoma by downregulating p53. Inhibition of uPAR induces a pro-apoptotic signalling pathway via p53 that is independent of ERK or FAK signalling. These findings may offer new treatment strategies for metastatic melanoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号