首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In sterile-cultured explants of stems of the pine Pinus contorta Dougl., fusiform cambial cells differentiated entirely into axial parenchyma cells when exogenous indol-3yl-acetic acid (IAA) was omitted. The normal appearance of the cambial zone was maintained when IAA was included in the medium. The IAA-maintained stability of cambial structure suggests physiological rather than epigenetic control over vascular cambium structure. IAA was essential for the occurrence of callus growth in stem explants. Callus growth was similar in appearance and extent in winter- and summer-explanted material. Tracheids differentiated in explants only when actively differentiating tracheids were already present at the moment of explanting, suggesting the absence of factors necessary for tracheid differentiation in over-wintering tissues. Sclereid differentiation, which normally does not occur in phloem or xylem development in P. contorta, occurred in callus derived from active cambial explants. The sclereids were identical to sclereids which differentiated in pith of intact stems. The possibility that sclereid and tracheid differentiation may be fundamentally similar types of gene expression is discussed. Growth of P. contorta trees in continuous darkness resulted in extensive compression-wood tracheid differentiation in the upright main stem. Normal-wood tracheids differentiated in similar trees grown in light. More tracheids differentiated in light than in darkness. This apparently is the first report of induction of compression-wood tracheid differentiation in the absence of hormone treatment or tilting of trees. Different types and numbers of tracheids differentiated at different position in two-year-old disbudded defoliated stem cuttings of P. contorta in response to apically supplied IAA. No evidence for new tracheid differentiation was seen in control cuttings; however, the results suggest that neither cambial cell division nor tracheid differentiation were actually initiated by IAA. Directed transport of additional regulatory factors toward areas of high IAA concentration is formulated as a hypothesis to explain these observations. Gibberellic acid, (S)-abscisic acid and IAA inhibited tracheid differentiation when individually supplied to basal ends of P. contorta cuttings predisposed to differentiate new tracheids. Experiments with single intact needles on Pinus cembroides var. monophylla cuttings confirmed a previous interpretation that the mature pine needle, rather than the short-shoot apical meristem at its base, promotes tracheid differentiation in the stem.  相似文献   

2.
Summary Different concentrations of indole-3-acetic acid (IAA) in lanolin were applied to the cambial region of approximately 10- and 34-year-old internodes in the main stem of Pinus sylvestris (L.) trees during the tracheid production period. After 5 weeks of treatment, the radial width of xylem produced in both ages of internode was positively related to exogenous IAA concentration measured at 0, 1 and 3 cm directly below the application site. Tracheid production in response to exogenous IAA in the 34-year-old internode was approximately one-half of that in the 10-year-old internode. The endogenous IAA level in the 7-, 17- and approximately 34-year-old internodes of similar trees was measured by radioimmunoassay, using gas chromatography-selected ion monitoring-mass spectrometry for validation. No consistent relationship was found between xylem radial width and IAA concentration. The data indicate that the cambium's ability to respond to exogenous IAA is qualitatively the same in 1-year-old shoots and older internodes. However, as the internode ages, there is a decrease in the extent of the response and in the optimal IAA level for inducing tracheid production.  相似文献   

3.
Different concentrations of indole-3-acetic acid (IAA) were applied in lanolin to 1-year-old shoots of Pinus sylvestris (L.) in a manner known to stimulate cambial activity. The internal concentration of free IAA was measured at a distance below the application point by combined gas chromatography-selected ion monitoring-mass spectrometry using [13C6]IAA as a quantitative internal standard, and related to the production of tracheids at the same site. The experiment was performed with: (a) debudded cuttings, where the major source of endogenous IAA, the apical buds, were replaced with exogenous IAA, and (b) intact, attached shoots, where endogenous IAA was supplemented by applying IAA around the circumference of the shoot. In both experimental systems, an increase in the internal IAA level was positively related to increased tracheid production. It was also demonstrated that the concentration of internal IAA measured at the sampling site was comparable with endogenous IAA levels found in intact control shoots, and that a wide range of applied IAA concentrations was associated with a relatively small range of internal IAA levels.  相似文献   

4.
The regulation of cell-division activity in the vascular cambium and of secondary xylem and phloem development is reviewed for temperate-zone tree species in relation to auxins, gibberellins, abscisic acid, cytokinins, and ethylene. Representatives of the first four of these PGR classes (IAA, GA1, GA4, GA7, GA9, GA20, ABA, Z, ZR, DCA) have been identified conclusively by mass spectrometry in the cambial region in some Pinaceae, but not in any hardwood species. Endogenous ethylene has yet to be definitively characterized in this region in any species. Evidence concerning the source and metabolism of cambial PGRs is scanty and inconclusive for both conifers and hardwoods.Most cambial PGR research has focused on IAA. Much evidence indicates that this PGR is transported primarily in the cambial region at a rate of about 1 cm h–1, and that the transport is basipetally polar. GC-MS measurements have established that endogenous IAA levels in the cambial region of Pinaceae are highest during earlywood development, and that cambial IAA levels may be considerably lower in hardwoods than in conifers. IAA appears to be involved in the control of cambial growth in conifers and hardwoods in at least three specific ways, viz. maintenance of the elongated form of fusiform cambial cells, promotion of radial expansion in primary walls of cambial derivatives, and regulation of reaction wood formation. In addition, it is well established that exogenous IAA promotes vessel development in hardwoods. In both conifers and hardwoods, exogenous IAA stimulates cambial growth in 1-year-old shoots treated late in the dormant period or after the start of the cambial growing period. However, exogenous IAA has little effect on cambia that are older or are in what is hypothesized to be the resting stage of dormancy. Thus it is uncertain whether IAA is directly involved in the control of cambial growth, or acts indirectly through a process such as hormone-directed transport.It is not yet clear if gibberellins play a role in the control of cambial growth in conifers. However, in hardwoods, there is evidence that they inhibit vessel development and act synergistically with IAA in promoting cambial activity and fiber elongation. In both conifers and hardwoods, foliar sprays of gibberellins increase the accumulation of biomass above-ground, particularly in the main axis, while decreasing it in the roots.There are as yet no definite conclusions to be drawn concerning the involvement of ABA, cytokinins, and ethylene in the regulation of cambial growth in conifers or hardwoods. In conifers, ABA may antagonize the promotory effect of IAA on cambial cell division and tracheid radial expansion under conditions of water stress, but high endogenous ABA levels do not appear to be associated with the formation of latewood or the onset of cambial dormancy. Some evidence suggests that exogenous cytokinins enhance the promotory effect of IAA on cambial growth, particularly ray formation, in both hardwoods and conifers. However, exogenous cytokinins, by themselves, appear to be ineffective. In hardwoods, ethylene-generating compounds satisfy the chilling requirement of the dormant cambium and promote the formation of wood having an apparently greater content of lignin and extractives. Ethylene-generators also affect wood development in conifers and accelerate cambial growth at the application site in both hardwoods and conifers.  相似文献   

5.
R. A. Savidge  P. F. Wareing 《Planta》1981,153(5):395-404
Exogenous indol-3yl-acetic acid (IAA), alone and together with several cytokinins, was ineffective in promoting the complete differentiation into tracheids of cambial derivatives of Pinus contorta Dougl.; IAA alone promoted cambial cell division and primary-wall growth in cambial derivatives throughout the stem's length. In contrast, a single pair of needles on a stem cutting in light promoted neither cambial cell division nor primary-wall growth in cambial derivatives but did promote complete differentiation of cambial cells into tracheids; tracheids differentiated only near the junction of the foliated short shoot with the stem. Clear inter-and intracellular differences in the extent of tracheid differentiation occurred in response to a single needle pair and have suggested the hypothesis that a specific tracheid-differentiation factor regulates the differentiation of cells into proto-, meta-, or secondary-xylem tracheary elements through an interaction with IAA.Abbreviations IAA indol-3yl acetic acid - K kinetin - BAP 6-benzylaminopurine - Z zeatin - ZR zeatin riboside - FAA formalin: acetic acid: ethanol: water (10:5:50:35, by vol.)  相似文献   

6.
The terminal (1-year-old) shoot of dormant, 2-year-old Abies balsamea (L.) Mill. seedlings was ringed with 0 or 10 mg Ethrel g-1 lanolin. After 5 weeks of culture under environmental conditions favorable for growth, some of the treated shoots were harvested to measure tracheid number by microscopy and ethylene evolution by gas chromatography-flame ionization detection. The remaining shoots were used to measure basipetal IAA transport in the cambial region by decapitating the shoot apex, applying a pulse of [1-14C]-IAA to the cut surface, and monitoring the subsequent distribution of radioactivity. Ringing with 10 mg Ethrel g-1 lanolin, compared with lanolin alone, stimulated cambial region ethylene evolution about 26-fold at, and 3-fold above and below the ringing site, but promoted tracheid production at the ringing site only. Ethrel ringing also increased the velocity, after 26 h transport, at which the front of the [1-14C]-IAA pulse moved below the ringing site. After 72 h of [1-14C]-IAA transport, when only immobilized radioactivity was present, the amount of radioactivity recovered in shoots ringed with 10 mg Ethrel g-1 lanolin was higher than with lanolin alone at the ringing site but lower below it. No difference was observed above the ringing site. The distribution of radioactivity was the same in shoots ringed with lanolin alone and in unringed shoots. The results support the hypothesis that an abnormally high cambial region concentration of ethylene derived from Ethrel ringing inhibits the capacity of basipetal IAA transport at the ringing site, resulting in a local accumulation of IAA that stimulates tracheid production.  相似文献   

7.
Indole-3-acetic acid (IAA) levels in the cambial region were measured by radioimmunoassay during the annual cambial activity - rest - quiescence transition at the crown top (current-year shoots) and at the middle and base of the stem of two 21-year-old Abies balsamea (L.) Mill. trees about 7.5 m in height. The IAA level declined throughout the experimental period (July 24 - December 3) at all positions in both trees. The earlywood - latewood transition, which occurred throughout each tree about the end of July, was associated in time with the largest decrease in the absolute amount of IAA. Tracheid production ceased towards the end of September, the cessation occurring earlier at the top of the tree than at the base. The cessation of tracheid production was only poorly correlated in time and space with the decline in IAA level, and it was not prevented by exogenous IAA. The results suggest that IAA level is involved in the control of tracheid radial enlargement, but not in the regulation of the cessation of tracheid production.  相似文献   

8.
Petal explants ofChelidonium majus L. (Papaveraceae) formed noteworthy adventitious buds without any intermediate callus when cultured under appropriate conditions. Bud formation was favored by combinations of 1–2 mg/l indoleacetic acid (IAA) and/or 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.1–0.5 mg/l kinetin (K). In the present study, neither bud formation nor callus formation occurred in cultures of excised leaves. A histological study revealed that adventitious bud formation occurred only in single epidermal layers of petals, while several subepidermal parenchyma layers did not join in its formation. Activation zones arising from the epidermis underwent intense cell divisions to initiate buds on the epidermal surface. These buds later turned green in color, developing into shoots which eventually grew into plantlets after root formation.  相似文献   

9.
Discontinuous sucrose gradient fractionations indicate that the high-affinity auxin binding protein which can be solubilized from the microsomes of coleoptiles and primary leaves of Zea mays L. seedlings is probably located in the endoplasmic reticulum (ER). Since aromatic hydroxylations are enzymatic activities typical of the ER of plant cells, we have examined the effects of several electron-transport inhibitors on the binding of 1-naphthylacetic acid (NAA). NaN3 strongly inhibits this binding, but KCN and CO do not. Trans-cinnamic acid and trans-p-coumaric acid, which are the substrates of ER hydroxylase activities in plants (but which are themselves not auxins), also inhibit this binding. Supernatant fractions from corn shoots contain factors inhibitory to the binding of NAA to the intact membranes and solubilized Site I auxin-binding protein. Here we show that these factors are competitive inhibitors of the binding of [14C]NAA but do not change the apparent affinity of the protein for indoleacetic acid, 2,4-dichlorophenoxyacetic acid or naphthoxyacetic acid. Several tissues were assayed for factors inhibitory to auxin binding to the solubilized protein, but only supernants from corn shoots were markedly inhibitory at low concentrations.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - ER endoplasmic reticulum - IAA 3-indolylacetic acid - nKP n x 100 x g pellet - NAA 1-naphthylacetic acid C.I.W.-D.P.B. Publication No. 656  相似文献   

10.
 The terminal (1-year-old) shoot of dormant, 2-year-old balsam fir [Abies balsamea (L.) Mill.] seedlings was either left vertically oriented or tilted to an angle of 60° from the vertical (tilting experiment), or was ringed with N-1-naphthylphthalamic acid (NPA), an inhibitor of indole-3-acetic acid transport, at a concentration of 0, 1 or 10 mg g−1 lanolin (NPA experiment). After 6 weeks of growth, ethylene evolution from the cambial region was measured by gas chromatography – flame ionization detection, and tracheid production and compression wood formation were determined by microscopy. In vertical seedlings of the tilting experiment and in 0 mg g−1-treated seedlings of the NPA experiment, compression wood was not formed and neither ethylene evolution nor tracheid production varied longitudinally or circumferentially within the stem. Tilting induced compression wood formation and increased ethylene evolution and tracheid production on the lower side of the stem, while decreasing tracheid production on the upper side. Compression wood formation was induced and tracheid production and ethylene evolution were stimulated at and above the point where 1 or 10 mg NPA g−1 was applied, whereas below this point compression wood was not formed and tracheid production was inhibited. In both tilting and NPA experiments, there was a positive correlation between ethylene evolution and tracheid production when data from all seedlings were analyzed, but not when data from seedlings forming compression wood were excluded. The results indicate that cambial region ethylene evolution is enhanced when compression wood is being formed, and that the enhancement is related to compression wood formation per se rather than the associated increase in tracheid production. Received: 19 February 1998 / Accepted: 26 October 1998  相似文献   

11.
D. A. Morris 《Planta》1977,136(1):91-96
Dwarf pea plants bearing two cotyledonary shoots were obtained by removing the epicotyl shortly after germination, and the patterns of distribution of 14C in these plants was investigated following the application of [14C]IAA to the apex of one shoot. Basipetal transport to the root system occurred, but in none of the experiments was 14C ever detected in the unlabelled shoot even after transport periods of up to 48 h. This was true both of plants with two equal growing shoots and of plants in which one shoot had become correlatively inhibited by the other, and in the latter case applied whether the dominant or subordinate shoot was labelled. In contrast, when [14C]IAA was applied to a mature foliage leaf of one shoot transfer of 14C to the other shoot took place, although the amount transported was always low. Transport of 14C from the apex of a subordinate shoot on plants bearing one growing and one inhibited shoot was severely restricted compared with the transport from the dominant shoot apex, and in some individual plants no transport at all was detected. Removal of the dominant shoot apex rapidly restored the capacity of the subordinate shoot to transport apically-applied [14C]IAA, and at the same time led to rapid cambial development and secondary vascular differentiation in the previously inhibited shoot. Applications of 1% unlabelled IAA in lanolin to the decapitated dominant shoot maintained the inhibition of cambial development in the subordinate shoot and its reduced capacity for auxin transport. These results are discussed in relation to the polarity of auxin transport in intact plants and the mechanism of correlative inhibition.Abbreviations IAA Indol-3-yl-acetic acid - TIBA 2,3,5-triiodobenzoic acid - 2,4D 2,4-dichlorophenoxyacetic acid - IAAsp Indol-3-yl-acetyl aspartic acid  相似文献   

12.
The lignin content of walnut shoots did not change during in vitro shoot multiplication. Lignin content started to increase as soon as shoots were passed to a rooting medium with auxin. Exogenous auxin (applied for rooting) caused a transient elevation of the endogenous free indoleacetic acid (IAA) content with a simultaneous decrease of peroxidase activity. These events typically marked the completion of the rooting inductive phase (before any visible histological event, that is before the cell divisions beginning the rooting initiation phase). This meant that either the given exogenous auxin or the endogenous IAA has served as signal for the stimulation of lignification. Continued increase of lignification in the shoots required completion of root formation; this increase indeed was slown down when root emergence did not occur. It was further shown that lignification varied conversely to the content of the soluble phenol content, itself apparently being related to the activity of phenylalanine ammonia-lyase activity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Adventitious shoots and roots were regenerated from leaf segments of 3 Solanum species: S. candidum Lindl., S. quitoense Lam. and S. sessiliflorum Dunal. Leaf explants differentiated shoots on modified MS medium supplemented with 23–163 M kinetin and 0–5.7 µM indoleacetic acid (IAA). Excised shoots were induced to form roots by transfer to media with benzyladenine (BA) and naphthaleneacetic acid (NAA) at 0.09 and 0.11 µM respectively for S. quitoense and 0.01 µM NAA for S. candidum and S. sessiliflorum. Adventitious roots were produced directly from leaf explants with 0–140 µM kinetin and 0–5.7 µM IAA in combination. Rooted plants were successfully established in the greenhouse.  相似文献   

14.
Compression wood is formed at the underside of conifer twigs to keep branches at their equilibrium position. It differs from opposite wood anatomically and subsequently in its mechanical and hydraulic properties. The specific hydraulic conductivity (ks) and vulnerability to drought‐induced embolism (loss of conductivity versus water potential ψ) in twigs of Norway spruce [Picea abies (L.) Karst.] were studied via cryo‐scanning electron microscope observations, dye experiments and a newly developed ‘Micro‐Sperry’ apparatus. This new technique enabled conductivity measurements in small xylem areas by insertion of syringe cannulas into twig samples. The hydraulic properties were related to anatomical parameters (tracheid diameter, wall thickness). Compression wood exhibited 79% lower ks than opposite wood corresponding to smaller tracheid diameters. Vulnerability was higher in compression wood despite its narrower tracheids and thicker cell walls. The P50 (ψ at 50% loss of conductivity) was ?3.6 MPa in opposite but only ?3.2 MPa in compression wood. Low hydraulic efficiency and low hydraulic safety indicate that compression wood has primarily a mechanical function.  相似文献   

15.
G. Krumbiegel  O. Schieder 《Planta》1981,153(5):466-470
After protoplast fusion somatic hybrid calli were obtained by complementation selection between an albino mutant of Datura innoxia and the wildtype of Atropa belladonna (Krumbiegel and Schieder, 1979. Planta 145, 371–375). In the present study experiments are described concerning leaf and shoot induction on several media supplemented with different combinations and concentrations of hormones. Except for fleshy leaves and embryos, no well-formed shoot could be obtained. However, under standard culture conditions after one and a half years, one line produced numerous green shoots, showing a reduced number of chromosomes from Atropa belladonna. The loss of some chromosomes decreased the degree of somatic incompatibility. The additional appearance of shoots with albino sectors, of total albino shoots, and of green shoots showing a different phenotype, demonstrated that the elimination of the chromosomes occurred not only once, but several times. At least one shoot nearly stable in chromosome content and green subline could be obtained possessing only 6 chromosomes of Atropa belladonna and the original chromosome number of Datura innoxia. Experiments were carried out to test the feasibility of producing sexual hybrids through in vivo and in vitro methods by cross pollination. However, no embryos, seeds, or plantlets were obtained, thus demonstrating that protoplast fusion is the only possibility for obtaining hybrids between these two species.Abbreviations BAP 6-benzylaminopurine - 2,4-D 2,4-dichlor-phenoxyacetic acid - IAA indoleacetic acid - NAA -naphtaleneacetic acid - SDS sodiumdodecylsulfate  相似文献   

16.
Treatment of spruce, fir and oak trees with herbicides, which may be one of the forest damage inducing agents, caused pronounced changes in the contents and distribution of indole-3-acetic acid (IAA) and cytokinins (CKs) one year after treatment, i.e. at the time of the first microscopically visible damage in treated trees. In Picea pungens IAA content increased in the terminal buds by about 105 % and in the apical buds of the first order branches by 220 %. The same was true for young sprouts of Abies nordmanniana, while in leaves of oak trees IAA content was decreased by 15 % after glyphosate treatment and by 30 % after 2,4-dichlorophenoxyacetic acid (2,4-D) treatment. Another striking feature was a significantly decreased content of IAA in the lower parts of roots in Picea pungens (50 % of the control), which is accompanied by an increase in IAA content in the middle part of the roots (130 %). On the other hand, the IAA content of both sprouts and roots of A. nordmanniana was significantly increased after herbicide treatment.In P. pungens, the content of free cytokinins (sum of zeatin, zeatin riboside, isopentenyladenine and isopentenyladenosine) decreased due to herbicide treatment. The strongest decrease was seen in roots, especially in their upper and middle parts (the average reduction of cytokinin content in roots was 63 %). In the above-ground organs the reduction was seen namely for isopentenyladenine and isopentenyladenosine, while the abundance of zeatin riboside was, on the other hand, higher in treated plants. In Quercus robur leaves, the total content of cytokinins also decreased, namely after glyphosate treatment. In consequence of these changes, CK/IAA ratio decreased pronouncedly in all organs of herbicide-treated trees, with the exception of oak leaves treated by 2,4-D.  相似文献   

17.
To simulate feeding by the spruce budworm ( Choristoneura fumiferana Clem.), the apical current-year shoots on 1-year-old branches in the uppermost whorl of 6-year-old balsam fir [ Abies balsamea (L.) Mill.] trees were either removed completely by debudding before the start of the growing season or defoliated 0, 50, 90 or 100% shortly after budbreak. Debudded branches were treated at the apical end with 0, 0.1 or 1.0 mg of indole-3-acetic acid (IAA) (g lanolin)−1. Ninety % of the 1-year-old needles were also removed from some of the experimental branches. After ca 4 weeks of growth, the radial width of new xylem and the level of IAA were determined in the 1-year-old internode. The IAA content was measured by radioimmunoassay.
The removal or defoliation of current-year shoots inhibited tracheid production and decreased the IAA level. Exogenous IAA stimulated tracheid production and increased the IAA level in debudded branches. Current-year shoot defoliation also inhibited current-year shoot elongation. The inhibitory effect of current-year needle removal on all parameters generally increased with increasing intensity of defoliation. The removal of 1-year-old needles did not affect the IAA level or current-year shoot elongation, nor did it influence tracheid production in branches with current-year shoots. However, removal of 1-year-old needles inhibited tracheid production in debudded branches supplied with exogenous IAA. The results indicate that (1) IAA is involved in the control of tracheid production in the 1-year-old internode, (2) IAA is supplied primarily by current-year shoots, and (3) defoliation by the spruce budworm inhibits tracheid production partly by decreasing the supply of IAA.  相似文献   

18.
A key regulator of cambial growth is the plant hormone indoleacetic acid (IAA). Here we report on altered wood characteristics and growth patterns in transgenic hybrid aspen (Populus tremula L. x Populus tremuloides Michx.) expressing Agrobacterium tumefaciens T-DNA IAA-biosynthetic iaaM and iaaH genes. Eighteen lines simultaneously expressing both genes were regenerated. Of these, four lines, verified to be transgenic by northern blot analysis, were selected and raised under controlled growth conditions. All four lines were affected in their growth patterns, including alterations in height and stem diameter growth, internode elongation, leaf enlargement, and degree of apical dominance. Two transgenic lines, showing the most distinct phenotypic deviation from the wild type, were characterized in more detail for free and conjugated IAA levels and for wood characteristics. Both lines showed an altered IAA balance, particularly in mature leaves and roots where IAA levels were elevated. They also exhibited changes in wood anatomy, most notably a reduction in vessel size, an increase in vessel density, and changes in ray development. Thus, the recent development of techniques for gene transfer to forest trees enabled us to investigate the influence of an altered IAA balance on xylem development in an intact experimental system. In addition, the results demonstrate the possibility of manipulating wood properties in a forest tree through controlled changes of IAA concentration and distribution.  相似文献   

19.
Effects of Light Intensity on Tracheid Dimensions in Picea sitchensis   总被引:1,自引:0,他引:1  
DENNE  M. P. 《Annals of botany》1974,38(2):337-345
In seedlings of Picea sitchensis grown in constant conditions,or within older trees in the field, light intensity had no neteffect on the wall thickness of tracheids produced at the samepoint in time. This appears to be due to a balanced regulatorysystem, effects of light intensity on rate of accumulation ofwall volume per leaf being offset by differences in rate ofxylem increment, and differences in wall material per tracheidbeing nullified in their effects on wall thickness by effectson tracheid diameter. Mean tracheid wall thickness across the growth ring increasedwith light intensity, due to increase in proportion of late-woodassociated with the longer duration of cambial activity at higherlight intensity, duration of wall thickening increasing duringthe season. Duration of wall thickening did not vary with lightintensity. The rate of increase in wall volume was limited by light intensity(and hence possibly by substrate availability) at all lightintensities in the field, but in seedlings in controlled conditionsthe rate of wall production was no greater at 20 000 lx thanat 6700 lx.  相似文献   

20.
The exudation of phenolics from the cut ends of mango explants greatly hinders their regenerative ability in any in vitro growth medium. However, pretreatment of explants using liquid shaker culture helps in overcoming this problem. Explants kept in liquid MS medium supplemented with 1% polyvinylpyrolidone in 250 ml conical flasks on an automated shaker at 75 rpm were able to produce shoots when inoculated on gelled MS medium supplemented with different concentrations of growth regulators.Abbreviations BA benzyladenine - IAA indoleacetic acid - NAA naphthaleneacetic acid - IBA indolebutyric acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号