首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background and aimsThis paper is about pollen ecophysiology, anther opening, pollen dispersal and the timing of the male and female phases in Parietaria judaica (Urticaceae).MethodsEcophysiological (effects of different relative humidities (RHs) and osmotic relationships) and cytological methods (stigmatic receptivity, pollen viability, histology and histochemistry) were used to determine pollen and pollination features during the long blooming period of this species.Key resultsPollen is dispersed by rapid uncurling of the filament and anther opening. The filament and anther lack cells with lignified wall thickenings, which are usually responsible for anther opening and ballistic pollen dispersal. Instead, dispersal is the result of the sudden movement of the filament. Pollen is of the partially hydrated type, i.e. with a water content greater than 30% at shedding, and readily loses water, and hence viability, at low RH. Pollen carbohydrate reserves differ with season. Starchless grains germinate quickly and are less subject to water loss. Flowers are protogynous, pollen release occurring only after complete cessation of the female phase within an inflorescence.ConclusionParietaria has partially hydrated pollen which differs from typical pollen of this type because of its reduced size and the absence of callose. Because of its low water content at the time of shedding it survives better at higher RH. Dispersal and pollination are adapted to pollen features.  相似文献   

2.
The events and processes occurring between pollen maturation, opening of the anther and presentation of pollen to dispersing agents are described. In the final phases of pollen development, starch is always stored; this occurs before the anther opens. Depending on the species, this starch may be totally or partially transformed into: (a) other types of polysaccharides (fructans and rarely callose); (b) disaccharides (sucrose); (c) monosaccharides (glucose and fructose, all situated in the cytoplasm. While awaiting dispersing agents and during dispersal, polysaccharides, especially fructans, and sucrose may be interconverted to control osmotic pressure and prevent loss and uptake of water. Opening of the anther is preceded by disappearance of the locular fluid and in many cases by partial dehydration of the pollen. Pollen generally has a water content between 5 and 50%. Pollen with a high water content may or may not be able to control water retention during pollen exposure and dispersal. Pollen may be dispersed in monads or grouped in pollen dispersing units by the following mechanisms: (i). tangling of filamentous pollen; (ii). adhesion by viscous substances (pollenkitt, tryphine, elastoviscin) derived from the tapetum; (iii). common walls. When the anther opens, the pollen may be dispersed immediately, remain until dispersed (primary presentation), or be presented to pollinators in another part of the flower (secondary presentation).  相似文献   

3.
 The problem of the water content of pollen is reconsidered, especially the distinction between “partially hydrated pollen” (PH pollen), pollen with a water content greater than 30%, and “partially dehydrated pollen” (PD pollen), which has a water content of less than 30%. Both types have been found even in systematically contiguous groups or the same genus. Partially hydrated pollen, encountered in at least 40 families of angiosperms, has the advantage of germinating quickly, normally in a few minutes to less than an hour. Dispersal of highly hydrated pollen also occurs in orchids but for a different reason, i.e. to enable packaging of massulae. The disadvantage of pollen dispersed with a high water content is that water is readily lost and the pollen may desiccate and die unless it has biochemical or anatomical devices to retain water or phenological strategies, such as flowering when temperatures are not too high and when relative humidity is high. Most pollen of Gymnosperms and Angiosperms studied has, however, been found partially dehydrated. Received March 8, 2002; accepted April 8, 2002 Published online: November 14, 2002 Addresses of the authors: G.G. Franchi (e-mail: franchi@unisi.it), Department of Pharmacology, Università di Siena, Via delle Scotte 6, I-53100 Siena, Italy; M. Nepi (e-mail: nepim@unisi.it) and E. Pacini (e-mail: pacini@unisi.it), Department of Environmental Sciences, Università di Siena, Via P.A. Mattioli 4, I-53100 Siena, Italy; A. Dafni (e-mail: adafni@research.haifa.ac.il), Laboratory of Pollination Ecology, Institute of Evolution, University of Haifa, 31905 Israel.  相似文献   

4.
During pollen development, soluble carbohydrates of sporophytic origin may be consumed immediately, polymerized to form starch reserves or intine, or transformed into other molecules. Disregarding intine, in mature pollen there are three different types of carbohydrates: (1) polysaccharides such as starch in amyloplasts or polysaccharides in cytoplasmic vesicles, (2) disaccharides such as sucrose and (3) monosaccharides such as glucose and fructose. At dispersal, pollen may be partly or slightly dehydrated, or not dehydrated at all. Partly dehydrated pollen has the capacity to lose or acquire water within limits without detriment to its viability. Slightly and non-dehydrated pollen is vulnerable to water loss and quickly becomes inviable. In partly dehydrated of pollen the carbohydrates consist of cytoplasmic polysacharides and sucrose; in slightly and non-dehydrated pollen these are absent or in low concentrations but there may be reserves of cytoplasmic callose. Starch, glucose and fructose are found in both types. It is postulated that cytoplasmic carbohydrates and sucrose are involved in protecting pollen viability during exposure and dispersal.  相似文献   

5.
《Flora》2014,209(3-4):153-163
The present study examines the cytological, physiological, chemical and ecological characteristics of pollen and nectar offered by male and female flowers of the dioecious plant Laurus nobilis. The various phases of floral phenology and the insect pollinators were observed. We used cytological methods to determine anther, pollen and nectary structure. Nectar sugar composition was evaluated by HPLC. Pollen viability in time was compared with cytoplasmic and intine water content. Pollen presentation was found to be reversible by opening and closing of anther valves, determined by hydration of the mechanical layer of the anther. Pollen, covered by pollenkitt, was presented for dispersal for 3 consecutive days and during this time the intine and cytoplasm lost water and pollen viability diminished. At germination exine ruptured together with the outermost layer of the intine. Nectaries of male flowers were observed on the anther filament and on staminodes of female flowers. The nectar consisted almost entirely of sucrose and was more concentrated in male flowers. Secreted through stomata, nectar was presented in a thin layer. In the study area, the main pollinators (about half the total number of all visits) were hymenopterans. Pollen is of the recalcitrant type due to its high water content (>30%) but its viability is long-lasting because the intine is thick and stores water, keeping the cytoplasm of the vegetative cell hydrated and viable, and because anther valves may close under adverse conditions, protecting the pollen. Insects are attracted by male and female flowers similarly, males offer nectar and pollen, whilst females only nectar.  相似文献   

6.
 Pollen from 13 species of gymnosperms and angiosperms was studied for soluble and insoluble carbohydrates at dispersal. Starch reserves stored during pollen development give rise to carbohydrates at maturity. Combinations of different types of carbohydrates in mature pollen may depend on the extent of starch hydrolysis. An inverse relationship was found between the extent of starch hydrolysis and sucrose content. If the starch was scarcely de-polymerized, the cytoplasm had very low levels of soluble sugars and none of the periodic acid-Schiff (PAS)-positive material as found in pollen not subject to high dehydration (Cucurbita pepo L., Zea mays L.). After total or partial starch hydrolysis, insoluble PAS-positive oligo/polysaccharides were found in the cytoplasm associated with much soluble sugar, and the pollen grains were dehydrated at dispersal as in Typha latifolia L., Chamaerops humilis L., Trachycarpus excelsa Wendl., and other specimens. Intermediate levels of starch and soluble sugars, together with cytoplasmic PAS-positive material, characterized species with dehydrated pollen such as Pinus halepensis Miller. Carbohydrates may be related to pollen longevity, which largely depends on the abundance of sucrose, which is known to protect membrane integrity. The relationship between PAS-positive material and pollen viability is unclear at present. Received: 30 July 1996 / Revision accepted: 18 December 1996  相似文献   

7.
Pollen performance is an important determinant for fertilization success, but high variability in pollen behavior both between and within species occurs in different years and under varying environmental conditions. Annona cherimola, an early-divergent angiosperm, is a species that releases a variable ratio of bicellular and tricellular hydrated pollen at anther dehiscence depending on temperature. The presence of both bi- and tricellular types of pollen is an uncommon characteristic in angiosperms and makes Annona cherimola an interesting model to study the effect of varying environmental conditions on subsequent pollen performance during the final stages of pollen development. In this work, we study the influence of changes in temperature and humidity during the final stages of pollen development on subsequent pollen performance, evaluating pollen germination, presence of carbohydrates, number of nuclei, and water content. At 25?°C, which is the average field temperature during the flowering period of this species, pollen had a viability of 60-70?%, starch hydrolyzed just prior to shedding, and pollen mitosis II was taking place, resulting in a mixture of bi- and tricellular pollen. This activity may be related to the pollen retaining 70?% water content at shedding. Temperatures above 30?°C resulted in a decrease in pollen germination, whereas lower temperatures did not have a clear influence on pollen germination, although they did have a clear effect on starch hydrolysis. On the other hand, slightly higher dehydration accelerated mitosis II, whereas strong dehydration arrested starch hydrolysis and reduced pollen germination. These results show a significant influence of environmental conditions on myriad pollen characteristics during the final stages of pollen development modifying subsequent pollen behavior and contributing to our understanding of the variability observed in pollen tube performance.  相似文献   

8.

Pollen grains have a relatively simple structure and microscopic size, with two or three cells surrounded by the protective sporoderm at maturity. The viability and efficiency of pollen transport from anther to stigma depends on pollen physiological properties, especially the relative water content of the vegetative cell. Pollen transport is a crucial fate for most angiosperms that depends on biotic pollinators and studies focusing on understanding the morpho-physiological properties of pollen grains are still scarce, especially to tropical open physiognomies as the Brazilian Cerrado. Therefore, we investigate some structural and physiological aspects of pollen grains from six native species naturally growing in one Cerrado area: Campomanesia pubescens (Myrtaceae), Caryocar brasiliense (Caryocaraceae), Erythroxylum campestre (Erythroxylaceae), Lippia lupulina (Verbenaceae), Pyrostegia venusta (Bignoniaceae), and Xylopia aromatica (Annonaceae). We selected dehiscent anthers and mature pollen grains to analyze (1) the anther wall and pollen microstructure, (2) the pollen water status at the time of anther dehiscence, and (3) the pollen chemical compounds. In all analyzed species, the anther and pollen developed in a successfully way, and except for Caryocar brasiliense, all species were able to emit pollen tubes in the germination tests. As expected for a dry and open environment, most species dispersed their pollen grains in a partially dehydrated form, as indicated by our harmomegathy experiment. As indicated by our study, the pollen ability in preventing dissection, maintaining its viability in a dry and hot environment during its transport from anther to stigma, may be related to the sporoderm apertures and to the reserve compounds, mainly carbohydrates in the form of hydrolysable starch grains.

  相似文献   

9.
Starch was cytologically localized and biochemically assayed in different anther cell layers of Lilium cv. Enchantment during pollen development and its presence was correlated with anther growth. Two phases could be distinguished: the first, the growth phase, extends from the beginning of meiosis to the vacuolated microspore stage and corresponds to maximum increase in anther size and weight. During this period, microspores lack amyloplasts and starch is degraded in the outer staminal wall layers. The tapetum does not contain starch reserves but accumulates a PAS-positive substance in its vacuole. The second phase, the maturation phase, begins with the late vacuolated microspore stage and lasts until pollen maturation. Anther growth is slowed during this phase. A wave of amylogenesis/ amylolysis occurs first in the late vacuolated-microspores and young pollen grains and, next, in the staminal envelopes. In the pollen grain, the cytoplasm of the vegetative cell is filled with starch, but amyloplasts are not detected in the generative cell. When pollen grains ripen, amylaceous reserves are replaced with lipids. In the staminal envelopes, the second amylogenesis is particularly evident in the endothecium and the middle layers; the peak of starch is reached at the young bicellular pollen grain stage; starch disappears from the anther wall early during the maturation phase. The wave of amylogenesis/amylolysis occurring in the staminal envelopes during the maturation phase is peculiar to Lilium. It is interpreted as a sudden increase in carbohydrate level caused by lower anther needs when the growth is completed. Staminal envelopes may act as a physiological buffer and regulate soluble sugar level in the anther. Stages of anther growth correlate with starch content variations and this suggests that during the growth phase, products of starch hydrolysis in the staminal envelopes may be consumed partly by anther cell layers and partly by microspores.  相似文献   

10.
Firon N  Nepi M  Pacini E 《Annals of botany》2012,109(7):1201-1214

Background

The male gametophyte developmental programme can be divided into five phases which differ in relation to the environment and pollen hydration state: (1) pollen develops inside the anther immersed in locular fluid, which conveys substances from the mother plant – the microsporogenesis phase; (2) locular fluid disappears by reabsorption and/or evaporation before the anther opens and the maturing pollen grains undergo dehydration – the dehydration phase; (3) the anther opens and pollen may be dispersed immediately, or be held by, for example, pollenkitt (as occurs in almost all entomophilous species) for later dispersion – the presentation phase; (4) pollen is dispersed by different agents, remaining exposed to the environment for different periods – the dispersal phase; and (5) pollen lands on a stigma and, in the case of a compatible stigma and suitable conditions, undergoes rehydration and starts germination – the pollen–stigma interaction phase.

Scope

This review highlights the issue of pollen water status and indicates the various mechanisms used by pollen grains during their five developmental phases to adjust to changes in water content and maintain internal stability.

Conclusions

Pollen water status is co-ordinated through structural, physiological and molecular mechanisms. The structural components participating in regulation of the pollen water level, during both dehydration and rehydration, include the exine (the outer wall of the pollen grain) and the vacuole. Recent data suggest the involvement of water channels in pollen water transport and the existence of several molecular mechanisms for pollen osmoregulation and to protect cellular components (proteins and membranes) under water stress. It is suggested that pollen grains will use these mechanisms, which have a developmental role, to cope with environmental stress conditions.  相似文献   

11.
M. Nepi  G. G. Franchi  E. Padni 《Protoplasma》2001,216(3-4):171-180
Summary The aim of this paper is to draw attention to partially hydrated pollen, namely, pollen grains having a high water content (>30%); this type of pollen is more frequent than previously thought. Various cyto-physiological strategies are used to retain water during exposure and dispersal such as cytoplasm carbohydrates; in the absence of such strategies, fast pollination must be ensured, because uncontrolled loss of water leads to pollen death. On the other hand, a state of partial hydration allows a fast tube emission (even within 3–5 min). Several methods for determining the hydration status of pollen at anthesis are proposed.  相似文献   

12.
Sexual reproduction in plants requires development of haploid gametophytes from somatic tissues. Pollen is the male gametophyte and develops within the stamen; defects in the somatic tissues of the stamen and in the male gametophyte itself can result in male sterility. The maize fuzzy tassel (fzt) mutant has a mutation in dicer-like1 (dcl1), which encodes a key enzyme required for microRNA (miRNA) biogenesis. Many miRNAs are reduced in fzt, and fzt mutants exhibit a broad range of developmental defects, including male sterility. To gain further insight into the roles of miRNAs in maize stamen development, we conducted a detailed analysis of the male sterility defects in fzt mutants. Early development was normal in fzt mutant anthers, however fzt anthers arrested in late stages of anther maturation and did not dehisce. A minority of locules in fzt anthers also exhibited anther wall defects. At maturity, very little pollen in fzt anthers was viable or able to germinate. Normal pollen is tricellular at maturity; pollen from fzt anthers included a mixture of unicellular, bicellular, and tricellular pollen. Pollen from normal anthers is loaded with starch before dehiscence, however pollen from fzt anthers failed to accumulate starch. Our results indicate an absolute requirement for miRNAs in the final stages of anther and pollen maturation in maize. Anther wall defects also suggest that miRNAs have key roles earlier in anther development. We discuss candidate miRNAs and pathways that might underlie fzt anther defects, and also note that male sterility in fzt resembles water deficit-induced male sterility, highlighting a possible link between development and stress responses in plants.  相似文献   

13.
ABSTRACT

The morphology, cytology and viability of Hermodactylus tuberosus L. (Iridaceae) pollen were examined from the first mitosis until maturation and after anther opening. During maturation, the pollen coat becomes modified, and the vegetative cell cytoplasm accumulates several types of reserve substances. In the vegetative cell cytoplasm, starch is quickly utilised whereas lipid inclusions of different dimensions, shape and composition occur during pollen maturation. Pollen from opened anthers have a thin pollen coat; the cytoplasm has mostly lipid reserves, and many small vesicles and vacuoles. It is similar in size or larger than pollen located inside the anther, and its viability does not decrease until one day after anther dehiscence. Large osmiophilic bodies, different from those of the vegetative cell cytoplasm, are present in the generative cell cytoplasm starting from the first stage of pollen development. The poorly developed pollen coat in pollen from opened anthers suggests that it plays a minor role in attracting insects for pollination. The size and structural and ultrastructural features of mature pollen indicate that it does not undergo dehydration and possesses sufficient vigour for immediate germination.  相似文献   

14.
实验结果表明,早发生胚水稻(PDER)品系小孢子的发生发育与常规水稻品种相同,常规I-KI镜检显示其成熟花粉育性达87.4%.开花后,少量花粉在柱头上能正常萌发,并以短管形式进入柱头.大部分花粉在柱头上发生了异常行为:不萌发花粉管,但排放出大量内容物;花粉管细小或畸形;在枝头内或柱头外花粉管前端破裂;花粉管在柱头上绕行不进入柱头;花粉管在柱头内逆行生长;花粉管进入柱头后又穿出柱头;花粉管壁上粘有颗粒或被有一层膜等.文中就PDER的来源讨论了这些现象,并提出“萌败”这一新概念.  相似文献   

15.
Pacini E  Hesse M 《Annals of botany》2002,89(6):653-664
The various pollen dispersal units (PDU) found in orchids are discussed together with possible evolutionary trends and the consequences for germination and fertilization. Orchids with monad and tetrad pollen form more complex dispersal units by means of pollenkitt, elastoviscin, a callosic wall, common walls or a combination of these. Evolutionary trends include (1) from pollenkitt to elastoviscin; (2) from monad to tetrads and multiples of tetrads; (3) from partially dehydrated (<30 %) to partially hydrated (>30 %) pollen; and (4) from monad pollen to PDUs with many pollen grains. The biological consequences concern both male and female reproductive systems. Some features of the male side are present in all orchids irrespective of the pollen dispersal unit, whereas other characters are found only in orchids with pollinia; the same applies for the female counterpart. Pollen grains of orchids with pollinia germinate at least 24 h after pollination because the pollen grains/tetrads must swell and make space for the growth of pollen tubes.  相似文献   

16.
《遗传学报》2021,48(8):695-705
Coordination between the sporophytic tissue and the gametic pollen within anthers is tightly controlled to achieve the optimal pollen fitness. Glucose-6-phosphate/phosphate translocator(GPT) transports glucose-6-phosphate, a key precursor of starch and/or fatty acid biosynthesis, into plastids. Here, we report the functional characterization of Os GPT1 in the rice anther development and pollen fertility. Pollen grains from homozygous osgpt1 mutant plants fail to accumulate starch granules, resulting in pollen sterility. Genetic analyses reveal a sporophytic effect for this mutation. Os GPT1 is highly expressed in the tapetal layer of rice anther. Degeneration of the tapetum, an important process to provide cellular contents to support pollen development, is impeded in osgpt1 plants. In addition, defective intine and exine are observed in the pollen from osgpt1 plants. Expression levels of multiple genes that are important to tapetum degeneration or pollen wall formation are significantly decreased in osgpt1 anthers. Previously, we reported that At GPT1 plays a gametic function in the accumulation of lipid bodies in Arabidopsis pollen. This report highlights a sporophytic role of Os GPT1 in the tapetum degeneration and pollen development. The divergent functions of Os GPT1 and At GPT1 in pollen development might be a result of their independent evolution after monocots and dicots diverged.  相似文献   

17.
Pollen of the palm Trachycarpus fortunei was kept at 25°C and relative humidities (RH) of 20, 55 and 98%. Changes in viability, water content and carbohydrates were measured over 2–17 days. Water content remained almost constant at 20 and 50% RH and increased dramatically at 98%. Pollen viability and germination rate remained almost constant over 14 days at 20% RH and decreased to about 2% after 7–9 days at 55% and to even less at 98% RH. Although the three experimental conditions were constant, qualitative and quantitative variations in pollen carbohydrates were recorded, even after pollen had lost its viability. The quantities of mono-, di- and polysaccharides varied with the period of pollen storage at the various RH. The greatest changes in glucose, fructose and sucrose content were recorded at 55 and 98% RH. At these relative humidities, maximum glucose and fructose content and minimum sucrose content occurred at maximum water content. Starch was not present in mature pollen but appeared and peaked after 7–9 days of pollen storage at 55 and 98%. Appearance of starch coincided with an increase in pectin content. PAS-positive cytoplasmic polysaccharides showed an increasing trend at 20% RH. A relation was found between pollen viability, water content and monosaccharide content. Pollen viability and germination capacity remained high at 20% RH for 14 days. At this relative humidity, pollen water, glucose and fructose contents remained almost constant, while sucrose reached its maximum value. The fluctuations of more complex carbohydrates (starch, pectins and PAS-positive cytoplasmic polysaccharides) were less easy to interpret. Changes observed under experimental conditions could simulate processes occurring in nature during pollen presentation and dispersal.  相似文献   

18.
Pollen from Collomia grandiflora Dougl. ex Lindl., Phoenix dactylifera L. and Zea mays L. was examined by freeze-fracture electron microscopy. Particular attention was paid to the organization of the cell membranes in the naturally dehydrated, as compared to the fully hydrated, state. All membranes examined had a normal bilayer organization similar to that seen in the hydrated cells of these and other plants. This organization of dry pollen membranes is discussed as it relates to physiological studies (e.g., leakage of ions during hydration), and to biophysical properties of biological and model membranes under various conditions of hydration and dehydration.Abbreviations EF, PF exoplasmic and protoplasmic fracture, respectively - HII hexagonal II - IMPs intramembranous particles  相似文献   

19.
Pollen limitation occurs when plants produce less fruits and/or seeds than they would with adequate pollen receipt. If the addition of cross-pollen to stigmas increases fruit/seed production, it is interpreted as an evidence of pollen limitation. Much of the limitation may be associated with the quality rather than quantity of pollen; however, most studies do not discriminate between the two, which may lead to misinterpretation of the results. We studied the effects of quality and quantity of pollen on the reproduction of a northern Spanish population of Crataegus monogyna. The treatments included self- and cross-pollination, and supplementation to open and bagged flowers. The response variables considered were number of pollen grains per stigma, pollen tubes per style, and initial and final fruit set. In the Cantabrian range, C. monogyna requires insect pollinators to set fruit and is partially self-incompatible. We found that the number of pollen tubes did not differ between cross- and self-pollination treatments; however, self-pollinated flowers set less fruits than flowers that received pure cross-pollen or were supplemented with both cross- and self-pollen. The experimental design allowed us to infer qualitative rather than quantitative pollen limitation. Comparison of the number of pollen grains and tubes, and initial and final fruit set among pollination treatments suggested post-zygotic embryo selection against selfed progeny.  相似文献   

20.
Cytoplasmic male sterility has been found independently in soybean three times since 1995, but no microscopic investigation has been published. The purpose of this microscopic study was to establish the developmental sequence leading to sterility in a cytoplasmic male-sterile soybean line that has been found to be stable under all environmental conditions tested and to demarcate the temporal and spatial parameters that result in degeneration of the microspores and pollen grains. Light microscopy showed an abnormal development and/or premature degeneration of the tapetum after meiosis II, but some pollen grains persisted until after microspore mitosis. The pollen grains never completely filled with reserves. Premature formation of the endothecium also was evident. Histochemical staining for water-insoluble carbohydrates revealed an abnormal pattern of starch deposition in anther walls that coincided with lack of pollen filling. Electron microscopy showed degeneration of the inner mitochondrial membrane in the tapetal cells as the first detectable change leading to cell degeneration. Subsequently, the tapetal endoplasmic reticulum exhibited atypical concentric rings. Pollen grains displayed mitochondria with unusually enlarged inner mitochondrial spaces, degraded plastids, a rudimentary intine, and no starch or lipid reserves. Results link mitochondrial degeneration, premature formation of the endothecium, and energy deprivation to male sterility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号