首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The carbohydrate moiety of the influenza glycoproteins NA, HA1, and HA2 were analyzed by labeling with radioactive sugars. Analysis of glycopeptides obtained after digestion with Pronase indicated that there are at least two different types of carbohydrate side chains. The side chain of type I is composed of glucosamine, mannose, galactose, and fucose. It is found on NA, HA1, and HA2. The side chain of type II contains a high amount of mannose and is found only on NA and HA2. The molecular weights of the corresponding glycopeptides obtained from virus grown in chicken embryo cells are 2,600 for type I and 2,000 for type II. The glycoproteins of virus grown in MDBK cells have a higher molecular weight than those of virus grown in chicken embryo cells, and there is a corresponding difference in the molecular weights of the glycopeptides. Under conditions of partial inhibition of glycosylation, virus particles were isolated that contained hemagglutinin with reduced carbohydrate content. Glycopeptide analysis indicated that this reduction is due to the lack of whole carbohydrate side chains and not to the incorporation of incomplete ones. This observation suggests that glycosylation of the viral glycoproteins involves en bloc transfer of the core sugars to the polypeptide chains.  相似文献   

2.
The membrane orientation of the NB protein of influenza B virus, a small (Mr, approximately 18,000) glycoprotein with a single internal hydrophobic domain, was investigated by biochemical and genetic means. Cell fractionation and protein solubility studies indicate NB is an integral membrane protein, and NB has been shown to be a dimer under nonreducing conditions. Treatment of infected-cell surfaces with proteinase K and endoglycosidase F and immunoprecipitation with a site-specific antibody suggests that the 18-amino-acid NH2-terminal region of NB is exposed at the cell surface. Oligonucleotide-directed mutagenesis to eliminate each of the four potential sites of N-linked glycosylation and expression of the mutant NB proteins in eucaryotic cells suggest that the two sites adjacent to the NH2 terminus are glycosylated. This provides further evidence that NB, which lacks a cleavable NH2-terminal signal sequence, has an exposed NH2 terminus at the cell surface.  相似文献   

3.
Dengue virus envelope protein (E) contains two N-linked glycosylation sites, at Asn-67 and Asn-153. The glycosylation site at position 153 is conserved in most flaviviruses, while the site at position 67 is thought to be unique for dengue viruses. N-linked oligosaccharide side chains on flavivirus E proteins have been associated with viral morphogenesis, infectivity, and tropism. Here, we examined the relevance of each N-linked glycan on dengue virus E protein by removing each site in the context of infectious viral particles. Dengue viruses lacking Asn-67 were able to infect mammalian cells and translate and replicate the viral genome, but production of new infectious particles was abolished. In addition, dengue viruses lacking Asn-153 in the E showed reduced infectivity. In contrast, ablation of one or both glycosylation sites yielded viruses that replicate and propagate in mosquito cells. Furthermore, we found a differential requirement of N-linked glycans for E secretion in mammalian and mosquito cells. While secretion of E lacking Asn-67 was efficient in mosquito cells, secretion of the same protein expressed in mammalian cells was dramatically impaired. Finally, we found that viruses lacking the carbohydrate at position 67 showed reduced infection of immature dendritic cells, suggesting interaction between this glycan and the lectin DC-SIGN. Overall, our data defined different roles for the two glycans present at the E protein during dengue virus infection, highlighting the involvement of distinct host functions from mammalian and mosquito cells during dengue virus propagation.  相似文献   

4.
The importance of carbohydrate in the secretion of immunoglobulin A (IgA) has previously been suggested by results of studies with tunicamycin, which prevents N-linked glycosylation of all cell glycoproteins. To directly evaluate the role of individual oligosaccharides in the secretion of IgA, we have used site-directed mutagenesis to selectively eliminate the two N-linked attachment sites reported to be glycosylated in alpha heavy chains. Transfected wild-type and mutant alpha genes were expressed in kappa light-chain-producing MPC-11 variant myeloma cells, and secretion kinetics of the IgAs were compared. Removal of either or both glycosylation sites led to intracellular alpha heavy-chain degradation and a 90 to 95% inhibition of IgA secretion. These results reveal that both N-linked oligosaccharides of the alpha heavy chain are essential for intracellular stability and normal secretion of IgA. This suggests that the key function of carbohydrate here is to maintain proper conformation of the glycoprotein. We also found that when expressed in the MPC-11 variant cells, alpha heavy chains were glycosylated at a third, normally unused site.  相似文献   

5.
Hatta M  Kawaoka Y 《Journal of virology》2003,77(10):6050-6054
The NB protein of influenza B virus is thought to function as an ion channel and therefore would be expected to have an essential function in viral replication. Because direct evidence for its absolute requirement in the viral life cycle is lacking, we generated NB knockout viruses by reverse genetics and tested their growth properties both in vitro and in vivo. Mutants not expressing NB replicated as efficiently as the wild-type virus in cell culture, whereas in mice they showed restricted growth compared with findings for the wild-type virus. Thus, the NB protein is not essential for influenza B virus replication in cell culture but promotes efficient growth in mice.  相似文献   

6.
《The Journal of cell biology》1988,107(6):2059-2073
We have constructed and expressed a series of mutant influenza virus hemagglutinins, each containing a new consensus site for glycosylation in addition to the seven sites found on the wild-type protein. Oligosaccharide side chains were added with high efficiency at four of the five novel sites, located on areas of the protein's surface that are not normally shielded by carbohydrate. Investigations of the structure, intracellular transport, and biological activities of the mutant hemagglutinin molecules indicated that (a) supernumerary carbohydrate side chains can be used to shield or disrupt functional epitopes on the surface of hemagglutinin, and (b) the presence of an additional oligosaccharide may cause temperature-dependent defects in the transport of the glycoprotein. We discuss the addition of supernumerary oligosaccharides as a general tool for shielding chosen areas of the surface of proteins that enter or traverse the secretory pathway.  相似文献   

7.
Influenza H1N1 virus has posed a serious threat to human health. The glycosylation of neuraminidase (NA) could affect the infectivity and virulence of the influenza virus, but detailed site‐specific glycosylation information of NA is still missing. In this study, intact glycopeptide analysis is performed on an influenza NA (A/H1N1/California/2009) that is expressed in human 293T and insect Hi‐5 cells. The data indicate that three of four potential N‐linked glycosylation sites are glycosylated, including one partial glycosylation site from both cell lines. The NA expressed in human cells has more complex glycans than that of insect cells, suggesting the importance of selecting an appropriate expression system for the production of functional glycoproteins. Different types of glycans are identified from different glycosites of NA expressed in human cells, which implies the site‐dependence of glycosylation on NA. This study provides valuable information for the research of influenza virus as well as the functions of viral protein glycosylation.  相似文献   

8.
The biochemical properties of a second protein (CM2) encoded by RNA segment 6 of influenza C virus were investigated. Three forms of CM2 with different electrophoretic mobilities (CM2(0), CM2a, and CM2b) were detected in infected cells by immunoprecipitation with antiserum to the glutathione S-transferase (GST)-CM2 fusion protein. Treatment of infected cells with tunicamycin and digestion of immunoprecipitated proteins with endoglycosidase H or peptide-N-glycosidase F suggested that a mannose-rich oligosaccharide core is added to unglycosylated CM2(0) (Mr, approximately 16,000) to form CM2a (Mr, approximately 18,000) and that the processing of the carbohydrate chain from the high-mannose type to the complex type converts CM2a into CM2b, which is heterogeneous in electrophoretic mobility (Mr, approximately 22,000 to 30,000). Labeling of infected cells with [3H]palmitic acid showed that CM2 is fatty acylated. The fatty acid bond was sensitive to treatment with hydroxylamine and mercaptoethanol, which indicates a labile thioester-type linkage. The CM2 protein was also found to form disulfide-linked dimers and tetramers on sodium dodecyl sulfate-polyacrylamide gels under nonreducing conditions. Trypsin treatment of infected cell surfaces as well as of microsome vesicles from infected cells followed by immunoprecipitation with antiserum to the GST fusion protein containing the 56 C-terminal amino acid residues of CM2 suggested that this C-terminal domain is intracellular and exposed to the cytoplasms of microsomes. Furthermore, evidence that a small amount of CM2 is incorporated into progeny virus particles was obtained by Western blot analysis. These results, altogether, suggest that CM2 is an integral membrane protein with biochemical properties similar to those of influenza A virus M2 and influenza B virus NB proteins.  相似文献   

9.
G W Wertz  M Krieger    L A Ball 《Journal of virology》1989,63(11):4767-4776
The synthesis of the extensively O-glycosylated attachment protein, G, of human respiratory syncytial virus and its expression on the cell surface were examined in a mutant Chinese hamster ovary (CHO) cell line, ldlD, which has a defect in protein O glycosylation. These cells, used in conjunction with an inhibitor of N-linked oligosaccharide synthesis, can be used to establish conditions in which no carbohydrate addition occurs or in which either N-linked or O-linked carbohydrate addition occurs exclusively. A recombinant vaccinia virus expression vector for the G protein was constructed which, as well as containing the human respiratory syncytial virus G gene, contained a portion of the cowpox virus genome that circumvents the normal host range restriction of vaccinia virus in CHO cells. The recombinant vector expressed high levels of G protein in both mutant ldlD and wild-type CHO cells. Several immature forms of the G protein were identified that contained exclusively N-linked or O-linked oligosaccharide side chains. Metabolic pulse-chase studies indicated that the pathway of maturation for the G protein proceeds from synthesis of the 32-kilodalton (kDa) polypeptide accompanied by cotranslational attachment of high-mannose N-linked sugars to form an intermediate with an apparent mass of 45 kDa. This step is followed by the Golgi-associated conversion of the N-linked sugars to the complex type and the completion of the O-linked oligosaccharides to achieve the mature 90-kDa form of G. Maturation from the 45-kDa N-linked form to the mature 90-kDa form occurred only in the presence of O-linked sugar addition, confirming that O-linked oligosaccharides constitute a significant proportion of the mass of the mature G protein. In the absence of O glycosylation, forms of G bearing galactose-deficient truncated N-linked and fully mature N-linked oligosaccharides were observed. The effects of N- and O-linked sugar addition on the transport of G to the cell surface were measured. Indirect immunofluorescence and flow cytometry showed that G protein could be expressed on the cell surface in the absence of either O glycosylation or N glycosylation. However, cell surface expression of G lacking both N- and O-linked oligosaccharides was severely depressed.  相似文献   

10.
The main surface glycoprotein, hemagglutinin (HA), was obtained by treatment of influenza virus B/Leningrad/179/86 with bromelain. Amino acid and monosaccharide compositions of HA and neuraminidase (NA, earlier isolated from the same virus) were determined, thus showing HA and NA to contain 8-10 and 2 carbohydrate chains, respectively. The carbohydrate fragments were cleaved off by the alkaline LiBH4 treatment, the oligosaccharides released were reduced with NaB3H4 and fractionated by two-step HPLC on Ultrasphere-C18 and Zorbax-NH2 columns. Some higher mannose and complex oligosaccharides were identified in both cases by comparison with nonlabelled oligosaccharides of the known structure. The data obtained show that surface glycoproteins of influenza virus A and B are rather similar with regard to structure and heterogeneity of their carbohydrate chains.  相似文献   

11.
The glycoprotein hormone erythropoietin (Ep), the primary regulator of erythropoiesis, is synthesized by the kidney and secreted as the mature protein with three N-linked and one O-linked oligosaccharide chains. To investigate the role(s) of each carbohydrate moiety in the biosynthesis and function of Ep, we have used oligonucleotide-directed mutagenesis of a cDNA for human Ep to alter the amino acids at each of the carbohydrate attachment sites. Each mutated cDNA construct was expressed in stably transfected sublines of a kidney cell line, baby hamster kidney. We show, by preventing attachment of N-linked carbohydrate at asparagines 38 or 83, or preventing O-linked glycosylation at serine 126, that glycosylation of each of these specific sites is critical for proper biosynthesis and secretion of Ep. Fractionation of cellular extracts demonstrated that the mutant proteins lacking glycosylation at each of these three sites, (38, 83, and 126) were associated mainly with membrane components or were degraded rapidly. Less than 10% of these three mutant proteins were processed properly and secreted from the cells. The Ep protein lacking N-linked glycosylation at asparagine 24 is synthesized and secreted as efficiently as native Ep. The carbohydrates at positions 24 and 38 may be involved in the biological activity of Ep, since the absence of either of the oligosaccharide side chains at these positions reduced the hormone's biological activity.  相似文献   

12.
This study describes a method for increasing the immunogenicity of influenza virus vaccines by exploiting the natural anti-Gal antibody to effectively target vaccines to antigen-presenting cells (APC). This method is based on enzymatic engineering of carbohydrate chains on virus envelope hemagglutinin to carry the alpha-Gal epitope (Gal alpha 1-3Gal beta 1-4GlcNAc-R). This epitope interacts with anti-Gal, the most abundant antibody in humans (1% of immunoglobulins). Influenza virus vaccine expressing alpha-Gal epitopes is opsonized in situ by anti-Gal immunoglobulin G. The Fc portion of opsonizing anti-Gal interacts with Fc gamma receptors on APC and induces effective uptake of the vaccine virus by APC. APC internalizes the opsonized virus to transport it to draining lymph nodes for stimulation of influenza virus-specific T cells, thereby eliciting a protective immune response. The efficacy of such an influenza vaccine was demonstrated in alpha 1,3galactosyltransferase (alpha 1,3GT) knockout mice, which produce anti-Gal, using the influenza virus strain A/Puerto Rico/8/34-H1N1 (PR8). Synthesis of alpha-Gal epitopes on carbohydrate chains of PR8 virus (PR8(alpha gal)) was catalyzed by recombinant alpha1,3GT, the glycosylation enzyme that synthesizes alpha-Gal epitopes in cells of nonprimate mammals. Mice immunized with PR8(alpha gal) displayed much higher numbers of PR8-specific CD8(+) and CD4(+) T cells (determined by intracellular cytokine staining and enzyme-linked immunospot assay) and produced anti-PR8 antibodies with much higher titers than mice immunized with PR8 lacking alpha-Gal epitopes. Mice immunized with PR8(alpha gal) also displayed a much higher level of protection than PR8 immunized mice after being challenged with lethal doses of live PR8 virus. We suggest that a similar method for increasing immunogenicity may be applicable to avian influenza vaccines.  相似文献   

13.
The role of N-linked glycosylation in protein maturation and transport has been studied by using the simian virus 5 hemagglutinin-neuraminidase (HN) protein, a model class II integral membrane glycoprotein. The sites of N-linked glycosylation on HN were identified by eliminating each of the potential sites for N-linked glycosylation by oligonucleotide-directed mutagenesis on a cDNA clone. Expression of the mutant HN proteins in eucaryotic cells indicated that four sites are used in the HN glycoprotein for the addition of N-linked oligosaccharide chains. These functional glycosylation sites were systematically eliminated in various combinations from HN to form a panel of mutants in which the roles of individual carbohydrate chains and groups of carbohydrate chains could be analyzed. Alterations in the normal glycosylation pattern resulted in the impairment of HN protein folding and assembly which, in turn, affected the intracellular transport of HN. The severity of the consequences on HN maturation depended on both the number of deleted carbohydrate sites and their position in the HN molecule. Analysis of the reactivity pattern of HN conformation-specific monoclonal antibodies with the mutant HN proteins indicated that one specific carbohydrate chain plays a major role in promoting the correct folding of HN. Another carbohydrate chain, which is not essential for the initial folding of HN was found to play a role in preventing the aggregation of HN oligomers. The HN molecules which were misfolded, owing to their altered glycosylation pattern, were retained in the endoplasmic reticulum. Double-label immunofluorescence experiments indicate that misfolded HN and folded HN are segregated in the same cell. Misfolded HN forms disulfide-linked aggregates and is stably associated with the resident endoplasmic reticulum protein, GRP78-BiP, whereas wild-type HN forms a specific and transient complex with GRP78-BiP during its folding process.  相似文献   

14.
A soluble form of the human interferon gamma receptor that is required for the identification of interferon gamma antagonists was expressed in baculovirus-infected insect cells. The protein carried N-linked carbohydrate and showed a heterogeneity on denaturing polyacrylamide gels. We investigated the utilization of the potential sites for N-linked glycosylation and the structure of the carbohydrate moieties of this soluble receptor. Amino acid sequence analysis and ion spray mass spectrometry revealed that of the five potential sites for N-linked glycosylation, Asn17 and Asn69 were always utilized, whereas Asn62 and Asn162 were utilized in approximately one-third of the protein population. Asn223 was never found to be glycosylated. The soluble receptor was treated with N-glycosidase F and the oligosaccharides released were analyzed by matrix-assisted laser desorption mass spectrometry, which showed that the protein carried six types of short carbohydrate chains. The predominant species was a hexasaccharide of molecular mass 1,039, containing a fucose subunit linked to the proximal N-acetylglucosamine residue: [formula: see text]  相似文献   

15.
The receptor properties of influenza virus (IF) isolates/SSSR/90/77 are studied. The isolates are peculiar for losing glycosylation sites (GS) at the Asn131 receptor-binding region (GS131) after passaging in mice and at the Asn158 region (GS158) after cultivation in the presence of mouse serum. The loss of each carbohydrate residue increases the influenza virus affinity for carbohydrate chains with the terminal group Neu5Ac alpha 2-6Gal and reduces its affinity for Neu5Ac alpha 2-3Gal receptors. The effect is more pronounced in the GS158-depleted virus. Upon substitution of asparagine by aspartic acid, the electrostatic component of virus binding to the receptor is altered because of the increased negative charge on hemagglutinin. The virus receptor phenotype changes depending on the cultivation conditions. The isolate adapted to mice has higher affinity to mouse lung cell receptors, while the virus propagated in chick embryos in the presence of inhibitors has higher affinity to allantoic membrane cells.  相似文献   

16.
Expression of ras oncogenes in NIH 3T3 fibroblasts results in the acquisition by these cells of an invasive potential concomitant with the appearance of cell surface asparagine-linked complex-type glycan structures of a higher average molecular weight (Bolscher, J.G. M., van der Bijl, M. M. W., Neefjes, J. J., Hall, A., Smets, L.A., and Ploegh, H.L. (1988) EMBO J. 7, 3361-3368). We have investigated the enzymatic basis for the altered glycosylation by assessing the activities of all major Golgi glycosyltransferases involved in the synthesis of these structures. Use was made of a stable transfectant cell line (T15) containing the N-ras-protooncogene under the control of a glucocorticoid-inducible mouse mammary tumor virus promoter. Upon induction of the ras gene with dexamethasone: 1) the levels of N-acetylglucosaminyltransferase I and II were essentially unaltered, indicating an unaffected potential to synthesize complex-type glycans; 2) the activities of the branching N-acetylglucosaminyltransferase III and V were elevated 2- to 2.5-fold suggesting the formation of increased amounts of bisected glycans and of structures carrying a Gal beta 1----GlcNAc beta 1----6Man-branch; 3) the levels of the elongating beta 4-galactosyltransferase and beta 3-N-acetylglucosaminyl-transferase were increased 5- to 7-fold indicating a strongly enhanced capacity to synthesize polylactosaminoglycan chains; 4) the level of the major chain-terminating enzyme, alpha 3-galactosyltransferase, was slightly decreased (0.7-fold), whereas those of the alpha 3- and alpha 6-sialyltransferases were slightly elevated (1.3- and 2-fold, respectively), suggesting a shift from termination by alpha-galactosyl residues to termination by sialic acid moieties. Studies on the acceptor specificities of the different glycosyltransferases indicate that these changes occur in a coordinated manner in which the effects of altered glycosyltransferase expression levels amplify each other. Analysis of the size of cell surface complex-type glycopeptides before and after digestion with neuraminidase and endo-beta-galactosidase suggested an increased sialic acid density, an increase in the number and/or length of polylactosaminoglycan chains, and an increased branching of the glycans upon N-ras induction. The enzymatic results explain these structural changes and allow us to define the alterations in glycosylation pathways associated with ras expression.  相似文献   

17.
The contribution of each of the seven asparagine-linked oligosaccharide side chains on the hemagglutinin of the A/Aichi/68 (X31) strain of influenza virus was assessed with respect to its effect on the folding, intracellular transport, and biological activities of the molecule. Twenty mutant influenza virus hemagglutinins were constructed and expressed, each of which had one or more of the seven glycosylation sites removed. Investigations of these mutant hemagglutinins indicated that (i) no individual oligosaccharide side chain is necessary or sufficient for the folding, intracellular transport, or function of the molecule, (ii) at least five oligosaccharide side chains are required for the X31 hemagglutinin molecule to move along the exocytic pathway to the plasma membrane, and (iii) mutant hemagglutinins having less than five oligosaccharide side chains form intracellular aggregates and are retained in the endoplasmic reticulum.  相似文献   

18.
CD38 is a type II transmembrane protein with 25% of its molecular mass consisting of glycosyl moieties. It has long been predicted that the carbohydrate moieties of glycoproteins play important roles in the physical function and structural stability of the proteins on cell surfaces. To determine the structural/functional significance of glycosylation of the human CD38, the four potential N-linked glycosylation sites asparagine residues, N100, N164, N209 and N219 were mutated. The mutant (CD38mu) and wild-type (CD38wt) were expressed separately in Escherichia coli, HeLa, and MCF-7 cells. SDS-polyacrylamide gel electrophoresis under reducing conditions and western blotting indicated that the molecular mass of the CD38wt is 45 kDa, and that of the CD38mu is 34 kDa in HeLa cells. Importantly, the CD38mu protein expressed in HeLa cells, showed the high molecular weight oligomers in addition to the 34 kDa monomeric form. Similarly, in E. coli, the CD38wt formed dimers and other oligomers besides the monomeric form. Moreover, MCF-7 cells stably transfected with CD38wt cDNA, also revealed the presence of cross-linked oligomers when treated with a N-linked glycosylation inhibitor tunicamycin (TM). These results suggested that the N-linked glycosylation of CD38 plays a crucial role in the structure stability by preventing the formation inter-molecular cross-links. In addition, immunostaining, enzyme activity (cyclase), and western blotting data revealed that the glycosylation of human CD38 protein is not required for its localization to the cell membrane.  相似文献   

19.
Large polylactosaminoglycans have only been observed linked to membrane proteins. To determine if membrane anchoring of a secretory protein might lead to the addition of polylactosaminoglycan, we have examined the carbohydrate structure on a membrane-anchored form of human chorionic gonadotropin-alpha subunit. This protein was generated by fusing the DNA encoding the human chorionic gonadotropin-alpha subunit to the DNA encoding the membrane-spanning and cytoplasmic domains of the vesicular stomatitis virus glycoprotein. DNAs encoding this hybrid form and the secretory form of human chorionic gonadotropin-alpha were expressed in monkey COS-1 cells using an SV40-based vector. We show here that the parent secretory glycoprotein contains typical Asn-linked complex-type oligosaccharides while the membrane-bound form contains large, heterogenous polylactosaminoglycans. We conclude that membrane anchoring increases the accessibility of the N-linked glycans to the enzymes involved in polylactosamine addition. The inhibitor 1-deoxymannojirimycin blocks addition of the polylactosaminoglycan.  相似文献   

20.
Human choriogonadotropin (hCG) is a placental glycoprotein hormone composed of a 92-amino acid alpha subunit noncovalently linked to a 145-amino acid beta subunit. We report here the expression of biologically active hCG in mouse C127 cells transfected with expression vectors containing the DNA coding for both subunits. In addition, the same cell line was used to express the alpha subunit alone. The expression products were purified by affinity chromatography using specific monoclonal antibodies to hCG or its subunits. The system secreting biologically active hCG also produced a 10-fold or greater molar excess of free beta subunit. The dimeric hormone, as well as the excess beta subunit, resembles the standard urinary hCG and beta subunit by chemical and biological criteria. In contrast, when the vector encoding for the alpha subunit was expressed alone, the alpha subunit had a higher molecular weight than both standard alpha and the alpha found in the expressed dimeric hormone. The molecular weight difference between expressed alpha subunit and standard alpha was found to reside in the alpha peptide consisting of residues 52-91 which contained all of the carbohydrate of the alpha subunit. The N-asparagine-linked carbohydrate moieties in the recombinant alpha were found to be triantennary in contrast to biantennary in urinary alpha, and this hyperglycosylation was responsible for the higher molecular weight of the alpha subunit when it was expressed alone. We found no evidence of O-threonine glycosylation at position alpha 39 reported to be present in free forms of the alpha subunit; however, the companion paper (Corless, C.L., Bielinska, M., Ramabhadran, T. V., Daniels-McQueen, S. Otani, T., Reitz, B. A., Tiemeier, D. C., and Boime, I. (1987) J. Biol Chem. 262, 14197-14203) finds a small quantity of O-glycosylation. Since the excess beta subunit appears to be of normal size and contains the expected complement of sugars, only free alpha subunit seems to be a potential substrate for addition of extra sugar moieties. No large beta subunit forms have been found by others, while large alpha subunits have been described both clinically and in tissue culture systems. These observations imply that the conformation of the free alpha subunit, in the regions of the glycosylation recognition sites, allows easier access for glycosyltransferases than those same sites in the beta subunit. When alpha is combined with beta, the local structures around the alpha glycosylation sites are apparently altered so as to make the synthesis of triantennary chains less favorable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号