首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The antibiotic albomycin is highly effective against Streptococcus pneumoniae, with an MIC of 10 ng/ml. The reason for the high efficacy was studied by measuring the uptake of albomycin into S. pneumoniae. Albomycin was transported via the system that transports the ferric hydroxamates ferrichrome and ferrioxamine B. These two ferric hydroxamates antagonized the growth inhibition by albomycin and salmycin. Cross-inhibition of the structurally different ferric hydroxamates to both antibiotics can be explained by the similar iron coordination centers of the four compounds. [(55)Fe(3+)]ferrichrome and [(55)Fe(3+)]ferrioxamine B were taken up by the same transport system into S. pneumoniae. Mutants in the adjacent fhuD, fhuB, and fhuG genes were transport inactive and resistant to the antibiotics. Albomycin, ferrichrome, ferrioxamine B, and salmycin bound to the isolated FhuD protein and prevented degradation by proteinase K. The fhu locus consisting of the fhuD, fhuB, fhuG, and fhuC genes determines a predicted ABC transporter composed of the FhuD binding lipoprotein, the FhuB and FhuG transport proteins, and the FhuC ATPase. It is concluded that active transport of albomycin mediates the high antibiotic efficacy in S. pneumoniae.  相似文献   

2.
Due to its extreme insolubility, Fe3+ is not transported as a monoatomic ion. In microbes, iron is bound to low molecular weight carriers, designated siderophores. For uptake into cells of Escherichia coli Fe3+ siderophores have to be translocated across two membranes. Transport across the outer membrane is receptor-dependent and energy-coupled; transport across the cytoplasmic membrane seems to follow a periplasmic binding protein-dependent transport mechanism. In support of this notion we demonstrate specific binding of the Fe3+ hydroxamate compounds ferrichrome, aerobactin, and coprogen, which are transported via the Fhu system, to the periplasmic FhuD protein, and no binding of the transport inactive ferrichrome A, ferric citrate, and iron sulfate. About 10(4) ferrichrome molecules were bound to the FhuD protein of cells which overproduced plasmid-encoded FhuD. Binding depended on transport across the outer membrane mediated by the FhuA receptor and the TonB protein. Binding to FhuD was supported by the exclusive resistance of FhuD to proteinase K in the presence of the transport active hydroxamates. The overproduced precursor form of the FhuD protein was not protected by the Fe3+ hydroxamates indicating a conformation different to the mature form. The FhuD protein apparently serves as a periplasmic carrier for Fe3+ hydroxamates with widely different structures.  相似文献   

3.
Summary Transport of iron(III) hydroxamates across the inner membrane into the cytoplasm ofEscherichia coli is mediated by the FhuC, FhuD and FhuB proteins and displays characteristics typical of a periplasmic-binding-protein-dependent transport mechanism. In contrast to the highly specific receptor proteins in the outer membrane, at least six different siderophores of the hydroxamate type and the antibiotic albomycin are accepted as substrates. AfhuB mutant (deficient in transport of substrates across the inner membrane) which overproduced the periplasmic FhuD 30-kDa protein, bound [55Fe] iron(III) ferrichrome. Resistance of FhuD to proteinase K in the presence of ferrichrome, aerobactin, and coprogen indicated binding of these substrates to FhuD. FhuD displays significant similarity to the periplasmic FecB, FepB, and BtuE proteins. The extremely hydrophobic FhuB 70-kDa protein is located in the cytoplasmic membrane and consists of two apparently duplicated halves. The N-and C-terminal halves [FhuB(N) and FhuB(C)] were expressed separately infhuB mutants. Only combinations of FhuB(N) and FhuB(C) polypeptides restored sensitivity to albomycin and growth on iron hydroxamate as a sole iron source, indicating that both halves of FhuB were essential for substrate translocation and that they combined to form an active permease. In addition, a FhuB derivative with a large internal duplication of 271 amino acids was found to be transport-active, indicating that the extra portion did not disturb proper insertion of the active FhuB segments into the cytoplasmic membrane. A region of considerable similarity, present twice in FhuB, was identified near the C-terminus of 20 analyzed hydrophobic proteins of periplasmic-binding-protein-dependent systems. The FhuC 30 kDa protein, most likely involved in ATP binding, contains two domains representing consensus sequences among all peripheral cytoplasmic membrane proteins of these systems. Amino acid replacements in domain I (LysGlu and Gln) and domain II (AspAsn and Glu) resulted in a transport-deficient phenotype.  相似文献   

4.
Transport of iron(III) hydroxamates across the inner membrane ofEscherichia coli depends on a binding protein-dependent transport system composed of the FhuB,C and D proteins. The FhuD protein, which is synthesized as a precursor and exported through the cytoplasmic membrane, represents the periplasmic binding protein of the system, accepting as substrates a number of hydroxamate siderophores and the antibiotic albomycin. A FhuD derivative, carrying an N-terminal His-tag sequence instead of its signal sequence and therefore not exported through the inner membrane, was purified from the cytoplasm. Functional activity, comparable to that of wild-type FhuD, was demonstrated for this His-tag-FhuD in vitro by protease protection experiments in the presence of different substrates, and in vivo by reconstitution of iron transport in afhuD mutant strain. The experimental data demonstrate that the primary sequence of the portion corresponding to the mature FhuD contains all the information required for proper folding of the polypeptide chain into a functional solute-binding protein. Moreover, purification of modified periplasmic proteins from the cytosol may be a useful approach for recovery of many polypeptides which are normally exported across the inner membrane and can cause toxicity problems when overproduced.  相似文献   

5.
Staphylococcus aureus can utilize ferric hydroxamates as a source of iron under iron-restricted growth conditions. Proteins involved in this transport process are: FhuCBG, which encodes a traffic ATPase; FhuD2, a post-translationally modified lipoprotein that acts as a high affinity receptor at the cytoplasmic membrane for the efficient capture of ferric hydroxamates; and FhuD1, a protein with similarity to FhuD2. Gene duplication likely gave rise to fhuD1 and fhuD2. While the genomic locations of fhuCBG and fhuD2 in S. aureus strains are conserved, both the presence and the location of fhuD1 are variable. The apparent redundancy of FhuD1 led us to examine the role of this protein. We demonstrate that FhuD1 is expressed only under conditions of iron limitation through the regulatory activity of Fur. FhuD1 fractions with the cell membrane and binds hydroxamate siderophores but with lower affinity than FhuD2. Using small angle x-ray scattering, the solution structure of FhuD1 resembles that of FhuD2, and only a small conformational change is associated with ferrichrome binding. FhuD1, therefore, appears to be a receptor for ferric hydroxamates, like FhuD2. Our data to date suggest, however, that FhuD1 is redundant to FhuD2 and plays a minor role in hydroxamate transport. However, given the very real possibility that we have not yet identified the proper conditions where FhuD1 does provide an advantage over FhuD2, we anticipate that FhuD1 serves an enhanced role in the transport of untested hydroxamate siderophores and that it may play a prominent role during the growth of S. aureus in its natural environments.  相似文献   

6.
The Escherichia coli iron transport system via ferrichrome belongs to the group of ATP-dependent transporters that are widely distributed in prokaryotes and eukaryotes. Transport across the cytoplasmic membrane is mediated by three proteins: FhuD in the periplasm, FhuB in the cytoplasmic membrane and FhuC (ATPase) associated with the inside of the cytoplasmic membrane. Interaction of FhuD with FhuB was studied in vitro with biotinylated synthetic 10 residue and 20–24 residue peptides of FhuB by determining the activity of β-galactosidase linked to the peptides via streptavidin. Peptides identical in sequence to only one of the four periplasmic loops (loop 2), predicted by a transmembrane model of FhuB, and peptides representing a transmembrane segment and part of the adjacent cytoplasmic loop 7 of FhuB bound to FhuD. Decapeptides were transferred into the periplasm of cells through a FhuA deletion derivative that forms permanently open channels three times as large as the porins in the outer membrane. FhuB peptides that bound to FhuD inhibited ferrichrome transport, while peptides that did not bind to FhuD did not affect transport. These data led us to propose that the periplasmic FhuD interacts with a transmembrane region and the cytoplasmic segment 7 of FhuB. The transmembrane region may be part of a pore through which a portion of FhuD inserts into the cytoplasmic membrane during transport. The cytoplasmic segment 7 of FhuB contains the conserved amino acid sequence EAA…G (in FhuB DTA…G) found in ABC transporters, which is predicted to interact with the cytoplasmic FhuC ATPase. Triggering of ATP hydrolysis by substrate-loaded FhuD may occur by physical interaction between FhuD and FhuC, which bind close to each other on loop 7. Although FhuB consists of two homologous halves, FhuB(N) and FhuB(C), the sites identified for FhuD-mediated ferrichrome transport are asymmetrically arranged.  相似文献   

7.
For uptake of ferrichrome into bacterial cells, FhuA, a TonB-dependent outer membrane receptor of Escherichia coli, is required. The periplasmic protein FhuD binds and transfers ferrichrome to the cytoplasmic membrane-associated permease FhuB/C. We exploited phage display to map protein-protein interactions in the E. coli cell envelope that contribute to ferrichrome transport. By panning random phage libraries against TonB and against FhuD, we identified interaction surfaces on each of these two proteins. Their interactions were detected in vitro by dynamic light scattering and indicated a 1:1 TonB-FhuD complex. FhuD residue Thr-181, located within the siderophorebinding site and mapping to a predicted TonB-interaction surface, was mutated to cysteine. FhuD T181C was reacted with two thiol-specific fluorescent probes; addition of the siderophore ferricrocin quenched fluorescence emissions of these conjugates. Similarly, quenching of fluorescence from both probes confirmed binding of TonB and established an apparent KD of approximately 300 nM. Prior saturation of the siderophorebinding site of FhuD with ferricrocin did not alter affinity of TonB for FhuD. Binding, further characterized with surface plasmon resonance, indicated a higher affinity complex with KD values in the low nanomolar range. Addition of FhuD to a preformed TonB-FhuA complex resulted in formation of a ternary complex. These observations led us to propose a novel mechanism in which TonB acts as a scaffold, directing FhuD to regions within the periplasm where it is poised to accept and deliver siderophore.  相似文献   

8.
FhuF is a cytoplasmic 2Fe-2S protein of Escherichia coli loosely associated with the cytoplasmic membrane. E. coli fhuF mutants showed reduced growth on plates with ferrioxamine B as the sole iron source, although siderophore uptake was not defective in transport experiments. Removal of iron from coprogen, ferrichrome, and ferrioxamine B was significantly lower in fhuF mutants compared to the corresponding parental strains, which suggested that FhuF is involved in iron removal from these hydroxamate-type siderophores. A redox potential E(1/2) of -310 +/- 25 mV relative to the normal hydrogen electrode was determined for FhuF by EPR redox titration; this redox potential is sufficient to reduce the siderophores coprogen and ferrichrome. M?ssbauer spectra revealed that FhuF in its [Fe(2+)-Fe(3+)] state is also capable of direct reduction of ferrioxamine B-bound ferric iron, thus proving its reductase function. This is the first report on a bacterial siderophore-iron reductase which in vivo seems to be specific for a certain group of hydroxamates.  相似文献   

9.
The FhuA protein of Escherichia coli K-12 transports ferrichrome and the structurally related antibiotic albomycin across the outer membrane and serves as a receptor for the phages T1, T5, and φ80 and for colicin M. In this paper, we show that chimeric proteins consisting of the central part of FhuA and the N- and C-terminal parts of FhuE (coprogen receptor) or the N- and/or C-terminal parts of FoxA (ferrioxamine B receptor), function as ferrichrome transport proteins. Although the hybrid proteins contained the previously identified gating loop of FhuA, which is the principal binding site of the phages T5, T1, and φ80, only the hybrid protein consisting of the N-terminal third of FoxA and the C-terminal two thirds of FhuA conferred weak phage sensitivity to cells. Apparently, the gating loop is essential, but not sufficient for wild-type levels of ferrichrome transport and for phage sensitivity. The properties of FhuA-FoxA hybrids suggest different regions of the two receptors for ferric siderophore uptake.  相似文献   

10.
Summary Transport of iron(III) hydroxamates across the inner membrane into the cytoplasm of Escherichia coli cells is mediated by the FhuC, FhuD and FhuB proteins. We studied the extremely hydrophobic FhuB protein (70 kDa) which is located in the cytoplasmic membrane. The N- and C-terminal halves of the protein [FhuB(N) and FhuB(C)] show homology to each other and to the equivalent polypeptides involved in uptake of ferric dicitrate and of vitamin B2. Various plasmids carrying only one-half of the fhuB gene were expressed in fhuB mutants. Only combinations of FhuB(N) and FhuB(C) polypeptides restored sensitivity to albomycin and growth on iron hydroxamates as sole iron source; no activity was obtained with either half of FhuB alone. These results indicate that both halves of FhuB are essential for substrate translocation and that they combine to form an active permease when expressed separately. In addition, a FhuB derivative with a large internal duplication of 271 amino acids was found to be partially active in transport, indicating that the extra portion did not perurb proper insertion of the active FhuB segments into the cytoplasmic membrane.  相似文献   

11.
The Escherichia colifhu operon, composed of the fhuA, C, D, and B genes, is essential for the utilization of ferric siderophores of the hydroxamate type and for the uptake of the antibiotic albomycin. We have had difficulty studying the effects of missense mutations in individual plasmid-encoded transport genes because appropriate test strains were not found: all isolated chromosomal mutations in either one of the fhu genes (with a complete loss of function) negatively influenced the expression of other fhu genes in the operon. In order to analyze Fhu mutant proteins in a system free of polar effects, we constructed a plasmid-encoded gene cassette system by introducing unique restriction sites that allowed precise cloning of individual fhu genes. The fhu cassette operon expressed in a chromosomal fhu deletion mutant enabled us to evaluate the transport activity of mutated FhuA, FhuC, FhuD or FhuB derivatives. In addition, we found that transport across the outer membrane (via FhuA, TonB, ExbB, D) rather than transport across the cytoplasmic membrane (via FhuC, D, B) was rate limiting. The stoichiometry of the components involved in the uptake of iron(III) hydroxamates seems to be important for proper functioning. Received: 20 October 1997 / Accepted: 22 December 1997  相似文献   

12.
13.
Staphylococcus aureus was shown to transport iron complexed to a variety of hydroxamate type siderophores, including ferrichrome, aerobactin, and desferrioxamine. An S. aureus mutant defective in the ability to transport ferric hydroxamate complexes was isolated from a Tn917-LTV1 transposon insertion library after selection on iron-limited media containing aerobactin and streptonigrin. Chromosomal DNA flanking the Tn917-LTV1 insertion was identified by sequencing of chromosomal DNA isolated from the mutant. This information localized the transposon insertion to a gene whose predicted product shares significant similarity with FhuG of Bacillus subtilis. DNA sequence information was then used to clone a larger fragment of DNA surrounding the fhuG gene, and this resulted in the identification of an operon of three genes, fhuCBG, all of which show significant similarities to ferric hydroxamate uptake (fhu) genes in B. subtilis. FhuB and FhuG are highly hydrophobic, suggesting that they are embedded within the cytoplasmic membrane, while FhuC shares significant homology with ATP-binding proteins. Given this, the S. aureus FhuCBG proteins were predicted to be part of a binding protein-dependent transport system for ferric hydroxamates. Exogenous iron levels were shown to regulate ferric hydroxamate uptake in S. aureus. This regulation is attributable to Fur in S. aureus because a strain containing an insertionally inactivated fur gene showed maximal levels of ferric hydroxamate uptake even when the cells were grown under iron-replete conditions. By using the Fur titration assay, it was shown that the Fur box sequences upstream of fhuCBG are recognized by the Escherichia coli Fur protein.  相似文献   

14.
FhuD is a periplasmic binding protein (PBP) that, under iron-limiting conditions, transports various hydroxamate-type siderophores from the outer membrane receptor (FhuA) to the inner membrane ATP-binding cassette transporter (FhuBC). Unlike many other PBPs, FhuD possesses two independently folded domains that are connected by an α-helix rather than two or three central β-strands. Crystal structures of FhuD with and without bound gallichrome have provided some insight into the mechanism of siderophore binding as well as suggested a potential mechanism for FhuD binding to FhuB. Since the α-helix connecting the two domains imposes greater rigidity on the structure relative to the β-strands in other ‘classical’ PBPs, these structures reveal no large conformational change upon binding a hydroxamate-type siderophore. Therefore, it is difficult to explain how the inner membrane transporter FhuB can distinguish between ferrichrome-bound and ferrichrome-free FhuD. In the current study, we have employed a 30 ns molecular dynamics simulation of FhuD with its bound siderophore removed to explore the dynamic behavior of FhuD in the substrate-free state. The MD simulation suggests that FhuD is somewhat dynamic with a C-terminal domain closure of 6° upon release of its siderophore. This relatively large motion suggests differences that would allow FhuB to distinguish between ferrichrome-bound and ferrichrome-free FhuD.  相似文献   

15.
Siderophore-binding proteins play an essential role in the uptake of iron in many Gram-positive and Gram-negative bacteria. FhuD is an ATP-binding cassette-type (ABC-type) binding protein involved in the uptake of hydroxamate-type siderophores in Escherichia coli. Structures of FhuD complexed with the antibiotic albomycin, the fungal siderophore coprogen and the drug Desferal have been determined at high resolution by x-ray crystallography. FhuD has an unusual bilobal structure for a periplasmic ligand binding protein, with two mixed beta/alpha domains connected by a long alpha-helix. The binding site for hydroxamate-type ligands is composed of a shallow pocket that lies between these two domains. Recognition of siderophores primarily occurs through interactions between the iron-hydroxamate centers of each siderophore and the side chains of several key residues in the binding pocket. Rearrangements of side chains within the binding pocket accommodate the unique structural features of each siderophore. The backbones of the siderophores are not involved in any direct interactions with the protein, demonstrating how siderophores with considerable chemical and structural diversity can be bound by FhuD. For albomycin, which consists of an antibiotic group attached to a hydroxamate siderophore, electron density for the antibiotic portion was not observed. Therefore, this study provides a basis for the rational design of novel bacteriostatic agents, in the form of siderophore-antibiotic conjugates that can act as "Trojan horses," using the hydroxamate-type siderophore uptake system to actively deliver antibiotics directly into targeted pathogens.  相似文献   

16.
Bacillus subtilis was shown to utilize three types of hydroxamate siderophores, ferrichromes, ferrioxamines and shizokinen, each of which is taken up by different transport systems. Mutants deficient in the uptake of ferrichrome and/or ferrioxamine B were isolated. The gene fhuD, which was able to complement a mutant defective in ferrichrome uptake, was cloned. The deduced sequence of FhuD showed low but significant homology to the binding proteins FepB, FecB and FhuD of Escherichia coli, which are all components of binding protein-dependent, ferric siderophore transport systems. The first 23 amino acids of FhuD of B. subtilis possessed all characteristics of a lipoprotein signal sequence. The processing of FhuD in E. coli was inhibited by globomycin. Inhibition by globomycin indicated a lipid modification at the N-terminal cysteine in E. coli. It is highly likely that this step may also take place in B. subtilis. As in other binding protein-dependent transport systems of Gram-positive organisms it is proposed that the lack of a periplasm is compensated for by the lipid through which the binding protein is anchored to the cytoplasmic membrane.  相似文献   

17.
The photoreactivep-azidobenzoyl analog of ferrioxamine B was used to show that ferrioxamine-B-mediated iron transport is separate and distinct from coprogen-mediated iron transport inEscherichia coli. Photolysis of this analog inhibited uptake of [59Fe]ferrioxamine B but not [59Fe]coprogen or [59Fe]ferrichrome. Conversely, photolysis of thep-azidobenzoyl analog of coprogen B inhibited uptake of [59Fe]coprogen but not [59Fe]ferrioxamine B or [59Fe]ferrichrome. Photolabeling of outer membranes withp-azidobenzoyl-[59Fe]ferrioxamine B resulted in the labeling of two iron-regulated peptides with molecular masses of about 66 and 26 kDa. Expression of these peptides was increased when ferrioxamine B was the sole iron source. Both peptides were present in outer membrane preparations of thefhuF mutant H1717, but the 66 kDa peptide was not inducible. These results are evidence for an outer membrane receptor inE. coli unique for linear ferrioxamines.  相似文献   

18.
《Phytochemistry》1987,26(5):1317-1320
Under iron-deficient conditions Stemphylium botryosum f. sp. lycopersici produces three major siderophores; dimerum acid, coprogen B and an unidentified monohydroxamate siderophore designated as A. The system of siderophores mediating uptake of iron was characterized. It exhibits active transport, saturation kinetics and an optimum at pH 6 and 30°. The rate of iron uptake via dimerum acid and coprogen B was four times higher than siderophore A. S. botryosum was capable of taking up iron from hydroxamate siderophores produced by other fungi, e.g. ferrichrome, fusigen, rhodotorulic acid but not ferrioxamine B. Double labelling experiments suggest that ferric coprogen B accumulates in mycelial cells as an intact chelate.  相似文献   

19.
Iron(III) hydroxamate transport across the cytoplasmic membrane is catalyzed by the very hydrophobic FhuB protein and the membrane-associated FhuC protein, which contains typical ATP-binding domains. Interaction between the two proteins was demonstrated by immunoelectron microscopy with anti-FhuC antibodies, which showed FhuB-mediated association of FhuC with the cytoplasmic membrane. In addition, inactive FhuC derivatives carrying single amino acid replacements in the ATP-binding domains suppressed wild-type FhuC transport activity, which arose either from displacement of active FhuC from FhuB by the mutated FhuC derivatives or from the formation of mixed inactive FhuC multimers between wild-type and mutated FhuC proteins. Inactive FhuC derivatives containing internal deletions and insertions showed no phenotypic suppression, indicating conformational alterations that rendered the FhuC derivatives unable to displace wild-type FhuC. It is concluded that the physical interaction between FhuC and FhuB implies a coordinate activity of both proteins in the transport of iron(III) hydroxamates through the cytoplasmic membrane.  相似文献   

20.
The features that govern the interaction of ligand binding proteins with membrane permeases of cognate ABC transporters are largely unknown. Using sequence alignments and structural modeling based on the structure of the Escherichia coli BtuCD vitamin B12 transporter, we identified six conserved basic residues in the permease, comprised of FhuB and FhuG proteins, in the ferrichrome transporter of Staphylococcus aureus. Using alanine-scanning mutagenesis we demonstrate that two of these residues, FhuB Arg-71 and FhuG Arg-61, play a more dominant role in transporter function than FhuB Arg-74 and Arg-311, and FhuG Arg-64 and Lys-306. Moreover, we show that at positions 71 and 61 in FhuB and FhuG, respectively, arginine cannot be substituted for lysine without loss of transporter function. Previously, our laboratory demonstrated the importance of conserved acidic residues in the ferrichrome binding protein, FhuD2. Taken together, these results support the hypothesis that Glu-Arg salt bridges are critical for the interaction of the ligand binding protein with the transmembrane domains FhuB and FhuG. This hypothesis was further studied by “charge swapping” experiments whereby we constructed a S. aureus strain expressing FhuD2 with conserved residues Glu-97 and Glu-231 replaced by Arg and FhuB and FhuG with conserved basic residues Arg-71 and Arg-61, respectively, replaced by Glu. A strain containing this combination of substitutions restored partial function to the ferrichrome transporter. The results provide a direct demonstration of the functional importance of conserved basic residues on the extracellular surface of the ferrichrome permease in the Gram-positive bacterium S. aureus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号