首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A monoclonal antibody (2B3) directed against the calmodulin-binding (Ca2+ + Mg2+)-dependent ATPase from pig stomach smooth muscle was prepared. This antibody reacts with a 130,000-Mr protein that co-migrates on SDS/polyacrylamide-gel electrophoresis with the calmodulin-binding (Ca2+ + Mg2+)-ATPase purified from smooth muscle by calmodulin affinity chromatography. The antibody causes partial inhibition of the (Ca2+ + Mg2+)-ATPase activity in plasma membranes from pig stomach smooth muscle, in pig erythrocytes and human erythrocytes. It appears to be directed against a specific functionally important site of the plasmalemmal Ca2+-transport ATPase and acts as a competitive inhibitor of ATP binding. Binding of the antibody does not change the Km of the ATPase for Ca2+ and its inhibitory effect is not altered by the presence of calmodulin. No inhibition of (Ca2+ + Mg2+)-ATPase activity or of the oxalate-stimulated Ca2+ uptake was observed in a pig smooth-muscle vesicle preparation enriched in endoplasmic reticulum. These results confirm the existence in smooth muscle of two different types of Ca2+-transport ATPase: a calmodulin-binding (Ca2+ + Mg2+)-ATPase located in the plasma membrane and a second one confined to the endoplasmic reticulum.  相似文献   

2.
Antibodies directed against the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase [(Ca2+ + Mg2+)-dependent ATPase] from pig erythrocytes and from smooth muscle of pig stomach (antral part) were raised in rabbits. Both the IgGs against the erythrocyte (Ca2+ + Mg2+)-ATPase and against the smooth-muscle (Ca2+ + Mg2+)-ATPase inhibited the activity of the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase from smooth muscle. Up to 85% of the total (Ca2+ + Mg2+)-ATPase activity in a preparation of KCl-extracted smooth-muscle membranes was inhibited by these antibodies. The (Ca2+ + Mg2+)-ATPase activity and the Ca2+ uptake in a plasma-membrane-enriched fraction from this smooth muscle were inhibited to the same extent, whereas in an endoplasmic-reticulum-enriched membrane fraction the (Ca2+ + Mg2+)-ATPase activity was inhibited by only 25% and no effect was observed on the oxalate-stimulated Ca2+ uptake. This supports the hypothesis that, in pig stomach smooth muscle, two separate types of Ca2+-transport ATPase exist: a calmodulin-binding ATPase located in the plasma membrane and a calmodulin-independent one present in the endoplasmic reticulum. The antibodies did not affect the stimulation of the (Ca2+ + Mg2+)-ATPase activity by calmodulin.  相似文献   

3.
Fluorescence energy transfer has been used to study the interaction of various phospholipids with the erythrocyte (Ca2+ + Mg2+)-ATPase. The fluorescence energy transfer between tryptophan residues of the (Ca2+ + Mg2+)-ATPase purified from erythrocytes and pyrene-labelled analogues of phosphatidylcholine (Pyr-PC), phosphatidylinositol (Pyr-PI), phosphatidylinositol 4-phosphate (Pyr-PIP), phosphatidylinositol 4,5-bisphosphate (Pyr-PIP2), phosphatidylglycerol (Pyr-PG) and phosphatidic acid (Pyr-PA) was measured. A positive correlation was found between the number of negative charges on the phospholipids (PIP2 greater than PIP greater than PA greater than PI = PG greater than PC) and the potency of their pyrene-labelled analogues to act as quantum acceptors in fluorescence energy transfer from the tryptophan residues of the (Ca2+ + Mg2+)-ATPase. This is the first time that a physical interaction between PIP/PIP2 and an intrinsic membrane protein has been demonstrated. The dependence of the energy transfer on the number of negative charges of the phospholipids closely resembles the previously demonstrated charge dependence of the enzymatic activity of the (Ca2+ + Mg2+)-ATPase (Missiaen, L., Raeymaekers, L., Wuytack, F., Vrolix, M., Desmet, H. and Casteels, R. (1989) Biochem. J. 263, 687-694). It is concluded that the stimulation of the (Ca2+ + Mg2+)-ATPase activity by negatively charged phospholipids is based on a binding of these lipids to the (Ca2+ + Mg2+)-ATPase and that the negative charges are a major modulatory factor for this interaction.  相似文献   

4.
A plasma membrane Ca(2+)-pump ATPase preparation purified from porcine aorta was incubated with cGMP-dependent protein kinase (G-kinase) under the conditions under which dose-dependent stimulation of the enzyme by G-kinase was observed. Several proteins were phosphorylated, but two isoforms of plasma membrane Ca(2+)-pump ATPase with molecular masses of 135- and 145-kDa were not phosphorylated. The protein that was phosphorylated by G-kinase and identified in our previous study as the 135-kDa isoform of Ca(2+)-pump ATPase, on the basis of its almost identical mobility on SDS-PAGE, was found to be another protein with a molecular mass of 138 kDa. Fractionation of the enzyme preparation after incubation with G-kinase by a newly developed calmodulin affinity chromatographic method resulted in the separation of all the G-kinase substrates from the two isoforms of plasma membrane Ca(2+)-pump ATPase. These results suggest that the direct phosphorylation of the Ca(2+)-pump ATPase does not occur in association with the stimulation of the plasma membrane Ca(2+)-pump ATPase by G-kinase.  相似文献   

5.
The plasma membrane Ca2+ pump ATPase from porcine aorta was isolated by the calmodulin affinity chromatographic method of Kosk-Kosicka et al. (Kosk-Kosicka, D., Scaillet, S., and Inesi, G. (1986) J. Biol. Chem. 261, 3333-3338). Its activity was restored by adding either phosphatidylcholine or phosphatidylserine. Cyclic GMP-dependent protein kinase (G-kinase) stimulated the enzyme in a concentration-dependent manner. However, phosphatidylinositol kinase (PI-kinase) activity was not detected in the enzyme preparation, and the presence of phosphatidylinositol was not necessary for stimulation by G-kinase. Furthermore, adenosine, a potent PI-kinase inhibitor, did not affect the stimulation. The enzyme preparation contained three major proteins, with molecular masses of 240, 145, and 135 kDa, as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The 240- and 135-kDa proteins were phosphorylated in association with the stimulation by G-kinase, but only the phosphorylation of the 240-kDa protein was dependent on the G-kinase concentration. A purified enzyme without the 240-kDa protein, prepared by our previous method (Imai, S., Yoshida, Y., and Sun, H.-T. (1990) J. Biochem. (Tokyo) 107, 755-761), was not activated by G-kinase. Immunoblotting with an antibody against the human erythrocyte Ca2+ pump revealed that the 135-kDa protein corresponded to one of the isoforms of the plasma membrane Ca2+ pump. These results suggest that the phosphorylation of the 240-kDa protein is responsible for stimulation of the plasma membrane Ca2+ pump ATPase by G-kinase.  相似文献   

6.
A plasmalemmal enriched membrane fraction, prepared from pig stomach smooth-muscle, contains a calmodulin-stimulated (Ca2+ + Mg2+)-ATPase and presents an ATP-dependent 45Ca-uptake. If these smooth-muscle strips are preincubated with 10(-3) M-carbachol, this Ca2+ + Mg2+)-ATPase and the 45Ca-uptake are reduced by 21.4% and 13.5%, respectively, as compared to controls. This inhibitory effect of carbachol can be completely blocked by atropine. Carbachol does neither affect the passive permeability of the microsomes to 45Ca, nor the passive 45Ca-binding to the vesicles. Neither does it exert an effect on the proportion of closed inside-out plasma-membrane vesicles. Likewise, preincubation of rat myometrium with 90 nM-oxytocin induces a 20.4% inhibition of the ATP-dependent 45Ca-uptake, without having an effect on the passive 45Ca-binding, the permeability to 45Ca or the sideness of the vesicles. From these results, it is concluded that some agonists as carbachol and oxytocin induce a decrease in the activity of the plasmalemmal Ca2+-pump.  相似文献   

7.
The only known cellular action of AlF4- is to stimulate the G-proteins. The aim of the present work is to demonstrate that AlF4- also inhibits 'P'-type cation-transport ATPases. NaF plus AlCl3 completely and reversibly inhibits the activity of the purified (Na+ + K+)-ATPase (Na+- and K+-activated ATPase) and of the purified plasmalemmal (Ca2+ + Mg2+)-ATPase (Ca2+-stimulated and Mg2+-dependent ATPase). It partially inhibits the activity of the sarcoplasmic-reticulum (Ca2+ + Mg2+)-ATPase, whereas it does not affect the mitochondrial H+-transporting ATPase. The inhibitory substances are neither F- nor Al3+ but rather fluoroaluminate complexes. Because AlF4- still inhibits the ATPase in the presence of guanosine 5'-[beta-thio]diphosphate, and because guanosine 5'-[beta gamma-imido]triphosphate does not inhibit the ATPase, it is unlikely that the inhibition could be due to the activation of an unknown G-protein. The time course of inhibition and the concentrations of NaF and AlCl3 required for this inhibition differ for the different ATPases. AlF4- inhibits the (Na+ + K+)-ATPase and the plasmalemmal (Ca2+ + Mg2+)-ATPase noncompetitively with respect to ATP and to their respective cationic substrates, Na+ and Ca2+. AlF4- probably binds to the phosphate-binding site of the ATPase, as the Ki for inhibition of the (Na+ + K+)-ATPase and of the plasmalemmal (Ca2+ + Mg2+)-ATPase is shifted in the presence of respectively 5 and 50 mM-Pi to higher concentrations of NaF. Moreover, AlF4- inhibits the K+-activated p-nitrophenylphosphatase of the (Na+ + K+)-ATPase competitively with respect to p-nitrophenyl phosphate. This AlF4- -induced inhibition of 'P'-type cation-transport ATPases warns us against explaining all the effects of AlF4- on intact cells by an activation of G-proteins.  相似文献   

8.
1. A soluble activator of membrane (Ca2+ plus Mg2)-ATPase is present in hemolysates of the newborn calf and cow, the new born and adult pig as well as human erythrocytes. 2. The activator is also found in reticulocytes of the adult pig. 3. The activator obtained from any of the above species is capable of stimulating the membrane (Ca2+ plus Mg2+)-ATPases of the other species, regardless of the age of the animals. 4. The results obtained from density fractionation of human erythrocytes revealed that the soluble factor has little simulatory effect on membranes of young erythrocytes from which it is derived but caused a marked stimulation on (Ca2+ plus Mg2+)-ATPase activity of the intermediate aged and old erythrocyte membranes. 5. The above observations support the following conclusions: (a) the extremely low levels of (Ca2+ plus Mg2+)-ATPase in cow erythrocytes is not due to the lack of a (Ca2+ plus Mg2+)-ATPase activator; (b) the distribution of (Ca2+ plus Mg2+)-atpase activator is not species specific and the differences in the level of membrane (Ca2+ plus Mg2+)-ATPase activity in various species of cells is an inherent property of that particular membrane (c) the (Ca2+ plus Mg2+)-ATPase activator is present at least from the time of reticulocyte formation and remain during tthe life span of the erythrocyte.  相似文献   

9.
The kinetics and regulatory properties of phosphatidylinositol (PI) kinase were studied in chromaffin granule ghosts isolated from the bovine adrenal medulla. Phosphatidylinositol 4-phosphate (PIP) was the major 32P-labelled phospholipid formed when the isolated membranes were phosphorylated by [gamma-32P]ATP. The PI kinase activity was rather independent of pH, but highly dependent on Mg2+ with a maximal stimulation at 60 mM Mg2+. By contrast, KCl and NaCl had a slight inhibitory effect. The Km value for MgATP was 44 and 62 microM in the presence of 1 and 20 mM MgCl2, respectively. The PI kinase was almost fully and reversibly inhibited by free Ca2+ (calmodulin-independent) in the nanomolar and low micromolar range, depending on the concentration of Mg2+. The inhibition was not dependent on Ca2+-stimulated protein phosphorylation, and it could not be explained by a dephosphorylation of PIP.  相似文献   

10.
Purified Ca(2+)-stimulated, Mg(2+)-dependent ATPase (Ca(2+)-ATPase) from human erythrocytes was phosphorylated with a stoichiometry of about 1 mol of phosphate/mol of ATPase at both threonine and serine residues by purified rat brain type III protein kinase C. In the presence of calmodulin, the phosphorylation was markedly reduced. Labeled phosphate from [gamma-32P]ATP was retained on an 86-kDa calmodulin-binding tryptic fragment of Ca(2+)-ATPase but not on 82- and 77-kDa non-calmodulin-binding fragments. Similarly, fragmentation of the phosphorylated Ca(2+)-ATPase by calpain I revealed that calmodulin-binding fragments (127 and 125 kDa) retained phosphate label whereas a non-calmodulin-binding fragment (124 kDa) did not. The calmodulin-binding domain, located about 12 kDa from the carboxyl terminus of the Ca(2+)-ATPase, was thus located as a site of protein kinase C phosphorylation. A synthetic peptide corresponding to a segment of the calmodulin-binding domain (H2 N-R-G-L-N-R-I-Q-T-Q-I-K-V-V-N-COOH) was indeed phosphorylated at the single threonine residue within this sequence. The additional serine phosphorylation site was carboxyl terminal to the calmodulin domain. Phosphorylation by purified type III protein kinase C (canine heart) antagonized the calmodulin activation of the Ca(2+)-ATPase, particularly at lower Ca2+ concentrations (0.2-1.0 microM). By contrast, a purified but unresolved protein kinase C isoenzyme mixture from rat brain stimulated the activity of Ca(2+)-ATPase prepared in asolectin, but not glycerol, by more than 2-fold in the presence of the ionophore A23187, without increasing its Ca2+ sensitivity. The results clearly indicate that human erythrocyte Ca(2+)-ATPase is a substrate of protein kinase C, but the effect of phosphorylation on the activity of the enzyme depends on the isoenzyme form of protein kinase C used and on the lipid associated with the Ca(2+)-ATPase.  相似文献   

11.
Purified protein kinase (cyclic AMP-dependent) inhibitor (PKI) from bovine heart stimulated Ca(2+)+Mg(2+)-stimulated ATPase activity in human erythrocytes, the stimulation being maximal at 2mug/0.6ml. By contrast, PKI from rabbit skeletal muscle had no effect. Bovine heart PKI stimulated Ca(2+)+Mg(2+)-stimulated ATPase by increasing the Ca(2+)-sensitivity of the enzyme. This contrasted with the stimulation by calmodulin, which increased the maximum velocity of the Ca(2+)+Mg(2+)-dependent ATPase in addition to its effect on the Ca(2+)-sensitivity. Both membrane-bound and Triton X-100-solubilized Ca(2+)+Mg(2+)-stimulated ATPase activities were stimulated by PKI, indicating that the stimulation did not require an intact membrane structure. At low Ca(2+) concentration the stimulation by PKI and saturating concentrations of calmodulin were additive, suggesting that the two effectors acted by distinct mechanisms. Although 5mum-cyclic AMP inhibited Ca(2+)+Mg(2+)-stimulated ATPase activity by about 20% when measured at low ATP concentrations, probably by stimulation of phosphorylation by an endogenous protein kinase, the stimulation by PKI (about 100%) was not solely due to its antagonism of the protein kinase. This interpretation was supported by a number of observations. First, modification of arginine residues of bovine heart PKI abolished its inhibition of cyclic AMP-dependent protein kinase, but had no effect on the stimulation of Ca(2+)+Mg(2+)-stimulated ATPase. Secondly, trifluoperazine (20mum) antagonized the stimulation of Ca(2+)+Mg(2+)-dependent ATPase by PKI, similarly to its antagonism of calmodulin stimulation, but it did not affect the inhibition of protein kinase by PKI. We conclude that different mechanisms are involved in the inhibition of protein kinase and the stimulation of Ca(2+)+Mg(2+)-stimulated ATPase by PKI.  相似文献   

12.
The effects of cardiotoxin on the ATPase activity and Ca2+-transport of guinea pig erythrocyte and rabbit muscle sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase (E.C.3.6.1.3) were investigated. Erythrocyte (Ca2+ + Mg2+)-ATPase was inhibited by cardiotoxin in a time- and dose-dependent fashion and inhibition appears to be irreversible. Micromolar calcium prevented this inhibitory effect. Specificity for (Ca2+ + Mg2+)-ATPase inhibition by cardiotoxin was indicated since a homologous neurotoxin had no effect. Cardiotoxin did not affect (Ca2+ + Mg2+)-ATPase activity from sarcoplasmic reticulum, but Ca2+-transport was 50% inhibited. This inhibition was not due to an increased Ca2+-efflux and could be the result of an intramolecular uncoupling of ATPase activity from Ca2+-transport. Inhibition of Ca2+-transport by cardiotoxin could not be prevented by millimolar concentrations of Ca2+. It is suggested that the biological effects of cardiotoxin could be a consequence of inhibition of plasma membrane (Ca2+ + Mg2+)-ATPases.  相似文献   

13.
Activation of protein kinase C in erythrocytes by 4-beta-phorbol 12-myristate 13-acetate (PMA) resulted in a parallel stimulation (time course and dose response) of the phosphorylation of both membrane proteins (heterodimers of 107 kDa and 97 kDa, protein 4.1 and 4.9, respectively) and of phosphatidylinositol 4-phosphate (PIP) and, to a lesser extent, of phosphatidylinositol 4,5-bisphosphate (PIP2). Evidence that the effect on lipid was mediated by protein kinase C activation and not by a direct action of PMA was provided by (1) the lack of effect of a phorbol ester that did not activate protein kinase C or of PMA addition on isolated membranes from control erythrocytes, (2) the reversal of the effect in the presence of protein kinase C inhibitors (alpha-cobrotoxin, H-7 (1-(5-isoquinolinesulfonyl)-2-methylpiperazine) or trifluoperazine). PMA treatment did not change the specific activity of ATP or the content of PIP2, but increased the content of PIP and decreased that of PI, indicating that the phosphorylation or dephosphorylation reactions linking PI and PIP were the target for the action of PMA. PMA treatment had no effect on the Ca2+-dependent PIP/PIP2 phospholipase C activity measured in isolated membranes. Mezerein, another protein kinase activator, had similar effects on both protein and lipid phosphorylation, when added with alpha-cobrotoxin. Activation of protein kinase A by cAMP also produced increases in phosphorylation, although quantitatively different from those induced by protein kinase C, in proteins and PIP. Simultaneous addition of PMA and cAMP at maximal doses resulted in only a partially additive effect on PIP labelling. These results show that inositol lipid turnover can be modulated by a protein kinase C and protein kinase A-dependent process involving the phosphorylation of a common protein. This could be PI kinase or PIP phosphatase or another protein regulating the activity of these enzymes.  相似文献   

14.
Basolateral and brush-border vesicles from pig kidney cortex were prepared by differential centrifugation followed by free-flow electrophoresis. A low-affinity (Ca2+ or Mg2+)-ATPase which co-migrated with alkaline phosphatase was demonstrated. A considerable enrichment (by a factor of 10) of this ATPase activity was only observed in the brush-border and not in the basolateral membrane fractions. Maximal stimulation of this brush-border enzyme by Ca2+ was achieved when the ratio of Ca2+ to ATP reached a value between 1 and 2. The enzyme was not inhibited by excess Ca2+ or Mg2+. A kinetic analysis of the azide-insensitive (Ca2+ or Mg2+)-ATPase gave a Km of 0.43 mM for Ca-ATP and of 0.14 mM for Mg-ATP.  相似文献   

15.
The specific activity of the Mg2+-ATPase and the (Ca2+ + Mg2+)-ATPase has been measured in a microsomal fraction from pig antral smooth muscle with the phosphate-release assay and the NADH-coupled enzyme assay, and the release of inorganic phosphate as a function of time is compared with the concomitant production of ADP. Both assays are found to overestimate the true Mg2+-ATPase activity. The adenylate kinase inhibitor P1,P5-di(adenosine-5'-)pentaphosphate (Ap5A) reduces the specific activity of the Mg2+-ATPase measured in the NADH-coupled enzyme assay to about half of its original value; however, it does not affect the specific activity of the Mg2+-ATPase in the Pi-release assay. The considerable overestimation of the Mg2+-ATPase activity in the NADH-coupled enzyme assay results from a combined action of an ATP pyrophosphatase (ATP in equilibrium AMP + PPi) and adenylate kinase activity contaminating the microsomes. The adenylate kinase activity in the microsomes catalyses the conversion of AMP formed by the ATP pyrophosphatase together with ATP into two ADP's. Also the phosphate-release assay is prone to an overestimation artefact because an inorganic pyrophosphatase will degrade the pyrophosphate and thus lead to additional Pi-production. Measurements of AMP and NAD+ production by HPLC confirmed our proposed reaction scheme. The same (Ca2+ + Mg2+)-ATPase activity is found in both assays, because the (Ca2+ + Mg2+)-ATPase activity is calculated from the difference in ATPase activity in the presence and absence of Ca2+, so that as a consequence the interfering activities are automatically subtracted.  相似文献   

16.
The correlation between the ATP-dependent Ca2+ binding and the phosphorylation of the membranes from swine and bovine erythrocytes was studied. The Ca2+ binding was measured by using 45CaCl2, and the phosphorylation by [gamma-32P]ATP was studied with the technique of SDS polyacrylamide gel electrophoresis. 200 mM NaCl and KCl markedly repressed the Ca2+ binding of swine erythrocyte membranes. The radioactivity of 32P-labelled membranes was revealed mainly in 250,000 dalton protein and a lipid fraction. NaCl and KCl also repressed the phosphorylation of the lipid which was identified as triphosphoinositide by paper chromatography. The membranes prepared from trypsin-digested erythrocytes completely retained the Ca2+-binding activity, and lost 30% of (Ca2+ + Mg2+)-ATPase activity. The Ca2+-binding and ATPase activity of isolated membranes decreased to 55% and to 0%, respectively, by tryptic digestion. Neither the Ca2+ binding nor the phosphorylation of polyphosphoinositides were detected in bovine erythrocyte membranes. These results suggest that the formation of triphosphoinositide rather than the (C2+ + Mg2+)-ATPase of membranes is linked to the ATP-dependent Ca2+ binding of erythrocyte membranes.  相似文献   

17.
3H]Inositol incorporation into phosphoinositides of pig reticulocytes   总被引:1,自引:0,他引:1  
Phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) of pig reticulocytes were extensively labelled when these cells were incubated with [3H]inositol. In marked contrast, a total lack of [3H]inositol labelling of phosphoinositides was observed in mature erythrocytes. Phosphoinositides of both reticulocytes and mature erythrocytes were labelled with 32P but the labelling in reticulocytes was several-fold higher than in mature erythrocytes. Inclusion of Ca2+ (2 mM)+ ionophore A23187 (2 micrograms/ml) during the labelling experiments substantially reduced the radioactivity incorporation into phosphoinositides of reticulocytes. When [3H]inositol-prelabelled reticulocytes were treated with Ca2+ + A23187 the levels of radioactive PI and PIP2 did not change significantly. However, the PIP pool exhibited a remarkable sensitivity to Ca2+ as shown by a 75% increase in its radioactivity over the control. The ability to incorporate [3H]inositol into phosphoinositides remains transitorily intact in the reticulocyte stage. Thus, pig reticulocytes offer a suitable model in which to explore the physiological role of phosphoinositides in relation to cellular maturation process.  相似文献   

18.
Studies were undertaken to determine whether factors which affect insulin secretion may exert their effects by altering the activity of an islet-cell plasma membrane Ca2+ extrusion pump. The insulin secretagogue, D-glucose, and a variety of phosphorylated hexoses, glucose 6-P, glucose 1,6-P, fructose 6-P, and fructose 2,6-P, were evaluated for their effect on an islet-cell plasma membrane (Ca2+ + Mg2+)-ATPase and were found to be ineffective in altering enzyme activity. D-Glucose also did not alter the rate of ATP-dependent Ca2+ uptake into plasma membrane vesicles. Similarly, cAMP, the catalytic subunit of cAMP-dependent protein kinase, arachidonic acid, or prostaglandin E2 did not affect either the plasma membrane (Ca2+ + Mg2+)-ATPase or the rate of ATP-dependent Ca2+ uptake into plasma membrane vesicles. Whereas previous studies have suggested that D-glucose and/or cAMP may inhibit ATPase activities in islets, these results indicate that the agents, i.e., D-glucose and cAMP, which stimulate and/or potentiate insulin secretion from the islet cell, do not modify Ca2+ fluxes by directly regulating the islet-cell plasma membrane (Ca2+ + Mg2+)-ATPase. In contrast, the acidic phospholipids, phosphatidic acid and phosphatidylserine, stimulated the enzyme activity in a concentration-dependent manner whereas phosphatidylcholine had only a minimal effect. The diacylglycerol, dilinolein, stimulated the (Ca2+ + Mg2+)-ATPase activity in the presence of phosphatidylserine, but not in the absence of phospholipids. These effects were independent of phospholipid-stimulated protein phosphorylation in the islet-cell plasma membrane under the conditions of the ATPase assay.  相似文献   

19.
Plasma membrane enriched fraction isolated from the fundus smooth muscle of rat stomach displayed Ca2+-stimulated ATPase activity in the absence of Mg2+. The Ca2+ dependence of such an ATPase activity can be resolved into two hyperbolic components with a high affinity (Km = 0.4 microM) and a low affinity (Km = 0.6 mM) for Ca2+. Distribution of these high-affinity and low-affinity Ca2+-ATPase activities parallels those of several plasma membrane marker enzyme activities but not those of endoplasmic reticulum and mitochondrial membrane marker enzyme activities. Mg2+ also stimulates the ATPase in the absence of Ca2+. Unlike the Mg2+-ATPase and low-affinity Ca2+-ATPase, the plasmalemmal high-affinity Ca2+-ATPase is not sensitive to the inhibitory effect of sodium azide or Triton X-100 treatment. The high-affinity Ca2+-ATPase is noncompetitively inhibited by Mg2+ with respect to Ca2+ stimulation. Such an inhibitory effect of Mg2+ is potentiated by Triton X-100 treatment of the membrane fraction. Calmodulin has little effect on the high-affinity Ca2+-ATPase activity of the plasma membrane enriched fraction with or without EDTA pretreatment. Findings of this novel, Mg2+-independent, high-affinity Ca2+-ATPase activity in the rat stomach smooth muscle plasma membrane are discussed with those of Mg2+-dependent, high-affinity Ca2+-ATPase activities previously reported in other smooth muscle plasma membrane preparations in relation to the plasma membrane Ca2+-pump.  相似文献   

20.
To elucidate the regulation mechanisms for sarcolemmal Ca2(+)-pumping ATPase of vascular smooth muscle, the preparation of the membrane fraction of porcine aorta with which the enzyme activity could be analyzed was attempted. A Ca2(+)-activated, Mg2(+)-dependent ATPase [Ca2(+)+Mg2+)-ATPase) activity with high affinity for Ca2+ (Km = 79 +/- 18 nM) was found in a sarcolemma-enriched fraction obtained from digitonin-treated microsomes that possessed the essential properties of plasma membrane (PM) Ca2(+)-pumping ATPases, as determined for the erythrocyte and cardiac muscle enzymes. The activity was stimulated by calmodulin and inhibited by low concentrations of vanadate. Saponin had a stimulatory effect on it. The existence of the PM enzyme in the membrane fraction was substantiated by the Ca2(+)-dependent, hydroxylamine sensitive phosphorylation of a 130K protein, which could be selectively enhanced by LaCl3. The enzyme activity was potentiated by either cGMP or a purified G-kinase. Purified protein kinase C potentiated the enzyme activity. However, none of these agents stimulated the activity of the enzyme purified from microsomes by calmodulin affinity chromatography. The results suggest that the sarcolemmal Ca2(+)-pumping ATPase of vascular smooth muscle is regulated by these protein kinases not through phosphorylation of the enzyme itself but through phosphorylation of membrane components(s) other than the enzyme. Phosphatidylinositol phosphate was found to stimulate the enzyme, suggesting its role in mediation of the stimulatory effects of the protein kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号