首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The effects of propylthiouracil (PTU) treatment on renal vasopressin sensitive adenylate cyclase in young and adult rats were studied by measuring the binding of tritiated vasopressin and adenylate cyclase activation by vasopressin in kidney medulla plasma membranes. Thyroxine therapy completely corrected the effects of PTU treatment on the vasopressin-adenylate cyclase system. Thus, the abnormalities observed after a such treatment are directly related to thyroid deficiency and not to toxic effects of PTU. The inability of the kidney to normally concentrate urine in developing and adult animals with induced hypothyroidism was mainly related to the reduction of the number of binding sites without significant changes in the basal and guanylyl-imidodiphosphate (Gpp(NH)p)-stimulated adenylate cyclase activities, the apparent dissociation constant (Kbind) of labeled vasopressin from its specific receptor and the apparent activation constant (Kact) of vasopressin for adenylate cyclase. These results also show that thyroid deficiency has more effect on the ontogenesis of receptors than on their turnover, and demonstrate that a normal antidiuretic response occurs at very low receptor occupancy. Since, on the one hand, the hypothyroidism-induced abnormalities in renal medulla responsiveness to vasopressin were reversible and, on the other, only a permanent therapy consisting of two daily physiological doses of thyroxine from birth to the age of sacrifice fully restored them, the responsiveness of developing kidney to thyroid hormones appears to be fundamentally different from that of the CNS.  相似文献   

2.
Both dose-response curves and time-courses of plasma glucose levels after single maximal doses showed that in vivo glycogenolytic responsiveness to glucagon and epinephrine was significantly higher in developing hypothyroid rats, whereas it remained unchanged after vasopressin and angiotensin II injections. In contrast with the decreased basal activity of phosphorylase(a), the glucagon-stimulated activity increased in hypothyroid rats, whereas it was only slightly modified under vasopressin stimulation. Daily thyroxine treatment abolished these abnormalities. Thus, there is a close correlation between glucose output and enzyme activation. The maximal binding capacity of [3H]vasopressin and [125I]glucagon was significantly decreased in hypothyroid rats, without changes in the apparent dissociation constant of hormone from its specific receptor. Daily thyroxine treatment also abolished this deficit, which moreover appeared to be independent of possible changes in plasma hormone levels. With respect to glucagon action, neither basal nor Gpp(NH)p-stimulated adenylate cyclase activities were affected in hypothyroid rats. Glucagon-sensitive adenylate cyclase activity and the apparent activation constant appeared to be unaffected. The apparent discrepancy between the results obtained from in vivo and in vitro experiments is discussed on the basis of different membrane transducing phenomena and related intracellular mechanisms underlying the biological response to hormonal stimulation.  相似文献   

3.
It has been suggested there is a decreased renal responsiveness to vasopressin following spaceflight and that this may be the mechanism for the increased urine flow that is observed following return to normal gravity. In the present study, we have therefore measured vasopressin receptor expression and activity in kidneys taken from rats 1 and 14 days following spaceflight of 15 days duration. Measurements of renal vasopressin V(2) and V(1a) receptor mRNA expression by quantitative RT-PCR demonstrated little difference at either 1 day or at 14 days following return from space. Evaluation of (3)H-labeled arginine vasopressin binding to membranes prepared from kidneys indicated that the majority of the vasopressin receptors were V(2) receptors. Furthermore, the data suggested that binding to vasopressin V(2) or V(1a) receptors was unaltered at 1 day and 14 days following spaceflight. Similarly, the ability of vasopressin to stimulate adenylate cyclase suggested no change in vasopressin V(2) receptor activity in these animals. These data suggest that, whatever changes in fluid and electrolyte metabolism are observed following spaceflight, they are not mediated by changes in vasopressin receptor number or vasopressin-induced stimulation of adenylate cyclase.  相似文献   

4.
Desensitization of vasopressin V2 receptor-mediated adenylate cyclase was studied in canine kidney cell line, MDCK cells. Overnight treatment of MDCK cells with arginine vasopressin (AVP) resulted in a loss of vasopressin receptors and an inhibition of cAMP accumulation in response to AVP. Both the loss of receptor and reduction in cAMP accumulation were time- and AVP concentration-dependent. Desensitization was selective for AVP because cAMP formation in response to isoproterenol, prostaglandin E1 (PGE1) and forskolin was not affected by AVP pre-treatment. Pre-treatment of MDCK cells with phorbol dibutyrate (PDBu) also caused a dose-dependent inhibition of AVP mediated cAMP accumulation, but not of isoproterenol-, PGE1- and forskolin-induced cAMP accumulation. PDBu pre-treatment did not cause loss of vasopressin receptors. Instead, the affinity for vasopressin was changed by PDBu treatment. Pre-treatment of the cells with pertussis toxin (PT) had no effect on the desensitization and downregulation of vasopressin (V2) receptors, suggesting that the desensitization may not be mediated by pertussis toxin sensitive G-protein. Our data suggest that pre-treatment of MDCK cells with AVP or PDBu caused desensitization of AVP-mediated cAMP accumulation and that downregulation of V2 receptors required agonist occupancy of the receptors, whereas the affinity of the receptors was changed by phorbol ester treatment.  相似文献   

5.
To assess whether receptor binding is sufficient to initiate vasopressin receptor endocytosis in cells expressing the vasopressin V1 or V2 receptors, we synthesized a novel fluorescent-labeled vasopressin analog, [1-(beta-mercapto-beta, beta-cyclopentamethylene propionic acid), 2-(O-ethyl)-D-tyrosine, 4-valine, 8-lysine-N6-carboxytetramethylrhodamine] vasopressin (R-CLVP), that binds to vasopressin receptors but does not activate intracellular events such as the mobilization of intracellular calcium or the activation of adenylate cyclase. We compared the manner in which this analog was endocytosed in cells expressing V1 (A-10, rat smooth muscle cells) or V2 (LLC-PK1, porcine kidney cells) receptors with that of a full agonist, [1-(beta-mercaptopropionic acid), 8-lysine-N6-carboxytetramethylrhodamine] vasopressin (R-MLVP) [Lutz et al. (1990) J. Biol. Chem. 265, 4657-4663; Lutz et al. (1990) Proc. Natl. Acad. Sci. U.S.A. 87,6507-6511]. We showed that R-CLVP bound to both types of receptors with good affinity. It failed to increase cyclic AMP concentrations in LLC-PK1 cells and did not increase the mobilization of intracellular calcium in A-10 cells. It bound to the surface of both these cell types in a diffuse manner and it did not undergo receptor endocytosis in either cell type. In contrast, R-MLVP, an agonist that bound to both receptor subtypes and elicited changes in intracellular cyclic AMP and calcium, bound to the surface of these cells in a diffuse manner at early times after exposure, and rapidly underwent endocytosis. We conclude that binding of vasopressin to its receptors alone is insufficient to cause receptor endocytosis, and other events distal to the receptor are required to initiate endocytosis. R-CLVP should be a useful analog in determining the factors responsible for initiating receptor endocytosis.  相似文献   

6.
The inhibitory GTP-binding protein (Gi) is known to mediate the effects of a number of hormones that act through specific receptors to inhibit adenylate cyclase. In this study we examined the mechanism whereby Gi modulates the response of adenylate cyclase to a stimulatory hormone and its role in desensitization. In membranes prepared from the cultured renal epithelial cell line LLCPK1, adenylate cyclase activity was stimulated 16-fold by 1-2 microM lysine vasopressin. Addition of GTP (1-100 microM) resulted in stimulation of basal activity but inhibition of hormone-stimulated activity (approximately 40% inhibition at 100 microM GTP). This contrasts with the usual effect of GTP to support or augment activation by stimulatory receptors. The inhibitory effect was abolished by pertussis toxin, which had little effect on basal activity in the absence or presence of added GTP or on vasopressin-stimulated activity in the absence of added GTP. GTP-mediated inhibition was vasopressin concentration dependent. At concentrations of vasopressin below the K1/2 for enzyme activation (approximately 0.6 nM), GTP was stimulatory, and at higher concentrations, GTP was inhibitory. The inhibitory effect of GTP was also observed for a V2-receptor agonist and was not abolished by a V1-receptor antagonist, indicating that a distinct V1 receptor did not mediate inhibition of adenylate cyclase. Using the known subunit structure of adenylate cyclase, we developed the minimal mechanism that would incorporate a modulatory role for Gi in determining net activation of adenylate cyclase by a stimulatory hormone. The predicted enzyme activities for basal and maximal hormone stimulation in the presence and absence of GTP were generated, and model parameters were chosen to match the experimental observations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The effects of congenital hypothyroidism on both the structure and function of the renal medulla were studied by comparing, in 1-month old rats, the structural features of collecting tubules with the capacity of vasopressin to bind membrane preparations and the related adenylate cyclase activation. With the exception of a reduced caliber, hypothyroidism had no effect on the density, total number, distribution of tubules according to epithelial thickness, or on the number of epithelial cells, or their area. The binding capacity of vasopressin and the related adenylate cyclase activation were equally reduced by about 50%, without changes in (i) the basal or guanylyl-imidodiphosphate (Gpp(NH)p)-stimulated adenylate cyclase activities, (ii) the apparent dissociation constant (KD) of labelled vasopressin from its specific receptor or (iii) the apparent activation constant (Kact) of vasopressin for adenylate cyclase. Taken together, these results clearly demonstrate that congenital hypothyroidism exerts a direct influence on the developing responsiveness of the renal medulla, mainly by reducing the density of active hormone receptors per cell, instead of reducing cell number or cell membrane area.  相似文献   

8.
We synthesized and tested the biological properties of four fluorescent vasopressin analogs: [1-(2-mercapto)propionic acid]-8-lysine-N6-5-dimethylamino-naphthalene-1-sulfonyl vasopressin (D-MLVP), [1-(2-mercapto)propionic acid]-8-lysine-N6-carboxyfluorescein vasopressin (F-MLVP), [1-(2-mercapto)propionic acid]-8-lysine-N6-2-N-methylanthranilamide vasopressin (MA-MLVP), and [1-(2-mercapto)propionic acid]-8-lysine-N6-carboxytetramethylrhodamine vasopressin (R-MLVP). All fluorescent analogs were prepared by coupling the appropriate fluorochrome to the 6-amino group of the lysine residue in [1-(2-mercapto)propionic acid]-8-lysine vasopressin (MLVP) which was synthesized by the Merrifield solid-phase method. The structures of high performance liquid chromatography-purified MLVP and the fluorescent analogs were confirmed by fast atom bombardment mass spectrometry. F-MLVP, MA-MLVP, and R-MLVP effectively competed for 8-arginine vasopressin (AVP)-binding sites in canine renal plasma membranes and on the surface of porcine kidney cells (LLC-PK1, ATCC CL101). Dissociation constants for F-MLVP, MA-MLVP, and R-MLVP of 32, 8.8, and 26 nM, respectively, were calculated from the results of competition binding assays conducted with membranes. D-MLVP did not bind to plasma membranes. Dissociation constants for F-MLVP, MA-MLVP, and R-MLVP of 390, 38, and 160 nM, respectively, were calculated from the results of competition binding assays conducted with cells. F-MLVP, MA-MLVP, and R-MLVP at a concentration of 10(-6) M increased adenylate cyclase activity in canine renal plasma membranes to values 2.4, 2.9, and 2.6 times that of basal activity, respectively. A maximally active concentration of AVP (1 microM) increased adenylate cyclase activity in canine renal plasma membranes to a value 2.7 times that of basal activity. D-MLVP did not stimulate adenylate cyclase activity. F-MLVP, MA-MLVP, and R-MLVP at a concentration of 10(-6) M increased the cAMP content of porcine kidney cells from a basal level of 43 to 267, 160, and 469 pmol/mg of cell protein, respectively. Specific binding of these fluorescent analogs to receptors on the surface of LLC-PK1 cells was observed by fluorescence microscopy. These observations indicate that F-MLVP, MA-MLVP, and R-MLVP are biologically active fluorescent vasopressin analogs which are well-suited to the study of renal vasopressin receptors by fluorescence microscopy.  相似文献   

9.
The ligand-induced proteolytic cleavage of the V2 vasopressin receptor transiently expressed in COS cells was investigated. After incubation of the cell membranes with a photoreactive ligand possessing full agonistic properties for V2 receptors, approximately 90% of the porcine and bovine V2 vasopressin receptors were cleaved in the upper part of transmembrane helix 2 at a heptapeptide sequence conserved in both vasopressin and oxytocin receptors. The oxytocin receptor was completely resistant to proteolysis after binding the same photoreactive ligand, which is only a partial agonist for this receptor. Chimeric V2/oxytocin receptors obtained by transfer of extracellular domains of the oxytocin receptor into the V2 receptor showed an increase in binding affinity for oxytocin versus vasopressin and a diminished cleavage. The proteolysis-resistant chimeric V2/oxytocin receptor, which contains the first three extracellular domains of the oxytocin receptor, stimulated cAMP accumulation to a larger extent in response to vasopressin than the wild-type receptor and showed impaired desensitization of the adenylate cyclase system. Our data indicate that the proteolytic cleavage of the V2 receptor requires a defined conformation, especially of the first two extracellular domains that is induced by agonist binding. Furthermore, the results suggest that the proteolytic V2 receptor cleavage might play a role in signal termination at elevated hormone concentrations.  相似文献   

10.
S Jard 《Journal de physiologie》1981,77(4-5):621-628
Two type of vasopressin receptors can be distinguished on the basis of their relation to adenylate cyclase. V1 renal receptors are coupled to adenylate cyclase; V2 receptors, present, for example, in liver and blood vessels, are not coupled to adenylate cyclase. V1 and V2 receptors also differ with respect to their abilities to discriminate between several structural analogues of vasopressin. V1 and V2 receptors, present in several cellular and homologous acellular preparations (isolated hepatocytes and live membranes, renal cells in culture and renal membranes), have been characterized using tritiated vasopressin. Dissociation constants for vasopressin binding to intact cells are comparable to dissociation constants for binding to acellular preparations. In all systems studied, a marked amplification of the hormonal signal can be demonstrated.  相似文献   

11.
To explore the intracellular pathways activated by vasopressin receptors, the effects of arginine vasopressin (AVP) and its analogues mediating glycine (Gly)-induced Cl(-) currents (I(Gly)) were examined in acutely dissociated rat hippocampal CA1 neurons using the whole-cell patch recording technique. AVP and its analogues inhibited I(Gly) in a concentration-dependent manner. The inhibitory actions of AVP(4-9) (AVP metabolite) and NC-1900 (AVP(4-9) analogue) were reversed by a V(1) receptor antagonist, or pretreatment with 1,2-bis(2-amino-5-fluorophenoxy)ethane-N,N,N', N'-tetraacetic acid. In contrast, these blocking procedures had no effect on the 1-desamino-8-D-AVP (DDAVP; V(2) agonist) action. A V(2) receptor antagonist did not block the inhibitory action of AVP(4-9) or NC-1900, but blocked that of DDAVP. The inhibitory action of AVP was completely blocked by the co-application of the V(1) and V(2) antagonists. The inhibitory action of NC-1900 was not affected by perfusion with a Ca(2+)-free external solution, but was strongly blocked by thapsigargin. The intracellular application of heparin or anti-inositol 1,4,5-triphosphate (IP(3)) also blocked the NC-1900 action. Furthermore, Ca(2+)/calmodulin (CaM) inhibitors blocked the NC-1900 action, while a CaM-dependent kinase II inhibitor and PKC modulators had no effect. 2',5'-Dideoxyadenosine (an adenylate cyclase inhibitor), H-89, and Rp-cAMPS blocked the inhibitory actions of NC-1900 and DDAVP. These results suggest that the activation of the V(1) receptor in the hippocampal neurons induces the production of IP(3), which releases Ca(2+) from the IP(3)-sensitive Ca(2+) storage sites. The Ca(2+) binds to CaM, resulting in the activation of Ca(2+/)CaM-sensitive adenylate cyclases. The activation of protein kinase A through the adenylate cyclase inhibits I(Gly).  相似文献   

12.
The regulation of adrenergic receptors in rat heart was measured in rats made hyperthyroid by injection with thyroxine and made hypothyroid by addition of propylthiouracil to the drinking water. Hyperthyroid rats display cardiac hypertrophy and a decrease in epididymal fat pad weight. The maximal beta-receptor level of ventricular membranes, as determined by (-)-[3H]dihydroalprenolol binding, was increased 60% by thyroxine treatment and decreased about 30% by propylthiouracil treatment. The affinity of the beta receptor was unchanged after thyroxine or propylthiouracil treatment. The maximal activity of the isoproterenol-stimulated adenylate cyclase (EC 4.6.1.1) varied with thyroid state in a manner parallel to the increase in beta-adrenergic binding sites. Thyroxine treatment also increases by 2-fold the beta receptors in isolated rat fat cells. Propylthiouracil treatment lowered the level of alpha receptors in heart by 30% as measured by [3H]dihydroergocryptine binding, but increased the affinity about 2.5-fold. The highest level of alpha receptors was seen in control hearts. These studies indicate that thyroxine may control the turnover of beta-adrenergic receptors in heart and fat cells and regulate physiological responses in these tissues via a hormone-hormone interplay system. Thyroxine treatment reduced the activity of the membrane-bound Mg2+-ATPase (EC 3.6.1.3) and 5'-mononucleotidase (EC 3.1.3.5) but appears to increase the activity of the (Na+ + K+)ATPase (EC 3.6.1.4).  相似文献   

13.
The effects of hypothyroidism on glycogen metabolism in rat skeletal muscle were studied using the perfused rat hindlimb preparation. Three weeks after propylthiouracil treatment, serum thyroxine was undetectable and muscle glycogen and Glc-6-P were decreased. Basal and epinephrine-stimulated phosphorylase a and phosphorylase b kinase activities were also significantly reduced, as were epinephrine-stimulated cAMP accumulation and cAMP-dependent protein kinase activity. Conversely, basal and epinephrine-stimulated glycogen synthase I activities were significantly higher while the Ka of the enzyme for Glc-6-P was lower in hypothyroid animals. Propylthiouracil-treated rats also had increased phosphoprotein phosphatase activities towards phosphorylase and glycogen synthase and decreased activity of phosphatase inhibitor 1. beta-Adrenergic receptor binding and basal and epinephrine-stimulated adenylate cyclase activities were reduced in muscle particulate fractions from hypothyroid rats. Administration of triiodothyronine to rats for 3 days after 3 weeks of propylthiouracil treatment restored the altered metabolic parameters to normal. It is proposed that the decreased beta-adrenergic responsiveness of the enzymes of glycogen metabolism in hypothyroid rat skeletal muscle is due to increased activity of phosphoprotein phosphatases and to reduced beta-adrenergic receptors and adenylate cyclase activity.  相似文献   

14.
The activity of phosphorylase a was measured in isolated hepatocytes from fed lean and ob/ob mice after addition of vasopressin, angiotensin, phenylephrine and glucagon. The binding of these hormones to purified liver plasma membranes was also determined. In hepatocytes of ob/ob mice, no increase in phosphorylase a was measured after addition of vasopressin, whereas the other hormones promoted an increase in the activity of the enzyme. No specific vasopressin receptors could be measured on purified liver plasma membrane of ob/ob mice. A decrease in the number of receptors for angiotensin and glucagon, without modification of the affinity, was also observed. No restoration of the number of vasopressin receptors was observed in liver of ob/ob mice starved for 3 days or in younger (5-6 weeks) animals. Vasopressin receptors and vasopressin-stimulated adenylate cyclase, measured on purified kidney medulla membranes, were similar in both lean and ob/ob mice. The data indicate a selective lack of vasopressin receptors and metabolic response in liver of the ob/ob mouse.  相似文献   

15.
An accumulation of 3H-labelled inositol phosphates is observed when prelabelled rat superior cervical sympathetic ganglia are exposed to [8-arginine]vasopressin or to muscarinic cholinergic stimuli. The response to vasopressin is much greater than the response to cholinergic stimuli. The response to vasopressin is blocked by a V1-vasopressin antagonist, and oxytocin is a much less potent agonist than vasopressin. Vasopressin causes no increase in the cyclic AMP content of ganglia. These ganglia therefore appear to have functional V1-vasopressin receptors that are capable of activating inositol lipid breakdown, but no V2-receptors coupled to adenylate cyclase. The first [3H]inositol-labelled products to accumulate in stimulated ganglia are inositol trisphosphate and inositol bisphosphate, suggesting that the initiating reaction in stimulated inositol lipid metabolism is a phosphodiesterase-catalysed hydrolysis of phosphatidylinositol 4,5-bisphosphate (and possibly also phosphatidylinositol 4-phosphate). This response to exogenous vasopressin occurs in ganglia incubated in media of reduced Ca2+ concentration. The physiological functions of the V1-vasopressin receptors of these ganglia remain unknown.  相似文献   

16.
LLC-PK1L cells, a kidney-derived cell line, had sustained growth in a defined medium. When compared to the parent cell line growing with 10% fetal bovine serum, LLC-PK1L cells had about 100-times fewer vasopressin receptors. Upon modifications of the cell culture medium, the vasopressin response of the adenylate cyclase could be increased by more than 10-fold with a parallel increase in vasopressin receptor number. Using cells with high or low receptor densities, the stimulatory and inhibitory effects of N6-L-2-phenylisopropyl-adenosine on the modulation of the adenylate cyclase responsiveness to vasopressin were investigated. When high concentrations of GTP were added, low concentrations of phenylisopropyladenosine inhibited the enzyme, while higher concentrations were found to be stimulatory. The adenylate cyclase activity stimulated by vasopressin could only be inhibited by phenylisopropyladenosine under these conditions in membranes with high receptor density; only the increase in enzyme activity due to high GTP concentration was inhibitable. The analysis of the dependency of the adenylate cyclase activity as a function of the vasopressin concentration showed that, besides reducing the maximum velocity of the system for vasopressin, the addition of phenylisopropyladenosine generated an heterogeneity in the adenylate cyclase response to vasopressin (as judged by a curvilinear Eadie plot). A high-affinity component in the adenylate cyclase response appeared when phenylisopropyladenosine was added. The growth of the cells in a medium containing adenosine deaminase gave results identical to those obtained for control cells. However, growing the cells with both phenylisopropyladenosine and adenosine deaminase abolished the inhibitory effects of the former on the adenylate cyclase and greatly reduced its stimulatory action. Under these conditions, the vasopressin response of the adenylate cyclase was not further regulated by phenylisopropyladenosine. These results indicate a role of adenosine on vasopressin response, especially at low physiological concentrations of the hormone where a high-affinity component of the hormonal response could be demonstrated.  相似文献   

17.
D A Jans  R Peters  J Zsigo    F Fahrenholz 《The EMBO journal》1989,8(9):2481-2488
The lateral mobility of membrane-associated hormone receptors has been proposed to play an important role in signal transduction. Direct measurements, however, have shown that the receptors for insulin, epidermal growth factor and beta-adrenergic antagonists exhibit low mobility at physiological temperature. The present study, which represents the first report of lateral mobility of a polypeptide hormone receptor coupled to adenylate cyclase, yielded quite different results. The lateral mobility of the vasopressin renal-type (V2)-receptor was measured in the basal plasma membrane of cells of the LLC-PK1 porcine epithelial line, using the technique of fluorescence microphotolysis (photobleaching) and a rhodamine-labelled analogue of vasopressin. The analogue, 1-deamino[8-lysine(N6-tetramethylrhodamylaminothiocarbonyl)] vasopressin (TR-LVP) was synthesized and shown to have binding properties and biological activities very similar to those of Arg8-vasopressin (AVP). TR-LVP could be used to label specifically the V2-receptor of living LLC-PK1 cells, whereby LLC-PK1 cells incubated with TR-LVP in the presence of a 100-fold excess of AVP, or cells from the LLC-PK1 V2-receptor-deficient line M18 incubated with TR-LVP could be used as controls for non-specific binding. Using optical sectioning, specific receptor mobility could be measured both in the absence and presence of free TR-LVP. The V2-receptor was found to be largely mobile at 37 degrees C: the mobile fraction (f) was approximately 0.9, and the apparent lateral diffusion coefficient (D) approximately 3.0 X 10(-10) cm2/s. V2-receptor mobility greatly decreased with decreasing temperature: at 10 degrees C f was reduced to approximately 0.1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A novel mutant of the LLC-PK1 renal epithelial cell line, VPR1, was isolated after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine and selection using a photoactivatable vasopressin analogue [1-(3-mercapto)propionic acid, 8-(N6-4-azidophenylamidino)lysine] vasopressin. The VPR1 mutant cell line possessed less than 5% parental V2 receptor binding for vasopressin but exhibited normal calcitonin receptor binding. In contrast to LLC-PK1 cells (wild type), VPR1 cells exhibited no response to vasopressin in terms of in vitro adenylate cyclase activation, in vivo cAMP production, or urokinase-type plasminogen activator induction. The responses of VPR1 cells to other agents, such as calcitonin, the adenylate cyclase activator forskolin, the GTP analogue guanosine 5'-[beta, gamma-imino] triphosphate, 8-bromo adenosine-3',5'-monophosphate were comparable to those of the parental cell line. Somatic cell hybrids were derived from the cell lines LLC-PK1 and VPR1 and analyzed for the dominance/recessiveness of the VPR1 mutant phenotype. Hybrids were found to possess normal vasopressin binding activity as well as functional responses to the hormone, indicating that the mutation affecting the V2 receptor in VPR1 cells is recessive. The VPR1 cell line may thus have application as a recipient for the expression of the V2 receptor gene using DNA-transfer.  相似文献   

19.
The effect of bovine growth hormone on adenylate cyclase activity was studied in bovine and rat renal medulla. Highly purified growth hormone (lot B1003A) increased adenylate cyclase activity in plasma membranes from bovine renal medulla from 132 ± 6 pmol cyclic AMP formed/mg protein per 10 min to 364 ± 10 pmol cyclic AMP formed/mg protein per 10 min. Similar results were seen with homogenates of rat renal medulla. The minimum effective concentration of bovine growth hormone required to activate adenylate cyclase was 0.5 μg/ml and maximum activation was detected at 500 μg/ml. The amount of vasopressin determined by radioimmunoassay to contaminate the growth hormone caused an increase in adenylate cyclase activity comparable to that of the corresponding concentration of growth hormone that was tested. Dialysis of growth hormone and vasopressin resulted in parallel reductions in the effect of each hormone on adenylate cyclase activity. Similarly, both growth hormone and vasopressin produced increases in short circuit current in isolated toad bladders but these effects were not detectable after dialysis of the hormones. In contrast, the effect of growth hormone on the uptake of 35SO42− by cartilage from hypophysectomized rats was not decreased after dialysis. These results indicate that available preparations of growth hormone are contaminated by small but physiologically significant amounts of vasopressin and that the activation of adenylate cyclase activity in renal medulla in response to growth hormone can be explained by this contamination rather than by an effect of growth hormone per se.  相似文献   

20.
The effect of bovine growth hormone on adenylate cyclase activity was studied in bovine and rat renal medulla. Highly purified growth hormone (lot B1003A) increased adenylate cyclase activity in plasma membranes from bovine renal medulla from 132+/-6 pmol cyclic AMP formed/mg protein per 10 min to 364+/-10 pmol cyclic AMP formed/mg protein per 10 min. Similar results were seen with homogenates of rat renal medulla. The minimum effective concentration of bovine growth hormone required to activate adenylate cyclase was 0.5 mug/ml and maximum activation was detected at 500 mug/ml. The amount of vasopressin determined by radioimmunoassay to contaminate the growth hormone caused an increase in adenylate cyclase activity comparable to that of the corresponding concentration of growth hormone that was tested. Dialysis of growth hormone and vasopressin resulted in parallel reductions in the effect of each hormone on adenylate cyclase activity. Similarly, both growth hormone and vasopressin produced increases in short circuit current in isolated toad bladders but these effects were not detectable after dialysis of the hormones. In contrast, the effect of growth hormone on the uptake of 35SO2-4 by cartilage from hypophysectomized rats was not decreased after dialysis. These results indicate that available preparations of growth hormone are contaminated by small but physiologically significant amounts of vasopressin and that the activation of adenylate cyclase activity in renal medulla in response to growth hormone can be explained by this contamination rather than by an effect of growth hormone per se.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号