首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 543 毫秒
1.
目的研究Exo-1对端粒酶缺失小鼠造血微环境衰老的影响。方法以端粒酶基因敲除小鼠(Terc-/-)和Exo-1基因敲除小鼠(Exo-1-/-)杂交,并进一步互交产生第三代端粒酶基因敲除小鼠(G3Terc-/-)以及第三代Terc和Exo-1双基因敲除小鼠(G3Terc-/-Exo-1-/-)。以CD45.1野生型小鼠的骨髓细胞为供体,以2月龄G3Terc-/-或G3Terc-/-Exo-1-/-小鼠为受体,进行骨髓移植。在受体小鼠9月龄时,取骨髓、脾脏、胸腺、外周血等组织器官的细胞进行流式分析,研究G3Terc-/-和G3Terc-/-Exo-1-/-受体小鼠中的野生型供体来源的造血干细胞的发育分化。结果同G3Terc-/-小鼠相比,G3Terc-/-Exo-1-/-双基因敲除受体小鼠骨髓中野生型供体来源的B220+细胞比例升高,前体B细胞的比例也明显升高;脾脏B220+细胞的比例明显升高;胸腺发育正常;外周血中B220+细胞比例升高。结论 Exo-1缺失延缓了端粒酶基因敲除小鼠造血系统微环境的衰老,从而逆转了端粒功能障碍引起的骨髓造血干细胞发育分化异常。  相似文献   

2.
Bultinck J  Brouckaert P  Cauwels A 《Cytokine》2006,36(3-4):160-166
Sepsis is a systemic inflammatory response syndrome resulting from an inappropriate innate immune response to infection. TNF and interleukin (IL)-6 are critically involved in this syndrome and although conclusive in vivo evidence is missing, innate immune cells are believed to be the principal producers of these cytokines. We investigated this assumption by performing bone marrow transplantations (BMT) between LPS-sensitive (C3H/HeN) and LPS-hyporesponsive (C3H/HeJ) mice. For adequate LPS-induced systemic TNF production, the hematopoietic cell population was absolutely required. In contrast, IL-6 could be detected in the circulation of LPS-treated chimeric mice, of which either the hematopoietic or the parenchymal cell population was hyporesponsive to LPS. So, whereas hematopoietic cells are the sole source of systemic TNF in an LPS-induced model of sepsis, both hematopoietic and parenchymal cells are required for systemic IL-6 production. Moreover, LPS-induced IL-6 production in parenchymal cells may be partially mediated by the TNF/TNF-R1 pathway as evidenced by the systemic IL-6 levels in LPS-treated wild type (WT), TNF-R1-deficient and chimeric mice.  相似文献   

3.
4.
Generation and characterization of IL-2-activated veto cells.   总被引:3,自引:0,他引:3  
The regulation of in vivo cytolytic response is important in a model of murine graft-vs-host disease induced by the injection of parental splenocytes into unirradiated B6D2F1 recipients. Injection of C57BL/6J spleen cells into B6D2F1 recipients results in an acute form of graft-vs-host disease that is characterized by the presence of CTL and suppressor cells, runting, and occasionally death. In contrast, injection of DBA/2J spleen cells into B6D2F1 recipients results in a chronic form of graft-vs-host disease that is characterized by the lack of in vivo CTL and hyperproduction of Ig and autoantibodies that results in an SLE-like syndrome. One reason for the lack of donor antirecipient CTL after injection of DBA/2J donor cells is that B6D2F1 recipient cells functionally inactivate the donor DBA/2J CTL precursor cells by expressing veto activity. These B6D2F1 veto cells are radiosensitive, inhibited by anti-CD8 antibodies, found primarily in lymph nodes, and were further characterized by testing the response of these inhibitory cells to lymphokines. These studies indicate that IL-2 can potentiate the activity of the veto cells induced in vivo and veto cells with a similar phenotype can be generated by in vitro incubation of naive lymph node cells with IL-2. These cells have been designated as IL-2-activated veto cells or LAV cells. IL-2 did not increase inhibitory activity by increasing the number of CD8+ cells or the number of CD8 molecules on the LAV cell surface but by altering the activation state of the LAV cell. The inhibitory capabilities of antibodies binding various cell surface molecules indicated that CD2 and intercellular adhesion molecule-1 molecules in addition to CD8 molecules played a role in the function of LAV cells.  相似文献   

5.
Interleukin-3 (IL-3)-dependent cell lines (FDCP-mix) were cloned and isolated from long-term bone-marrow cultures infected with src-MoMuLV. These cell lines have many of the characteristics of hematopoietic stem cells. Early isolates of the FDCP-mix cells form spleen colonies in irradiated mice and establish long-term hematopoiesis on irradiated marrow stroma in vitro in the absence of IL-3. These two properties of the cells are lost within 15 weeks of establishing the cell lines, but the cell lines retain their ability to differentiate in a multilineage response to hematopoietic growth factors and to hematopoietic stromal cells, as well as to self-renew in the presence of IL-3. The choice between differentiation and self-renewal in FDCP-mix cells can clearly be modified by culture conditions: in particular, cultures containing horse serum preferentially promote self-renewal, whereas cultures containing fetal calf serum preferentially promote differentiation. The FDCP-mix cell lines are not leukemic, nor do they contain the src oncogene. Their ability to respond to hematopoietic growth factors and stroma in a similar manner to normal hematopoietic cells makes them a valuable model for studying the regulation of hemopoietic cell self-renewal and differentiation.  相似文献   

6.
Age-related changes in the number and concentration of pluripotential and unipotential hematopoietic stem cells in the femoral bone marrow and spleen of BC3F1 mice were investigated. Pluripotential stem cells were assayed by the spleen colony technique, and unipotential stem cells were determined by an agar cloning method and by erythropoietin responsiveness in polycythemic mice. Changes with senescence were observed in the concentration of both uni- and pluripotential stem cells in the bone marrow; the size of the stem cell compartment in the marrow did not change significantly with age. Also, a reduction in the seeding of transplanted spleen colony-forming units into the spleens of aged recipients was demonstrated. The implications of these findings for the kinetics of hematopoietic stem cell proliferation in aged animals are discussed.  相似文献   

7.
《Cell》1987,51(4):663-673
Mouse bone marrow cells infected with a helper-free retrovirus containing v-fms were engrafted into lethally irradiated mice. Dominant provirus-positive clones emerged in the spleens of some recipients within 1 month. When spleen cells were transplanted into lethally irradiated secondary recipients, clonal erythroleukemias or B cell lymphomas expressing the v-fms-coded glycoprotein developed. Other secondary recipients repopulated by “unmarked” progenitor cells or by cryptic provirus-positive precursors present in the spleens of the same donor mice did not develop disease; thus cells expressing v-fms did not invariably have a proliferative advantage after transplantation. Several primary engrafted recipients developed myeloproliferative disorders that were provirus-positive without evidence of clonality. Although expression of the c-fms product (CSF-1 receptor) is normally restricted to cells of the mononuclear phagocyte series, the v-fms-coded glycoprotein can contribute to proliferative abnormalities of multiple hematopoietic lineages.  相似文献   

8.
《Life sciences》1994,54(20):PL351-PL361
Use of the anti-viral drug zidovudine in the treatment of acquired immunodeficiency syndrome (AIDS) has been associated with the development of hematopoietic toxicity. Several hematopoietic growth factors have been investigated in their ability to modulate such toxicity: however, no single factor has been demonstrated to produce restoration of hematopoiesis following use with zidovudine. We report results describing the effect of combination interleukin-1 (IL-1) and erythropoietin (Epo) in their ability to modulate the hematopoietic toxicity associated with dose-escalation zidovudine administered in normal mice. When administered over a six-week period, IL-1 and Epo raised the packed red cell volume, white blood cell and platelet counts in control mice and mice receiving dose-escalation zidovudine. These effects were attributed in part to the ability of combination IL-1 and Epo to increase erythroid, myeloid and megakaryocyte progenitor stem cells from bone marrow and spleen. These results indicate that use of combined IL-1 and Epo may be efficacious in ameliorating the hematopoietic toxicity associated with the use of zidovudine.  相似文献   

9.
To evaluate whether the response of hematopoietic cells to interleukin-17 (IL-17) depends on the tissue microenvironment in which hematopoiesis occurs, the influence of recombinant mouse IL-17 on spleen hematopoietic cells and cytokine release was assessed in normal mice in vitro and in vivo. In vitro, IL-17 did not significantly affect the growth of granulocyte-macrophage (CFU-GM) and erythroid (BFU-E and CFU-E) derived colonies. A single injection of IL-17 in vivo exhibited stimulatory effects on hematopoietic cells from both granulocytic and erythroid lineages. The increased number of metamyelocytes 48 h after treatment imply to the IL-17-induced stimulation of granulopoiesis. The number of BFU-E was increased at 24 h, while the number of CFU-E increased 6 h and 24 h after treatment. Since the same treatment in the bone marrow decreased the number of CFU-E, it may be concluded that the local microenvironment plays an important role in IL-17-mediated effects on CFU-E. IL-17 increased the release of IL-6 both in vitro and in vivo, but showed tendency to suppress the constitutive secretion of IL-10 by spleen cells. Our results suggest the complexity of target cell response and interplay of secondary induced cytokines by IL-17 in different hematopoietic organs.  相似文献   

10.
The number of colonies formed in the peritoneal cavity (on the artificial underlayer made of peritoneal cells) and in the spleen of lethally irradiated recipients, (CBA X X C57BL) F1 mice, after the intraperitoneal injection of marrow cells depends on the cell donor's genotype: syngeneic cells and cells from mice of the parent strain CBA form fewer colonies in the peritoneal cavity than in the spleen, while cells from C57BL mice produce the reverse distribution of colonies between the peritoneal cavity and the spleen. Allogenic lymphocytes, when transplanted simultaneously with hematopoietic cells, suppress colony formation in the peritoneal cavity from day 2 of cultivation and eliminate the already developed foci of hematopoiesis by day 5.  相似文献   

11.
After detachment from the stromal cells, hematopoietic stem cells are thought to differentiate to the cytokine-dependent stages where their growth and differentiation are promoted by these cytokines. To examine the stromal regulation of hematopoietic stem cells, we previously established a primitive hematopoietic stem-like cell line, THS119, whose growth was dependent on the bone marrow stromal cell line, TBR59, and from which IL-3- (THS119/IL-3) or IL-7- (THS119/IL-7) dependent cell lines were then generated. Using these cell lines, we examined the difference in signals mediated by the stromal cells and cytokines. The cytokine-dependent cell lines (THS119/IL-3 and THS119/IL-7) showed induction of STAT5 phosphorylation and target genes for STAT5 such as CIS, pim-1, p21 and bcl-xL upon addition of IL-3 or IL-7. IL-3 or IL-7 also induced STAT5 phosphorylation and STAT5 target genes of the stromal cell-dependent cell line, THS119, in the absence of stromal cells at levels similar to the cytokine-dependent cell lines. However, quite interestingly, TBR59 stromal cells could not induce STAT5 phosphorylation of THS119 cells, although they did induce STAT5 target genes in THS119 cells. In addition, the mRNAs for STAT5 target genes in THS119 cells on the stromal cells seemed to be more stable than those in the cytokine-dependent cell lines. Expression of the antiapoptotic genes bcl-2 and bcl-xL was higher in the stromal cell-dependent cell line than in the cytokine-dependent cell lines. These results suggested that stromal cells and cytokines may provide different signals for growth and differentiation of the hematopoietic cells.  相似文献   

12.
Inhibition of TNF/TNFR2 interactions ameliorates intestinal graft-vs-host disease (GVHD) and Th1 cytokine responses induced by transfer of B6 CD4(+) spleen cells into irradiated MHC class II disparate B6.C-H-2(bm12) (bm12) x B6 F(1) recipients. The present studies examined whether these effects of TNF are IL-12 dependent. T cell proliferative responses of B6.129S1-IL-12rb2(tm1Jm) (B6.IL-12R(-/-)) responder spleen cells were found to be comparable to those of control B6 spleen cells. TNF inhibition reduced T cell proliferation and IFN-gamma production in supernatants of MLC using either B6.IL-12R(-/-) or control B6 responder cells. GVHD induced wasting disease in recipients of B6.IL-12R(-/-) CD4(+) spleen cells that received a TNF inhibitor-encoding adenovirus (5.4 +/- 6.5% weight loss (n = 7)) was significantly reduced compared with levels of weight loss observed in recipients that had received a control adenovirus (25.7 +/- 12.2% weight loss (n = 11), p = 0.001). Furthermore, TNF inhibition was associated with a reduction in colonic GVHD scores (p = 0.039) and in the percentage of the splenic CD4(+) T cells that expressed IFN-gamma (16 vs 6%). These findings indicate that TNF promotes CD4(+) T cell alloproliferation, IFN-gamma responses, and intestinal GVHD by IL-12-independent mechanisms.  相似文献   

13.
14.
Induction of experimental autoimmune thyroiditis in IL-12-/- mice   总被引:24,自引:0,他引:24  
Granulomatous experimental autoimmune thyroiditis (G-EAT) is induced by transfer of mouse thyroglobulin (MTg)-sensitized spleen cells activated in vitro with MTg and anti-IL-2R or MTg and IL-12. Previous work suggested that IL-12 was required in vitro for development of G-EAT. To determine whether IL-12 was also required during the induction and/or effector phases, DBA/1 mice with a disrupted IL-12-P40 gene (IL-12(-/-)) were used for EAT induction. Cells from MTg-sensitized IL12(-/-) donors activated in vitro by MTg or MTg and anti-IL2R induced severe EAT in recipient mice. Compared with effector cells from IL-12(+/+) donors, effector cells from IL-12(-/-) donors induced thyroid lesions dominated by lymphocytes with minimal granulomatous changes. Thyroids of recipients of IL-12(-/-) cells expressed less IFN-gamma mRNA and more TGF-beta, IL-4, and IL-10 compared with recipients of IL-12(+/+) cells. When IL-12 was added during in vitro activation, cells from both IL-12(-/-) and IL-12(+/+) donors induced severe G-EAT, and expression of all cytokines except IL-12 was comparable in thyroids of both IL-12(+/+) and IL-12(-/-) recipients. Transfer of cells from IL-12(+/+) or IL-12(-/-) donors into IL-12(+/+) or IL-12(-/-) recipients indicated that IL-12 expressed in thyroids was derived from recipients. Thus, endogenous IL-12 is not absolutely essential for the sensitization and activation of EAT effector cells to induce severe EAT, although it is required in vitro to promote activation of cells to induce severe granulomatous histopathology.  相似文献   

15.
16.
We have previously shown, that anti-L3T4 mAb treatment strongly suppressed granuloma formation in the liver, and IL-2 production in the spleen of Schistosoma mansoni-infected mice. In the present study the dynamics of IL-2 production was delineated during the infection, and the effect of rIL-2 treatment on granulomatous responsiveness was examined. IL-2 production in soluble egg Ag-stimulated spleen cells of mice was detectable at 6, peaked at 8 and waned by 20 wk of the infection. In contrast, Con A stimulus elicited high levels of IL-2 production by 8 wk which remained nearly unchanged throughout the infection. Administration of rIL-2 to acutely infected, anti-L3T4 mAb-treated, or chronically infected mice reversed the diminished or modulated granulomatous responses without restoring the ability for endogenous IL-2 production. Transfer of spleen cells of anti-L3T4 mAb-treated, chronically infected mice did not indicate a role for Ts cells in the impaired production of IL-2 in recipients. These data suggest that lack of IL-2 production can play an important role in the immunoregulation of the granulomatous response.  相似文献   

17.
Differences in mouse hepatitis virus 3 (MHV3) sensitivity among mouse strains are mainly determined by H-2-related and -nonrelated genetic factors. Reciprocal chimerism was therefore established between two H-2a compatible pairs of strains that differ widely in their susceptibility to MHV3: a) A/J and B10.A, respectively resistant and highly susceptible; b) A/J and A/Sn, respectively resistant and semisusceptible. Chimeric mice were challenged with 100 LD50 of MHV3, 30 or 90 days after X-irradiation (900 R) and bone marrow reconstitution. Results showed that sensitivity of recipients was similar either to that of the recipient strain or to that of the donor strain when chimeric mice were tested 30 or 90 days, respectively, after reconstitution. In addition, no paralysis occurred in surviving animals. These data indicate, therefore, that resistance or susceptibility to MHV3 is expressed intrinsically in some population(s) of hematopoietic-derived cells, which is radioresistant and has a life span of more than 30 days and less than 90 days. Additional experiments showed that X-irradiated A/J recipients reconstituted with A/J bone-marrow cells were protected against MHV3 challenge with spleen cells, with a mixture of spleen cell populations or of adherent spleen cells and thymocytes originating from A/J donors. Transfer of protection to recipients by using similar cell populations provided by semisusceptible A/Sn donors required the administration of five times more cells. Results suggest that two complementary mechanisms are required to confer resistance to MHV3: a) a gene(s) for resistance that may operate at the level of macrophages, and b) cells capable of mounting an efficient immune response. The reduced efficiency of A/Sn spleen cells suggests that semisusceptibility to MHV3 may be related to partial quantitative or functional immune defect.  相似文献   

18.
We have previously shown that the tolerant state in allograft recipients can be maintained and perpetuated by an "infectious" T cell-dependent regulatory mechanism. Hence, 1) treatment of LEW rats with RIB-5/2, a CD4 nondepleting mAb, produces indefinite survival of LBNF1 cardiac allografts; 2) donor-specific tolerance can be then transferred by spleen cells into new cohorts of test allograft recipients; and 3) putative regulatory CD4+ Th2-like cells are instrumental in this tolerance model. We now report on studies aimed at exposing mechanisms underlying the infectious tolerance pathway, with emphasis on the interactions between intragraft adenovirus-IL-4 gene transfer and systemic infusion of regulatory cells from tolerant hosts. Unlike individual treatment regimens, adjunctive therapy with adenovirus-IL-4 and suboptimal doses of regulatory spleen cells was strongly synergistic and extended donor-type test cardiac allograft survival to about 2 mo. RT-PCR-based expression of intragraft mRNA coding for IL-2 and IFN-gamma remained depressed, whereas that of IL-4 and IL-10 reciprocally increased selectively in the combined treatment group, data supported by ELISA studies. In parallel, only adjunctive treatment triggered intragraft induction of molecules with anti-oxidant (HO-1) and anti-apoptotic (Bcl-xL/Bag-1) but not with pro-apoptotic (CPP-32) functions, both in the early and late posttransplant phases. Hence, systemic infusion of regulatory cells potentiates the effects of local adenovirus-IL-4 gene transfer in transplant recipients. Th2-driven up-regulation of protective molecule programs at the graft site, such as of anti-oxidant HO-1 and/or anti-apoptotic Bcl-xL and Bag-1, may contribute, at least in part, to the maintenance of the infectious tolerance pathway in transplant recipients.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号