共查询到20条相似文献,搜索用时 15 毫秒
1.
Grassano A. Ronchi A.L. Lorda G. Balatti A.P. 《World journal of microbiology & biotechnology》1999,15(1):93-97
The growth rate of different strains of Bradyrhizobium and Rhizobium was studied in media containing amaranth seed meal instead of yeast extract. Results obtained in erlenmeyer flasks and stirred fermenters show that both Bradyrhizobium japonicum strains E109, E110, 5019, 587 and Rhizobium melilotistrains B36, B323, B399, Lq22, Lq42, Lq51 and U322, grow satisfactorily in amaranth seed meal medium. Cell count obtained for the strains tested was greater than 4 × 1010 viable cells.ml–1. Amaranth seed meal (4 g.l–1) is a suitable component for culture media that can be used instead of yeast extract. 相似文献
2.
微生物降解有机磷农药酶促机制 总被引:2,自引:0,他引:2
有机磷农药污染严重,微生物有机磷农药是治理有机磷农药残留的新技术,综述有机磷农药降解酶的研究现状、酶促作用机理、基因工程等方面的研究现状。 相似文献
3.
Moraxella sp., a native soil organism that grows on p-nitrophenol (PNP), was genetically engineered for the simultaneous degradation of organophosphorus (OP) pesticides and p-nitrophenol (PNP). The truncated ice nucleation protein (INPNC) anchor was used to target the pesticide-hydrolyzing enzyme, organophosphorus hydrolase (OPH), onto the surface of Moraxella sp., alleviating the potential substrate uptake limitation. A shuttle vector, pPNCO33, coding for INPNC-OPH was constructed and the translocation, surface display, and functionality of OPH were demonstrated in both E. coli and Moraxella sp. However, whole cell activity was 70-fold higher in Moraxella sp. than E. coli. The resulting Moraxella sp. degraded organophosphates as well as PNP rapidly, all within 10 h. The initial hydrolysis rate was 0.6 micromol/h/mg dry weight, 1.5 micromol/h/mg dry weight, and 9.0 micromol/h/mg dry weight for methyl parathion, parathion, and paraoxon, respectively. The possibility of rapidly degrading OP pesticides and their byproducts should open up new opportunities for improved remediation of OP nerve agents in the future. 相似文献
4.
Abstract Eighteen strains of Rhizobium including four species, R. leguminosarum, R. meliloti, R. loti and R. fredii , nine strains of Bradyrhizobium japonicum and three strains of Azorhizobium caulinodans contained putrescine and honospermidine as major polyamines. All these nodulating N2 -fixing rhizobia lack spermidine. Spermidine and cadaverine were present only in a limited number of R. meliloti and B. japonicum . Polymanine-synthetic activity was not affected by the differences in ability to produce phytoxine (rhizobitoxine and dihydrorhizobitoxine) H2 -uptake-hydrogenation in the organisms. Putrescine and homospermidine were major polyamined in a strain of Agrobacterium rhizogenes . All the eight strains of Agrobacterium tumefaciens as well as A. rubi, A. radiobacter and two other strains of A. rhizogenes contained putrescine and spermidine as major polyamines and homospermidine and spermine (and thermospermine) as minor polyamines. 相似文献
5.
Xiangyu Cao Chao Yang Ruihua Liu Qiang Li Wei Zhang Jianli Liu Cunjiang Song Chuanling Qiao Ashok Mulchandani 《Biodegradation》2013,24(2):295-303
A genetically engineered microorganism (GEM) capable of simultaneously degrading organophosphate and organochlorine pesticides was constructed for the first time by display of organophosphorus hydrolase (OPH) on the cell surface of a hexachlorocyclohexane (HCH)-degrading Sphingobium japonicum UT26. The GEM could potentially be used for removing the two classes of pesticides that may be present in mixtures at contaminated sites. A surface anchor system derived from the truncated ice nucleation protein (INPNC) from Pseudomonas syringae was used to target OPH onto the cell surface of UT26, reducing the potential substrate uptake limitation. The surface localization of INPNC–OPH fusion was verified by cell fractionation, western blot, proteinase accessibility, and immunofluorescence microscopy. Furthermore, the functionality of the surface-exposed OPH was demonstrated by OPH activity assays. Surface display of INPNC–OPH fusion (82 kDa) neither inhibited cell growth nor affected cell viability. The engineered UT26 could degrade parathion as well as γ-HCH rapidly in minimal salt medium. The removal of parathion and γ-HCH by engineered UT26 in sterile and non-sterile soil was also studied. In both soil samples, a mixture of parathion (100 mg kg?1) and γ-HCH (10 mg kg?1) could be degraded completely within 15 days. Soil treatment results indicated that the engineered UT26 is a promising multifunctional bacterium that could be used for the bioremediation of multiple pesticide-contaminated environments. 相似文献
6.
Two bacterial strains,Pyl and Py4,have been tamed and isolated through long cultivation with polycyclic aromatic hydrocarbon-pyrene as the single carbon source.It has been proven that they are both highly-efficient pyrene degrading bacteria and both Bacillus sp..The pyrene degradation ability of separated Pyl,Py4 and the consortium of equal Pyl and Py4 was studied in this project.It is shown that pyrene degradation rates were 88% in 10hr by Py1,84% in 14hr by Py4,and 88% in 8hr by the consortium.It was also determined that the best degradation temperatures were 37℃ and pH 7.0 respectively.The influence of different nutrient substrates added in the degradation experiments was also studied.It was shown that sodium salicylate,sodium acetate and yeast exuact had obvious simulative effect,but glucose had no obvious effect. 相似文献
7.
Hou Shuyu Zhang Qingmin Duo Miao Zhang Yang Sun Hongwen 《Frontiers of Biology in China》2007,2(4):387-390
Two bacterial strains, Py1 and Py4, have been tamed and isolated through long cultivation with polycyclic aromatic hydrocarbon—pyrene
as the single carbon source. It has been proven that they are both highly-efficient pyrene degrading bacteria and both Bacillus sp.. The pyrene degradation ability of separated Py1, Py4 and the consortium of equal Py1 and Py4 was studied in this project.
It is shown that pyrene degradation rates were 88% in 10hr by Py1, 84% in 14hr by Py4, and 88% in 8hr by the consortium. It
was also determined that the best degradation temperatures were 37°C and pH 7.0 respectively. The influence of different nutrient
substrates added in the degradation experiments was also studied. It was shown that sodium salicylate, sodium acetate and
yeast extract had obvious simulative effect, but glucose had no obvious effect.
__________
Translated from Acta Scientiarum Naturalium Universitatis Nankaiensis (Natural Science Edition) 2006, 39: 71–74 [译自: 南开大学学报 (自然科学版)] 相似文献
8.
Mae Grace Nillos Jay Gan Daniel Schlenk 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2010,878(17-18):1277-1284
Although the importance of chirality in organophosphorus compounds (OPs) is well recognized in relation to their biological effects, as with most chiral pesticides, OPs are generally marketed, used and released to the environment as racemates (i.e., equimolar mixtures of enantiomers). In addition, research on enantioselective environmental fate and effects of chiral OPs is still limited, particularly in the evaluation of enantioselectivity in their environmental degradation. A large number of OPs are chiral compounds, and yet enantioselectivity in their environmental fate and effects is rarely addressed. This paper highlights the current state of knowledge on the environmental occurrence and behavior of chiral OP pesticides. Developments in enantioselective analytical techniques, specifically gas chromatography (GC), high-performance liquid chromatography (HPLC) and capillary electrophoresis (CE), as applied in the evaluation of enantiomer-specific fate and effects of chiral OPs, are also discussed. 相似文献
9.
Carmen Coronado Manuel Megias Francisco Ruiz-Berraquero Antonio J. Palomares 《FEMS microbiology letters》1989,59(3):289-296
Abstract DNA fragments representatives of ndv A and ndv B have been used as probes against genomic DNAs from different Rhizobium and Bradyrhizobium species. ndv A and ndv B homologues were found in all species, indicating extensive conservation of these genes. All Rhizobium species show chromosomal localization of ndv A and ndv B homologues. 相似文献
10.
以大连地区的褐藻为材料,筛选了褐藻降解菌群,其在30℃、pH7.5条件下培养74h时,酶活达1.883IU/mL。利用硅藻土吸附法经冷冻干燥制备了固定化复合酶,分析了复合酶系的酶学性质,其最适反应温度为45℃,并在40℃~55℃范围内具有良好的热稳定性;最适pH为7.5,并在pH7.0~8.5之间pH稳定性良好。利用固定化酶进行褐藻酸钠制备,提取率达48.3%,粘度为2.9Pa·s,与传统方法相比均有显著提高,为工程化生产褐藻酸钠提供一定基础。 相似文献
11.
Soybean is extensively cultivated worldwide and is the largest source of biologically fixed nitrogen among legumes. It is nodulated by both slow and fast growing rhizobia. Indigenous soybean rhizobia in Vertisols of central India were assessed for utilization of 35 carbon sources and intrinsic resistance to 19 antibiotics. There was greater utilization of trehalose and raffinose by fast growers (87 and 73 % by fast vs. 35 and 30 % by slow growers); but slow growers had higher ability to utilize glucosamine (75 % by slow vs. 33 % by fast growers). A larger proportion of slow growers were resistant to vancomycin, polymyxin-B and rifampicin (70, 65 and 55 %) compared to fast growers (13, 7 and 7 % each). Among the two 16S rRNA sequence types in the slow growers, those belonging to Bradyrhizobium spp. utilized glucosamine while those belonging to Rhizobium radiobacter did not. All the fast growers had 16S rRNA homology to R. radiobacter and majority could not utilize glucosamine. It is suggested that during initial isolations and screening of rhizobia in strain selection programmes, using carbon sources like glucosamine and antibiotics like vancomycin, polymyxin-B and rifampicin in the media may provide a simple way of distinguishing Bradyrhizobium strains from R. radiobacter among the slow growers. 相似文献
12.
Iu S Kagan N V Kokshareva I I Tkachenko 《Biulleten' eksperimental'no? biologii i meditsiny》1986,102(9):310-312
The inhibition of neurotoxic esterase activity in chicken brain has been studied in vitro and in vivo. Aphos exposure, causing chicken paralysis, has demonstrated that the initial stage of delayed neurotoxicity was significant esterase activity inhibition (by 60-80%) within 3-24 hours after the pesticide administration. The inhibition of cholinesterase activity occurred both in the blood and sciatic nerve. The delayed conduction through peripheral nerves caused by demyelination has been revealed in the latent period (before the clinical signs of intoxication). 相似文献
13.
To elucidate the phylogenetic relationships between Thai soybean bradyrhizobia and USDA strains of Bradyrhizobium, restriction fragment length polymorphism (RFLP) analysis using the nifDK gene probe and sequencing of the partial 16S rRNA gene were performed. In our previous work, Thai isolates of Bradyrhizobium sp. (Glycine max) were separated clearly from Bradyrhizobium japonicum and Bradyrhizobium elkanii based on the RFLP analysis using the nodDYABC gene probe. RFLP analysis using the nifDK gene probe divided 14 Thai isolates and eight USDA strains of B. japonicum into different groups, respectively, but categorized into the same cluster. All of seven strains within these Thai isolates had the same sequence of the partial 16S rRNA gene, and it was an intermediate sequence between those of B. japonicum USDA 110 and B. elkanii USDA 76T. Furthermore, three USDA strains of B. japonicum, USDA of (B. japonicum ATCC 10324T), USDA 115 and USDA 129, had the same partial 16S rRNA gene sequence that seven Thai isolates had. These results suggest that Thai isolates of Bradyrhizobium sp. (Glycine max) are genetically distinct from USDA strains of B. japonicum and B. elkanii, but also indicate a close relationship between Thai isolates and USDA strains of B. japonicum. 相似文献
14.
Sawdust was composted by inoculation with a cellulose-decomposing fungus (Cephalosporium sp.) and an N2-fixing bacterium (Azospirillum brasilense). The product was investigated as a possible carrier for Bradyrhizobium, Rhizobium and Azospirillum. The simple technology and composition of the carrier supported good growth and survival of the investigated strains. Yield increases following crop inoculation with the carrier containing the Bradyrhizobium/Rhizobium/Azospirillum mixture were observed with soybean (34–62%), groundnuts (4–39%), lucerne (24–82%) and a grass mixture of bird's foot trefoil and ryegrass (20–21%). 相似文献
15.
Fungal utilization of organophosphate pesticides and their degradation byAspergillus flavus andA. sydowii in soil 总被引:1,自引:0,他引:1
H. A. H. Hasan 《Folia microbiologica》1999,44(1):77-84
Fungal species were isolated which utilize organophosphate pesticides,viz. phosphorothioic (pirimiphos-methyl and pyrazophos), phosphorodithioic (dimethoate and malathion), phosphonic (lancer) and
phosphoric (profenfos) acid derivatives. Pesticide degradation was studiedin vitro andin vivo (soil).Aspergillus flavus, A. fumigatus, A. niger, A. sydowii, A. terreus, Emericella nidulans, Fusarium oxysporum andPenicillium chrysogenum were isolated from pesticide-treated wheat straw. The number ofA. sydowii colonies was significantly promoted by 1 mmol/L pirimiphos-methyl, pyrazophos, lancer, dimethoate and malathion when used
as phosphorus sources and by pirimiphos-methyl and pyrazophos when used as carbon sources. The number ofA. flavus colonies increased with 0.5 mmol/L lancer and malathion used as the only carbon sources.A. sydowii, A. niger, A. flavus, E. nidulans andF. oxysporum grew on, and utilized, 5 pesticides as phosphorus source and showed more than 50% mass growth.A. sydowii, A. flavus andF. oxysporum phosphatase hydrolyzed the pesticides suggesting that these species are important pesticide degraders.A. sydowii produced higher amounts of the phosphatase thanA. flavus andF. oxysporum. The enzyme was highly active against pyrazophos, lancer and malathion used as the only sources of organic phosphate.A. flavus andA. sydowii phosphatases efficiently hydrolyzed pesticides at 300 ppm in soil, the degradation at 1000 ppm was lower. Mineralization
of 1000 ppm pesticides in soil amended with wheat straw was higher than in nonamended soil. All added pesticides except profenfos
were degraded within 3 weeks. Lyophilized adapted biomass ofA. flavus andA. sydowii could thus be used for field biodegradation of these pesticides. 相似文献
16.
Common loci for Agrobacterium tumefaciens and Rhizobium meliloti exopolysaccharide synthesis and their roles in plant interactions. 总被引:9,自引:24,他引:9
下载免费PDF全文

G A Cangelosi L Hung V Puvanesarajah G Stacey D A Ozga J A Leigh E W Nester 《Journal of bacteriology》1987,169(5):2086-2091
Mutants of Rhizobium meliloti have been isolated which are deficient in exopolysaccharide (EPS) production and effective nodulation of alfalfa (J. A. Leigh, E. R. Signer, and G. C. Walker, Proc. Natl. Acad. Sci. USA 82:6231-6235, 1985). We isolated approximately 100 analogous EPS-deficient (Exo) mutants of the closely related plant pathogen Agrobacterium tumefaciens, including strains whose EPS deficiencies were specifically complemented by each of five cloned R. meliloti exo loci. We also cloned A. tumefaciens genes which complemented EPS defects in three of the R. meliloti Exo mutants. In two of these cases, symbiotic defects were also complemented. All of the A. tumefaciens Exo mutants formed normal crown gall tumors on four different plant hosts, except ExoC mutants, which were nontumorigenic and unable to attach to plant cells in vitro. Like their R. meliloti counterparts, A. tumefaciens Exo mutants were deficient in production of succinoglycan, the major acidic EPS species produced by both genera. A. tumefaciens ExoC mutants also produced extremely low levels of another major EPS, cyclic 1,2-beta-D-glucan. This deficiency has been noted previously in a different set of nontumorigenic, attachment-defective A. tumefaciens mutants. 相似文献
17.
18.
甲胺磷降解细菌的分离鉴定及其降解效能的研究 总被引:3,自引:0,他引:3
从土壤中分离筛选获得两株对甲胺磷农药有较强降解效能的细菌,经鉴定分别为头状葡萄球菌(Staphylococcus capitis)(称为D菌)和粪产碱菌(Alcaligenes faecalis)(称为J菌)。D菌和J菌在甲胺磷浓度为500mg.L-1,30℃,180r.min-1摇床上用基础培养基中培养72h,对甲胺磷的降解率分别达到58.49%和65.80%。D菌和J菌混合培养可提高对甲胺磷的降解效能,对甲胺磷72h的降解率达到72.93%。 相似文献
19.
20.
Detection and separation of Rhizobium and Bradyrhizobium Nod metabolites using thin-layer chromatography. 总被引:14,自引:0,他引:14
H P Spaink A Aarts G Stacey G V Bloemberg B J Lugtenberg E P Kennedy 《Molecular plant-microbe interactions : MPMI》1992,5(1):72-80
Using radioactive acetate as a precursor, it was shown that the common nodABC genes of Rhizobium and Bradyrhizobium strains are involved in the production of one or more metabolites that are excreted into the growth medium. A rapid thin-layer chromatography (TLC) system has been developed to separate these so-called Nod metabolites that can then be visualized by autoradiography. Different patterns of Nod metabolites were observed in the tested strains of the cross-inoculation groups of R. leguminosarum bv. viceae, R. l. bv. trifolii, R. meliloti, and B. japonicum. Only Nod metabolites of R. meliloti became labeled when radioactive sulphate was present in the medium. The role of the other nodulation genes of R. l. bv. viceae in the production of the detected Nod metabolites was tested in further detail. In addition to the common nodABC genes, the nodFE and nodL genes are involved in the production of Nod metabolites. In contrast, the chromosomal background did not influence the number of detected Nod metabolites or their mobilities on TLC plates. Nod metabolites could also be produced and excreted in Escherichia coli cells in which the appropriate nodulation genes were expressed. 相似文献