共查询到20条相似文献,搜索用时 0 毫秒
1.
Recessive lethal or semilethal alleles at the T/t locus in the mouse generate new t-variants, with characteristics different from the parent allele at a rate of about 10-3. Almost invariably the variant chromosome carries marker genes derived from the opposite parental chromosome. New t-mutations obtained in this way are sometimes recessive lethals that are indistinguishable from those in already known complementation groups. Most derived t-mutations are viable, however. This paper summarizes data on the rate and types of variants produced by members of each of the six lethal complementation groups, and by semilethal alleles. It appears that particular complementation groups preferentially generate certain types of variants, and that in general, the pattern of variant production runs "uphill," that is, to less abnormal states. The data are compatible with the hypothesis that t-mutations represent some extent of altered chromosome and that variants are produced by loss of abnormal material. 相似文献
2.
Genetic chiasma interference occurs when the occurrence of one crossover (or chiasma) influences the probability of another crossover occurring nearby. We investigated, by simulation studies, the power of three statistical methods to detect interference. Neither the traditional three-locus method nor a multiplicative model approach are very powerful, while a multilocus-feasible map function approach is more powerful, particularly as the number of loci increases. We show that the power to detect interference is quite sensitive to the underlying type of interference. When we tested for interference in two mouse data sets (from chromosomes 1 and 12), we found significant evidence of positive interference. 相似文献
3.
Hamid Razzaghi Anna Tempczyk-Russell Kurt Haubold Stephanie A. Santorico Touraj Shokati Uwe Christians Mair E. A. Churchill 《PloS one》2013,8(3)
Endothelial lipase (EL) plays a pivotal role in HDL metabolism. We sought to characterize EL and its interaction with HDL as well as its natural variants genetically, functionally and structurally. We screened our biethnic population sample (n = 802) for selected missense mutations (n = 5) and identified T111I as the only common variant. Multiple linear regression analyses in Hispanic subjects revealed an unexpected association between T111I and elevated LDL-C (p-value = 0.012) and total cholesterol (p-value = 0.004). We examined lipase activity of selected missense mutants (n = 10) and found different impacts on EL function, ranging from normal to complete loss of activity. EL-HDL lipidomic analyses indicated that EL has a defined remodeling of HDL without exhaustion of the substrate and a distinct and preference for several fatty acids that are lipid mediators and known for their potent pro- and anti-inflammatory properties. Structural studies using homology modeling revealed a novel α/β motif in the C-domain, unique to EL. The EL dimer was found to have the flexibility to expand and to bind various sizes of HDL particles. The likely impact of the all known missense mutations (n = 18) on the structure of EL was examined using molecular modeling and the impact they may have on EL lipase activity using a novel structure-function slope based on their structural free energy differences. The results of this multidisciplinary approach delineated the impact of EL and its variants on HDL. Moreover, the results suggested EL to have the capacity to modulate vascular health through its role in fatty acid-based signaling pathways. 相似文献
4.
E.J. Hess 《Methods (San Diego, Calif.)》1996,10(3):374-383
As the mouse genome becomes more accessible to experimental manipulation, it is becoming feasible to assess how genes influence the expression of specific behavioral traits. The mouse mutant coloboma exhibits extreme hyperactivity resulting from an ∼2-cM deletion on mouse Chromosome 2. This deletion includes the gene encoding SNAP-25, a neuron-specific protein implicated in exocytotic neurotransmitter release. Because a deficit in this gene product might contribute to the expression of hyperactivity, a transgene expressing SNAP-25 was bred into the coloboma mouse genome to replace the missing SNAP-25 and rescue the hyperactivity. The Snap transgene was indeed sufficient to ameliorate the locomotor excesses exhibited by these mice, suggesting that SNAP-25 plays a central role in the expression of hyperactivity. In the course of designing and executing this experiment, several methodologic issues pertinent to manipulating the mouse genome in the context of a behavioral question were presented. These issues are discussed in light of the unique properties of the mouse as a behavioral genetic tool. 相似文献
5.
6.
Two genetic mouse models for human phenylketonuria have been characterized by DNA sequence analysis. For each, a distinct mutation was identified within the protein coding sequence of the phenylalanine hydroxylase gene. This establishes that the mutated locus is the same as that causing human phenylketonuria and allows a comparison between these mouse phenylketonuria models and the human disease. A genotype/phenotype relationship that is strikingly similar to the human disease emerges, underscoring the similarity of phenylketonuria in mouse and man. InPAHENU1,the phenotype is mild. ThePahenu1mutation predicts a conservative valine to alanine amino acid substitution and is located in exon 3, a gene region where serious mutations are rare in humans. InPAHENU2,the phenotype is severe. ThePahenu2mutation predicts a radical phenylalanine to serine substitution and is located in exon 7, a gene region where serious mutations are common in humans. InPAHENU2,the sequence information was used to devise a direct genotyping system based on the creation of a newAlw26I restriction endonuclease site. 相似文献
7.
8.
Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED) are skeletal disorders resulting from mutations in COMP, matrilin-3 or collagen IX and are characterised by short-limbed dwarfism and premature osteoarthritis. Interestingly, recent reports suggest patients can also manifest with muscle weakness. Here we present a detailed analysis of two mouse models of the PSACH/MED disease spectrum; ΔD469 T3-COMP (PSACH) and V194D matrilin-3 (MED). In grip test experiments T3-COMP mice were weaker than wild-type littermates, whereas V194D mice behaved as controls, confirming that short-limbed dwarfism alone does not contribute to PSACH/MED-related muscle weakness. Muscles from T3-COMP mice showed an increase in centronuclear fibers at the myotendinous junction. T3-COMP tendons became more lax in cyclic testing and showed thicker collagen fibers when compared with wild-type tissue; matrilin-3 mutant tissues were indistinguishable from controls. This comprehensive study of the myopathy associated with PSACH/MED mutations enables a better understanding of the disease progression, confirms that it is genotype specific and that the limb weakness originates from muscle and tendon pathology rather than short-limbed dwarfism itself. Since some patients are primarily diagnosed with neuromuscular symptoms, this study will facilitate better awareness of the differential diagnoses that might be associated with the PSACH/MED spectrum and subsequent care of PSACH/MED patients. 相似文献
9.
The mouse Ulnaless locus is a semidominant mutation which displays defects in patterning along the proximal-distal and anterior-posterior axes of all four limbs. The first Ulnaless homozygotes have been generated, and they display a similar, though slightly more severe, limb phenotype than the heterozygotes. To create a refined genetic map of the Ulnaless region using molecular markers, four backcrosses segregating Ulnaless were established. A 0.4-cM interval containing the Ulnaless locus has been defined on mouse chromosome 2, which has identified Ulnaless as a possible allele of a Hoxd cluster gene(s). With this genetic map as a framework, a physical map of the Ulnaless region has been completed. Yeast artificial chromosomes covering this region have been isolated and ordered into a 2 Mb contig. Therefore, the region that must contain the Ulnaless locus has been defined and cloned, which will be invaluable for the identification of the molecular nature of the Ulnaless mutation. 相似文献
10.
Genetic Studies of Membrane Excitability in Drosophila: Lethal Interaction between Two Temperature-Sensitive Paralytic Mutations 总被引:1,自引:3,他引:1
Barry Ganetzky 《Genetics》1984,108(4):897-911
Two mutants of Drosophila melanogaster, para ts1 (1-53.9) and napts (2-56.2) both display similar temperature-sensitive paralysis associated with blockage in the conduction of nerve action potentials, suggesting that the two gene products have a similar function. This idea is supported by the observation that the double mutant is unconditionally lethal. Genetic analysis of this synergistic interaction has revealed the following: 1) it specifically involves the para and nap loci; (2) all para alleles interact with napts, but the strength of the interaction varies in an allele-dependent fashion; (3) lethality of the double mutant occurs during the first larval instar with parats1 but differs with other para alleles; (4) hypodosage of para + causes lethality in a napts background. These results together with previous electrophysiological, behavioral and pharmacological studies of these mutants suggest that both para and nap affect sodium channels and possibly encode different subunits. 相似文献
11.
Michael F. Seldin 《Methods (San Diego, Calif.)》1997,13(4):445-457
The wealth of databases containing genomic information and the easy access via the internet can be an invaluable tool in performing genetic studies and identifying important sequences. This article provides an overview and specific methods for using these resources in both positional cloning and identifying candidate genes for diseases and phenotypes. The ability to apply information across the mouse and human species is stressed. Useful internet sites and their contents are identified and described, and some understanding of their current limitations is provided. As additional genomic definition accelerates, the use of these tools will become more essential in cutting edge research linking sequence and function in whole mammalian organisms. 相似文献
12.
《Genomics》1995,29(3)
The BRCA1 gene is in large part responsible for hereditary human breast and ovarian cancer. Here we report the isolation of the murineBrca1homologue cDNA clones. In addition, we identified genomic P1 clones that contain most, if not all, of the mouseBrca1locus. DNA sequence analysis revealed that the mouse and human coding regions are 75% identical at the nucleotide level while the predicted amino acid identity is only 58%. A DNA sequence variant in theBrca1locus was identified and used to map this gene on a (Mus m. musculusCzech II × C57BL/KsJ)F1 × C57BL/KsJ intersubspecific backcross to distal mouse chromosome 11. The mapping of this gene to a region highly syntenic with human chromosome 17, coupled with Southern and Northern analyses, confirms that we isolated the murineBrca1homologue rather than a related RING finger gene. The isolation of the mouseBrca1homologue will facilitate the creation of mouse models for germline BRCA1 defects. 相似文献
13.
14.
15.
Linda D. Siracusa Liane B. Russell Eva M. Eicher Dorcas J. Corrow Neal G. Copeland Nancy A. Jenkins 《Genetics》1987,117(1):93-100
The agouti locus on mouse chromosome 2 acts via the hair follicle to control the melanic type and distribution of hair pigments. The diverse phenotypes associated with various agouti mutations have led to speculation about the organization of the agouti locus. Earlier studies indicated that two presumed agouti alleles, lethal yellow (Ay) and lethal light-bellied nonagouti (ax), are pseudoallelic. We present genetic data showing probable recombination between Ay and three agouti mutations (at, a, and ax), which suggest that Ay is a pseudoallele of the agouti locus. The close linkage of an endogenous ecotropic murine leukemia provirus, Emv-15, to Ay provides a molecular access to genes at or near the agouti locus. However, previous studies suggested that the Emv-15 locus can recombine with some agouti alleles and therefore we analyzed mice from recombinant inbred strains and backcrosses to measure the genetic distance between various agouti alleles and the Emv-15 locus. Our data indicate that the Emv-15 locus is less than 0.3 cM from the agouti locus. These experiments provide a conceptual framework for initiating chromosome walking experiments designed to retrieve sequences from the agouti locus and give new insight into the genetic organization of the agouti region. 相似文献
16.
Melanosomes and lysosomes share several structural and biosynthetic properties. Therefore, a large number of mouse pigment mutants were tested to determine whether genes affecting melanosome structure of function might also affect the lysosome. Among 31 mouse pigment mutants, six had 1.5- to 2.5-fold increased concentrations of kidney beta-glucuronidase. Three mutants, pale ear, pearl and pallid, had a generalized effect on lysosomal enzymes since there were coordinate increases in kidney beta-galactosidase and alpha-mannosidase. The effects of these three mutations are lysosome specific since rates of kidney protein synthesis and activities of three nonlysosomal kidney enzymes were normal. Also, the mutants are relatively tissue specific in that all had normal liver lysosomal enzyme concentrations.--A common dysfunction in all three mutants was a lowered rate of lysosomal enzyme secretion from kidney into urine. While normal C57BL/6J mice daily secreted 27 to 30% of total kidney beta-glucuronidase and beta-galactosidase, secretion of these two enzymes was coordinately depressed to 1 to 2%, 8 to 9% and 4 to 5% of total kidney enzyme in the pale-ear, pearl and pallid mutants, respectively. Although depressed lysosomal enzyme secretion is the major pigment mutant alteration, the higher lysomal enzyme concentrations in pearl and pallid may be partly due to an increase in lysosomal enzyme synthesis. In these mutants kidney glucuronidase synthetic rate was increased 1.4- to 1.5-fold.--These results suggest that there are several critical genes in mammals that control the biogenesis, processing and/or function of related classes of subcellular organelles. The mechanism of action of these genes is amenable to further analysis since they have been incorporated into congenic inbred strains of mice. 相似文献
17.
The relationship between multidimensional form of the adult mouse mandible and body size is examined from an ontogenetic perspective. The origin and ontogeny of phenotypic correlations are described in terms of genetic and environmental covariance patterns between adult skeletal morphology and growth in body weight. Different ontogenetic patterns are observed in the genetic correlations, and these can be related to the developmental as well as the functional aspects of mandibular form. The quantitative genetic aspects of craniomandibular growth and morphogenesis are explored, together with an examination of the impact of ontogenetic changes in the genetic variance-covariance structure on morphogenetic integration and evolution by selection. 相似文献
18.
Two Dominant Mutations in the Mouse Fused Gene Are the Result of Transposon Insertions 总被引:4,自引:0,他引:4
下载免费PDF全文

T. J. Vasicek L. Zeng X. J. Guan T. Zhang F. Costantini S. M. Tilghman 《Genetics》1997,147(2):777-786
19.
We have isolated and characterized extragenic suppressors of mutations in two different target genes that affect DNA replication in Salmonella typhimurium. Both the target and the suppressor genes are functional homologues of known replication genes of E. coli that were identified in intergeneric complementation tests. Our results point to interactions in vivo involving the dnaB and dnaC proteins in one case and the dnaQ and dnaE proteins in the other case. The suppressor mutations, which were isolated as derivatives of lambda-Salmonella in vitro recombinants, were detected by an adaptation of the red plaque complementation assay. This method was applicable even when the locus of suppressor mutations was not chosen in advance. 相似文献
20.
Mutations Causing Constitutive Invertase Synthesis in Yeast: Genetic Interactions with snf Mutations 总被引:26,自引:6,他引:26
下载免费PDF全文

We have selected 210 mutants able to grow on sucrose in the presence of 2-deoxyglucose. We identified recessive mutations in three major complementation groups that cause constitutive (glucose-insensitive) secreted invertase synthesis. Two groups comprise alleles of the previously identified HXK2 and REG1 genes, and the third group was designated cid1 (constitutive invertase derepression). The effect of cid1 on SUC2 expression is mediated by the SUC2 upstream regulatory region, as judged by the constitutive expression of a SUC2-LEU2-lacZ fusion in which the LEU2 promoter is under control of SUC2 upstream sequences. A cid1 mutation also causes glucose-insensitive expression of maltase. The previously isolated constitutive mutation ssn6 is epistatic to cid1, reg1 and hxk2 for very high level constitutive invertase expression. Mutations in SNF genes that prevent derepression of invertase are epistatic to cid1, reg1 and hxk2; we have previously shown that ssn6 has different epistasis relationships with snf mutations. The constitutive mutation tup1 was found to resemble ssn6 in its genetic interactions with snf mutations. These findings suggest that CID1, REG1 and HXK2 are functionally distinct from SSN6 and TUP1. 相似文献