首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonas aeruginosa is a prolific exporter of virulence factors and contains three of the four protein secretion systems that have been described in Gram-negative bacteria. The P. aeruginosa type II general secretory pathway (GSP) is used to export the largest number of proteins from this organism, including lipase, phospholipase C, alkaline phosphatase, exotoxin A, elastase and LasA. Although these exoproteins contain no sequence similarity, they are specifically and efficiently transported by the secretion apparatus. Bacterial homologues of XcpQ (GspD), the only outer membrane component of this system, have been proposed to play the role of gatekeeper, by presumably interacting and recognizing the exported substrates to allow their passage through the outer membrane. While determining the phenotype of non-polar deletions in each of the xcp genes, we have shown that a deletion of the P. aeruginosa strain K xcpQ does not completely abolish protein secretion. As the proposed function of XcpQ should be requisite for secretion, we searched for additional factors that could carry out this role. A cosmid DNA library from a PAK strain deleted for xcpP-Z was tested for its ability to increase protein secretion by screening for enhanced growth on lipid agar, a medium that selects for the secretion of lipase. In this manner, we have identified an XcpQ homologue, XqhA, that is solely responsible for the residual export observed in a Δ xcpQ strain, although it is not required for efficient secretion in wild-type P. aeruginosa . We have also demonstrated that this protein is capable of recognizing all of the exoproteins of P. aeruginosa , arguing against the proposed role of members of the secretin family as determinants of specificity.  相似文献   

2.
The PulO protein required for extracellular secretion of pullulanase by Klebsiella oxytoca is known to be highly homologous to two type IV prepilin peptidases, namely XcpA(PilD) (Pseudomonas aeruginosa) and TcpJ (Vibrio cholerae). The predicted prepilin peptidase activity of PulO was confirmed by showing that it could correctly process the product of the cloned pilE.1 type IV pilin structural gene from Neisseria gonorrhoeae in Escherichia coli. The P. aeruginosa prepilin peptidase and another putative prepilin peptidase, ComC from Bacillus subtilis, also processed prePilE. Subcellular fractionation showed that the pilE gene product that had been processed by PulO remained associated with the cytoplasmic membrane, as did the unprocessed precursor. PulO was also shown to process three of the four prePilE-PhoA hybrids tested. Southern hybridization experiments suggest that a pulO homologue is present in the N. gonorrhoeae chromosome.  相似文献   

3.
The gram-negative bacterium Pseudomonas aeruginosa secretes many proteins into its extracellular environment via the type I, II, and III secretion systems. In this study, a gene, chiC, coding for an extracellular chitinolytic enzyme, was identified. The chiC gene encodes a polypeptide of 483 amino acid residues, without a typical N-terminal signal sequence. Nevertheless, an N-terminal segment of 11 residues was found to be cleaved off in the secreted protein. The protein shows sequence similarity to the secreted chitinases ChiC of Serratia marcescens, ChiA of Vibrio harveyi, and ChiD of Bacillus circulans and consists of an activity domain and a chitin-binding domain, which are separated by a fibronectin type III domain. ChiC was able to bind and degrade colloidal chitin and was active on the artificial substrates carboxymethyl-chitin-Remazol Brilliant Violet and p-nitrophenyl-beta-D-N,N',N"-triacetylchitotriose, but not on p-nitrophenyl-beta-D-N-acetylglucosamine, indicating that it is an endochitinase. Expression of the chiC gene appears to be regulated by the quorum-sensing system of P. aeruginosa, since this gene was not expressed in a lasIR vsmI mutant. After overnight growth, the majority of the ChiC produced was found intracellularly, whereas only small amounts were detected in the culture medium. However, after several days, the cellular pool of ChiC was largely depleted, and the protein was found in the culture medium. This release could not be ascribed to cell lysis. Since ChiC did not appear to be secreted via any of the known secretion systems, a novel secretion pathway seems to be involved.  相似文献   

4.
Type III secretion is used by many gram-negative bacterial pathogens to directly deliver protein toxins (effectors) into targeted host cells. In all cases, secretion of effectors is triggered by host cell contact, although the mechanism is unclear. In Pseudomonas aeruginosa, expression of all type III secretion-related genes is up-regulated when secretion is triggered. We were able to visualize this process using a green fluorescent protein reporter system and to use it to monitor the ability of bacteria to trigger effector secretion on cell contact. Surprisingly, the action of one of the major type III secreted effectors, ExoS, prevented triggering of type III secretion by bacteria that subsequently attached to cells, suggesting that triggering of secretion is feedback regulated. Evidence is presented that translocation (secretion of effectors across the host cell plasma membrane) of ExoS is indeed self-regulated and that this inhibition of translocation can be achieved by either of its two enzymatic activities. The translocator proteins PopB, PopD, and PcrV are secreted via the type III secretion system and are required for pore formation and translocation of effectors across the host cell plasma membrane. Here we present data that secretion of translocators is in fact not controlled by calcium, implying that triggering of effector secretion on cell contact represents a switch in secretion specificity, rather than a triggering of secretion per se. The requirement for a host cell cofactor to control effector secretion may help explain the recently observed phenomenon of target cell specificity in both the Yersinia and P. aeruginosa type III secretion systems.  相似文献   

5.
In a search for factors that could contribute to the ability of the plant growth-stimulating Pseudomonas putida WCS358 to colonize plant roots, the organism was analyzed for the presence of genes required for pilus biosynthesis. The pilD gene of Pseudomonas aeruginosa, which has also been designated xcpA, is involved in protein secretion and in the biogenesis of type IV pili. It encodes a peptidase that processes the precursors of the pilin subunits and of several components of the secretion apparatus. Prepilin processing activity could be demonstrated in P. putida WCS358, suggesting that this nonpathogenic strain may contain type IV pili as well. A DNA fragment containing the pilD (xcpA) gene of P. putida was cloned and found to complement a pilD (xcpA) mutation in P. aeruginosa. Nucleotide sequencing revealed, next to the pilD (xcpA) gene, the presence of two additional genes, pilA and pilC, that are highly homologous to genes involved in the biogenesis of type IV pili. The pilA gene encodes the pilin subunit, and pilC is an accessory gene, required for the assembly of the subunits into pili. In comparison with the pil gene cluster in P. aeruginosa, a gene homologous to pilB is lacking in the P. putida gene cluster. Pili were not detected on the cell surface of P. putida itself, not even when pilA was expressed from the tac promoter on a plasmid, indicating that not all the genes required for pilus biogenesis were expressed under the conditions tested. Expression of pilA of P. putida in P. aeruginosa resulted in the production of pili containing P. putida PilA subunits.  相似文献   

6.
Bacterial type III secretion system drives the translocation of virulence factors into the cystosol of host target cells. In phagocytes and in Epstein-Barr virus immortalized B lymphocytes, NADPH oxidase generates O(-2) through an electron transfer chain the activity of which depends on the assembly of three, p67(phox), p47(phox) and p40(phox) cytosolic activating factors with Rac 1/2 and a membrane redox component, cytochrome b(558). In p67(phox) deficient chronic granulomatous disease (CGD) patients, p67-phox is missing and NADPH oxidase activity is abolished. ExoS is a virulence factor of Pseudomonas aeruginosa which is secreted via the type III secretion system: it was fused with p67(phox). Pseudomonas aeruginosa synthesized and translocated the hybrid ExoS-p67(phox) fusion protein into the cytosol of B lymphocytes via the type III secretion system. Purified ExoS-p67(phox) hybrid protein was as efficient as normal recombinant p67(phox) in cell-free reconstitution of NADPH oxidase activity. Therefore, ExoS-p67(phox) was transferred via the type III secretion system of Pseudomonas aeruginosa into the cytosol of B lymphocytes from a p67(phox)-deficient CGD patient and functionally reconstituted NADPH oxidase activity. In the complementation process, ExoS acted as a molecular courier for protein delivery: the reconstitution of an active NADPH oxidase complex suggests type III secretion system to be a new approach for cellular therapy.  相似文献   

7.
Pseudomonas aeruginosa, a Gram-negative opportunistic pathogen, translocates exoenzymes (Exo) directly into the eukaryotic cell cytoplasm. This is accomplished by a type III secretion/translocation machinery. Here, we show that the P. aeruginosa type III secretory needle structure is composed essentially of PscF, a protein required for secretion and P. aeruginosa cytotoxicity. Partially purified needles, detached from the bacterial surface, are 60-80 nm in length and 7 nm in width, resembling needles from Yersinia spp.. YscF of Yersinia enterocolitica was able to functionally complement the pscF deletion, but required 11 P. aeruginosa-specific amino acids at the N-terminus for its function.  相似文献   

8.
We have developed a simple, reproducible and rapid genetic screen for Pseudomonas aeruginosa -induced epithelial cell cytotoxicity in cultures of MDCK cells. This screen was used to isolate isogenic transposon-tagged non-cytotoxic mutants of a cytotoxic and lung-virulent strain of P. aeruginosa (PA103). The transposon-insertion site was determined by using an inverse polymerase chain reaction followed by DNA-sequence analysis. On the basis of phenotype and sequence analysis, these mutants fell into four classes. One class had absent or defective pili, based on their resistance to phage PO4 and/or loss of twitching motility (twt). A second class exhibited decreased adherence. A third class of mutants exhibited probable defects in the machinery or targets of type III protein secretion. A final class of mutants exhibited decreased but not absent cytotoxicity. This class included members of the first three classes as well as other mutants. These results suggest that localized cytotoxicity is likely to require several steps and several components, including pili and other (unidentified) extracellular proteins. The type III protein-secretion apparatus appears to be involved in this process.  相似文献   

9.
The effects of rabbit-derived polyclonal Ab against PcrV, a protein involved in the translocation of type III secreted toxins of Pseudomonas aeruginosa, was investigated in two animal models of P. aeruginosa sepsis. In a mouse survival study, the i.v. administration of anti-PcrV IgG after the airspace instillation of a lethal dose of P. aeruginosa resulted in the complete survival of the animals. In a rabbit model of septic shock associated with Pseudomonas-induced lung injury, animals treated with anti-PcrV IgG intratracheally or i.v. had significant decreases in lung injury, bacteremia, and plasma TNF-alpha and significant improvement in the hemodynamic parameters associated with shock compared with animals treated in a similar manner with nonspecific control IgG. The administration of anti-PcrV F(ab')(2) showed protective effects comparable to those of whole anti-PcrV IgG. These results document that the therapeutic administration of anti-PcrV IgG blocks the type III secretion system-mediated virulence of P. aeruginosa and prevents septic shock and death, and that these protective effects are largely Fc independent. We conclude that Ab therapy neutralizing the type III secretion system has significant potential against lethal P. aeruginosa infections.  相似文献   

10.
Abstract This study was undertaken to examine if receptor recognizing saccharides may be involved in the adherence of Pseudomonas aeruginosa to collagen type I and type II. We performed an adherence inhibition assay: cells of individual P. aeruginosa isolates attached to immobilized collagen type I or type II in the presence of monosaccharides, which could serve as blockers of bacterial receptors. Bacterial binding to collagen type I molecules was inhibited to the highest degree by sugar composition d -galactose/ d -mannose/ N -acetylneuraminic acid (5:5:1), whereas attachment of P. aeruginosa to collagen type II was inhibited by composition d -glucose/ d -galactose (1:1). The same strains which were sensitive to inhibition of binding to collagen type II by both collagen types, were also sensitive to blocking by composition d -glucose/ d -galactose. It suggests that saccharides play a role in adherence of P. aeruginosa to collagen type I and type II, and a common receptor for both types of collagen may be available on the surface of P. aeruginosa cells.  相似文献   

11.
The proteomes of cultured Pseudomonas aeruginosa isolates from chronically infected cystic fibrosis (CF) lungs were compared by using genetically divergent clones and isogenic morphotypes of one strain. Cellular extracts gave very similar protein patterns in two-dimensional gels, suggesting that the conserved species-specific core genome encodes proteins that are expressed under standard culture conditions in vitro. In contrast, the protein profiles of extracts of culture supernatants were dependent on the growth phase, and there were significant differences between clones. The profiles also varied within clonally related morphotypes from one CF patient, including a hyperpiliated small-colony variant. Mass spectrometry revealed that this variant overexpressed proteins secreted by the type I secretion system (including proteins involved in iron acquisition) and by the type III secretion system. Furthermore, the proteins in the supernatant extracts from the small-colony variant which were recognized by sera from different CF patients varied greatly. We concluded that the secretome expression is a sensitive measure of P. aeruginosa strain variation.  相似文献   

12.
Type IV pilins and pseudopilins are found in various prokaryotic envelope protein complexes, including type IV pili and type II secretion machineries of gram-negative bacteria, competence systems of gram-positive bacteria, and flagella and sugar-binding structures in members of the archaeal kingdom. The precursors of these proteins have highly conserved N termini, consisting of a short, positively charged leader peptide, which is cleaved off by a dedicated peptidase during maturation, and a hydrophobic stretch of approximately 20 amino acid residues. Which pathway is involved in the inner membrane translocation of these proteins is unknown. We used XcpT, the major pseudopilin from the type II secretion machinery of Pseudomonas aeruginosa, as a model to study this process. Transport of an XcpT-PhoA hybrid was shown to occur in the absence of other Xcp components in P. aeruginosa and in Escherichia coli. Experiments with conditional sec mutants and reporter-protein fusions showed that this transport process involves the cotranslational signal recognition particle targeting route and is dependent on a functional Sec translocon.  相似文献   

13.
Lipoprotein I (OprI) is one of the major proteins of the outer membrane of Pseudomonas aeruginosa. Like porin protein F (OprF), it is a vaccine candidate because it antigenically cross-reacts with all serotype strains of the International Antigenic Typing Scheme. Since lipoprotein I was expressed in Escherichia coli under the control of its own promoter, we were able to isolate the gene by screening a lambda EMBL3 phage library with a mouse monoclonal antibody directed against lipoprotein I. The monocistronic OprI mRNA encodes a precursor protein of 83 amino acid residues including a signal peptide of 19 residues. The mature protein has a molecular weight of 6,950, not including bound glycerol and lipid. Although the amino acid sequences of protein I of P. aeruginosa and Braun's lipoprotein of E. coli differ considerably (only 30.1% identical amino acid residues), peptidoglycan in E. coli, are identical. Using lipoprotein I expressed in E. coli, it can now be tested whether this protein alone, without P. aeruginosa lipopolysaccharide contaminations, has a protective effect against P. aeruginosa infections.  相似文献   

14.
In gram-negative bacteria, type II secretion systems assemble a piston-like structure, called pseudopilus, which expels exoproteins out of the cell. The pseudopilus is constituted by a major pseudopilin that when overproduced multimerizes into a long cell surface structure named hyper-pseudopilus. Pseudomonas aeruginosa possesses two type II secretion systems, Xcp and Hxc. Although major pseudopilins are exchangeable among type II secretion systems, we show that XcpT and HxcT are not. We demonstrate that HxcT does not form a hyper-pseudopilus and is different in amino acid sequence and multimerization properties. Using structure-based mutagenesis, we observe that five mutations are sufficient to revert HxcT into a functional XcpT-like protein, which also becomes capable of forming a hyper-pseudopilus. Phylogenetic and experimental analysis showed that the whole Hxc system was acquired by P. aeruginosa PAO1 and other Pseudomonas species through horizontal gene transfer. We thus identified a new type II secretion subfamily, of which the P. aeruginosa Hxc system is the archetype. This finding demonstrates how similar bacterial machineries evolve toward distinct mechanisms that may contribute specific functions.  相似文献   

15.
16.
Our freshwater caulobacter collection contains about 40 strains that are morphologically similar to Caulobacter crescentus. All elaborate a crystalline protein surface (S) layer made up of protein monomers 100-193 kDa in size. We conducted a comparative study of S-layer secretion in 6 strains representing 3 size groups of S-layer proteins: small (100-108 kDa), medium (122-151 kDa), and large (181-193 kDa). All contained genes predicted to encode ATP-binding cassette transporters and membrane fusion proteins highly similar to those of C. crescentus, indicating that the S-layer proteins were all secreted by a type I system. The S-layer proteins' C-termini showed unexpectedly low sequence similarity but contained conserved residues and predicted secondary structure features typical of type I secretion signals. Cross-expression studies showed that the 6 strains recognized secretion signals from C. crescentus and Pseudomonas aeruginosa and similarly that C. crescentus was able to secrete the S-layer protein C-terminus of 1 strain examined. Inactivation of the ATP-binding cassette transporter abolished S-layer protein secretion, indicating that the type I transporter is necessary for S-layer protein secretion. Finally, while all of the S-layer proteins of this subset of strains were secreted by type I mechanisms, there were significant differences in genome positions of the transporter genes that correlated with S-layer protein size.  相似文献   

17.
Type III secretion-mediated cytotoxicity is one of the key virulence mechanisms of the opportunistic pathogen Pseudomonas aeruginosa. Prior data from several laboratories have established that metabolism is a key factor in the regulation of type III secretion gene expression in P. aeruginosa. Here we use a fluorescence-activated cell sorter (FACS)-based approach to investigate expression of type III secretion genes at a single-cell level. The data demonstrate that the metabolic state regulates the percentage of cells that are able to induce type III secretion gene expression under inducing conditions. We also present evidence that this regulation is the result of an effect of the growth conditions on the ability of P. aeruginosa to assemble a functional type III secretion apparatus. Preliminary data suggest that the metabolite that controls type III secretion gene expression is derived from acetyl-CoA and that this regulation may, in part, be mediated by changes in the intracellular concentration of cyclic-AMP.  相似文献   

18.
xcp mutations have pleiotropic effects on the secretion of proteins in Pseudomonas aeruginosa PAO. The nucleotide sequence of a 1.2-kb DNA fragment that complements the xcp-1 mutation has been determined. Sequence analysis shows the xcpA gene product to be a 31.8-kDa polypeptide, with a highly hydrophobic character. This is consistent with a localization in the cytoplasmic membrane in P. aeruginosa, determined after specific expression of the xcpA gene under control of the T7 phi 10 promoter. A very strong homology was found between XcpA and PulO, a membrane protein required for pullulanase secretion in Klebsiella pneumoniae. This suggests the existence of a signal sequence-dependent secretion process common to these two unrelated gram-negative bacteria.  相似文献   

19.
20.
Type IV pre-pilin leader peptidase was demonstrated to be required for protein secretion, in addition to its involvement in biogenesis of type IV pili. The type IV pre-pilin leader peptidase gene of Xanthomonas campestris pv. campestris was located on a 3 kb Acc l fragment on account of its hybridization with the DNA fragment containing the type IV pre-pilin leader-peptidase gene pilD/xcpA of Pseudomonas aeruginosa . Sequencing of the cloned fragment revealed an open reading frame (ORF) (designated xpsO ) of 287 amino acid residues. A protein with an apparent molecular mass of approximately 32.5 kDa was synthesized in vitro from a DNA fragment containing the xpsO gene. The amino acid sequence shares 50% identity with that of PilD throughout the entire sequence. Among other type IV pre-pilin leader peptidases, XpsO is unique in not having the two conserved -CXXC- motifs in a cytoplasmic domain. Instead, new motifs were noted when the protein was compared with XpsE, which is another member of the extracellular protein-secretion machinery. When the xpsO gene was introduced into the pilD mutant of P. aeruginosa , both the sensitivity against infection with the pilus-specific phage PO4 and the ability to secrete extracellular protein were recovered. Furthermore, immunoblot analysis indicated that the P. aeruginosa pilin was apparently processed in vivo by the xpsO gene product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号