首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Leaf and hypocotyl explants of 15 days old aseptically grown seedlings of Solanum laciniatum were cultured on MS medium supplemented with NAA (2 mg/l) and kinetin (0.5 mg/l) for callus initiation. For maintenance and proliferation of callus MS medium supplemented with 2,4-D (1 mg/l) and kinetin (0.5 mg/l) was used. The growth of the calli derived from hypocotyls increased with time of incubation and remained almost constant after 45 days. The solasodine content in callus culture was maximum after 30 days of incubation. Addition of L-arginine in the medium (50-150 mg/l) increased growth as well as chlorophyll content in the callus culture. The solasodine content also increased up to 1.2 to 1.4 times in these cultures. High frequency shoot regeneration was obtained in MS medium having BA (4 mg/l) and IBA (0.25 mg/l). For shoot multiplication, MS medium having BA (4 mg/l) was used. Shoots rooted on the same medium. Organogenesis promoted solasodine accumulation in the cultures. Regenerated shoots yielded higher solasodine content than undifferentiated as well as organogenic callus. Solasodine contents in the regenerated shoots was found to be 10 times higher than the callus culture and approached towards the field grown plants. Thin layer chromatography revealed the presence of three compounds. The most predominant spot (Rf 0.789) corresponded to the reference solasodine.  相似文献   

2.
红豆草耐盐愈伤组织的筛选及植株再生   总被引:13,自引:3,他引:10  
将红豆草种子在含1.2%NaCl的MS培养基上萌发以消除盐敏感的幼苗,把存活的幼苗下胚轴切段在含1mg/L2,4-D、0.5mg/L6-BA及1.2%NaCl的MS培养基上诱导愈伤组织,通过连续筛选得到可耐受1.8%NaCl的愈伤组织,在有0.2mg/L NAA和1mg/L IAA存在下该愈伤组织分化出芽,待幼,待幼苗长至3cm左右时转至含2mg/LNAA和或IBA的1/2MS培养基上生根。对对照  相似文献   

3.
Tagetes minuta is a source of secondary products which are used as pharmaceuticals, pesticides and as flavour components in the food industry. Cotyledons and hypocotyls of T. minuta were cultured on MS medium with combinations of IAA or NAA and BA. Hypocotyl-derived callus developed adventitious shoots which failed to develop further. Cotyledon-derived callus, cultured on medium with IAA, regenerated adventitious shoots which developed into plantlets on MS medium or half-strength MS with 2.85 μM IAA. Cotyledons cultured on medium with 5.71 μM IAA + 44.4 μM BA and transferred to MS medium for shoot growth yielded the highest number of shoots. Nodal segments from developing shoots were micropropagated on half-strength MS medium with 2.58 μM IAA and 95% of plantlets produced adapted successfully to greenhouse conditions. In vitro plants micropropagated from nodes had many shoots whereas plants regenerated from shoot tips had only a single main stem. This difference in morphology was retained after two months growth in a greenhouse. There were no significant differences in leaf and shoot fresh and dry weights among the regenerated plants after two months growth. After six subcultures of cotyledon-derived callus on medium with IAA and BA all explants lost their ability to regenerate except those cultured on medium with 17.23 μM IAA and 44.4 μM BA. The methods of regeneration developed will facilitate selection of T. minuta plants more tolerant of environmental stress, their micropropagation, and the in vitro production of secondary products. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
In vitro adventitious shoots (about 28) of Clerodendrum inerme were regenerated from leaf segments on MS medium containing BA (4 mg/L). These shoots developed directly from the leaf explants without callusing after 5 weeks. Leaf explant when cultured in MS medium containing BA (2 mg/L) and NAA (0.5 mg/L) developed compact callus that became nodular and regenerated shoots (about 50) after 5 weeks. The in vitro developed shoots were rooted in MS medium supplemented with IAA (2 mg/L). The hardened plantlets were successfully established in the field with 90% survival.  相似文献   

5.
大果良种沙棘愈伤组织诱导及植株再生的研究   总被引:18,自引:1,他引:17  
李师翁  卢东平等 《西北植物学报》2001,21(2):262-266,T002
大果良种沙棘的幼嫩茎尖,茎段外植体接种在MS,1/2MS附加不同浓度配比的IAA,IBA,BA,NAA培养基上可诱导茎尖及腋芽生长,将诱导产生的无性系芽接种在MS或1/2MS附加BA0.3-0.5mg/L,NAA0.05mg/L的培养基上可形成丛生芽,同时在小叶片和嫩茎上诱导产生愈伤组织,继续培养愈伤组织表面形成大量的绿色突起,进一步分化成不定芽,在相同培养基上,不定芽上可直接产生不定芽,从而形成多达数百个的不定芽族,不定芽长至3cm时切下转至1/2MS附加IAA或IBA 0.2mg/L的培养基上可生根而形成完整 的再生植株。  相似文献   

6.
Nickel tolerant callus lines of Setaria italica L. were developed from callus cultures grown on MS medium supplemented with 0.5 mg·dm−3 kinetin+2.0 mg·dm−3 2,4-D+2.0 mg·dm−3 Ni+2. Standard growth parameters such as callus fresh and dry weight, growth tolerance index were used as indicators of nickel toxicity. Measurements as early as 2 weeks after the beginning of the treatments did not yield consistent results. However, growth tolerance index at 4, and 8 weeks after the beginning of treatments yielded significant differences among the non-tolerant and tolerant calli. The tolerant calli has enhanced growth at 2.0 mg·dm−3 Ni+2 while non-tolerant calli showed a reverse trend in growth in the presence of 2.0–2.5 mg·dm−3 of nickel. The tolerant calli differentiated into mass of embryogenic calli within 4 weeks of culture which could be maintained for prolonged period without loss of regenerative capacity.  相似文献   

7.
2.4-D、6-BA对人参体细胞胚胎发生过程的影响研究   总被引:1,自引:0,他引:1  
本实验以人参芽胞、二年生人参根、实生苗的茎、叶为外植体研究了体细胞胚的发生条件,并对其发生过程中可溶性蛋白、相关酶活性及内源激素的变化等进行了研究。结果表明,诱导愈伤组织的培养基为MS+2,4-D 4.0mg/L + BA 0.2mg/L;在MS+2,4-D 1.0mg/L + KT 0.2 mg/L培养基上继代培养,可获得胚性愈伤组织;在无2,4-D的培养基上可诱导出胚状体。将胚状体转入无任何激素的MS培养基上继续培养,之后转入1/2MS培养基上获得再生植株。组织细胞学观察表明人参胚状体的起源方式为单细胞起源。在体细胞胚胎发生过程中,多糖和淀粉含量在早期胚时较低,可溶性蛋白含量、POD及PPO活性在早期胚时最高;IAA在早期胚时期含量最高,在成熟胚时期ABA含量最高,而ABA/IAA比值在成熟胚时较高,利于体细胞胚的发育成熟。cDNA-AFLP 分析表明胚状体发育不同时期的人参培养物基因表达不同,从而导致了分化和发育。培养物HPLC分析表明胚胎发生试管苗总皂苷含量比子叶胚时期高4倍多。单体皂苷差异较大。  相似文献   

8.
卫星搭载亚麻后代中PEG和NaCl   总被引:3,自引:0,他引:3  
把空间生物学和细胞工程相结合,通过组织培养技术对其离体筛选,得到抗1.2% NaCl和35% PEG的愈伤组织。将所得抗性系愈伤组织在2.0 mg/L 6-苄基氨基嘌呤、0.5 mg/L吲哚乙酸的MS培养基上分化得到完整的植株。抗性系能在胁迫条件下保持高的生长速度和高效的脯氨酸合成能力。表明空间诱变与组织培养相结合有望可成为筛选抗胁迫变异系的有效途径。  相似文献   

9.
卫星搭载亚麻后代中PEG和NaCl抗性系的初步筛选   总被引:8,自引:0,他引:8  
把空间生物学和细胞工程相结合,通过组织培养技术对其离体筛选,得到抗1.2%NaCl和35%PEG的愈伤组织,将所得抗性系愈伤组织在2.0mg/L6-苄基氨基嘌呤、0.5mg/L吲哚乙酸的MS培养基上分化得到完整的植株。抗性系能在胁迫条件下保持高的生长速度和高效的脯氨酸合成能力,表明空间诱变与组织培养相结合有望可成为筛选抗胁迫变异系的有效途径。  相似文献   

10.
Plant regeneration in Arachis pintoi was obtained via two developmental pathways: organogenesis and somatic embryogenesis. Organogenic callus cultures were initiated from pieces of leaf on MS medium supplemented with NAA or 2,4-D in combination with BA, KIN or 2iP. The most suitable combination for plant regeneration through organogenesis was an initial medium composed of 10 mg/l NAA+1 mg/l BA followed by transfer of the callus to a shoot induction medium (MS+1 mg/l BA). Rooting of regenerated shoots was readily achieved by culture on MS+0.01 mg/l NAA. Embryogenic callus cultures were initiated from pieces of leaf on MS medium supplemented with PICL in combination with KIN, ZEA, BA or 2iP, and the most suitable combinations were 20 mg/l PICL+1 mg/l BA or 2iP. When pieces of embryogenic callus were subcultured on MS+1 mg/l BA, somatic embryos were differentiated and developed further into well-developed plants in MS+1 g/l AC followed by MS medium devoid of plant growth regulators. Received: 29 April 1999 / Revision received: 24 November 1999 / Accepted: 18 December 1999  相似文献   

11.
An efficient method for in vitro micro propagation and genetic transformation of plants are crucial for both basic and applied research. Maize is one of the most important cereal crops around the world. Regeneration from immature embryo is hampered due to its unavailability round the year. On the contrary mature embryo especially tropical maize is recalcitrant toward tissue culture. Here we report a highly efficient regeneration (90%) system for maize by using 2 different approaches i.e., embryogenic and organogenic callus cultures. Seeds were germinated on MS medium supplemented with 5 mg/l 2,4-D and 3 mg/l BAP. Nodal regions of 2 wks old seedlings were longitudinally split upon isolation and subsequently placed on callus initiation medium. The maximum frequency of embryogenic callus formation (90%) was obtained on MS medium supplemented with 2 mg/l 2,4-D and 1 mg/l BAP in the dark conditions. The compact granular organogenic callus formation (85% frequency) was obtained on MS medium supplemented with 2.5 mg/l 2,4-D and 1.5 mg/l BAP at light conditions. MS medium supplemented with 2 mg/l BAP, 1 mg/l Kinetin and 0.5 mg/l NAA promoted the highest frequency of shoot induction. The highest frequency of root formation was observed when shoots were grown on MS medium. The regenerated plants were successfully hardened in earthen pots after adequate acclimatization. The important advantage of this improved method is shortening of regeneration time by providing an efficient and rapid regeneration tool for obtaining more stable transformants from mature seeds of Indian tropical maize cultivar (HQPM-1).  相似文献   

12.
Salt tolerant cell lines have been selected from Medicago sativa, by a single step selection process on tissue culture medium containing 1% NaCl. Plants regenerated from these lines show improved salt tolerance compared to parent plants. The regenerated plants are vigorous, have flowered and are self fertile. The cellular salt tolerance characteristic can be passaged through the regenerated plants, since callus cultures initiated from immature ovaries of the salt tolerant regenerated plants are salt tolerant without additional selection on 1% NaCl. Several of these second generation callus cultures have been regenerated to produce vigorous plants which maintain the salt tolerance characteristic. The tolerance phenotype appears dominant in seeds obtained from self fertilization of the tolerant plants. The regenerated salt tolerant plants are therefore a valuable source as genotypes in plant breeding for salt tolerance and isolation, identification and manipulation of genes which confer salt tolerance in alfalfa.Abbreviations SH Schenk and Hildebrandt medium - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

13.
To study growth in the presence of NaCl, in vitro plantlets regenerated from callus of manilagrass (Zoysia matrella [L.] Merr.) were cultured on regeneration medium supplemented with or without 0.3 M NaCl. The results indicated that growth was significantly inhibited by NaCl, with the leaves becoming relatively shorter and thicker. The differences of in vitro plantlets grown under NaCl stress provided specific criteria for the selection of salt tolerant variants. The 6-year maintained calli were treated with different doses (0, 5, 10, 20, 40, 80, 100, 150, 200, 250, and 300 Gy) of 60Co γ rays. Regeneration rate and regeneration capacity of the calli were highest after treatment with 20 Gy 60Co γ rays, 27.08 and 91.67% respectively. When the irradiation dose was increased to 100 Gy, 10.42% of the calli developed shoots, but at 150 Gy, both regeneration capacity and regeneration rate declined significantly, and no shoot was observed after 6 weeks of regeneration. Therefore, 100–150 Gy is the most appropriate irradiation span for inducing somaclonal variation. The irradiated calli were selected in vitro for NaCl tolerance. Five NaCl tolerant variant lines, Ze1, Fv1, Te1, Tw1, Fr1, were selected on subculture medium supplemented with 0.35 M NaCl, then transferred to regeneration medium containing 0.25 M NaCl, and grown in a greenhouse. The dark green colour index (DGCI) was used to identify the amount of injury caused by NaCl treatment. This was significantly higher in four of the lines, Ze1, Fv1, Te1, Fr1 (30.88, 31.17, 30.45 and 37.70%, respectively) compared to the control line (CK), which was regenerated from calli subcultured monthly (27.39%), indicating that watering with NaCl caused less injury in these four lines. These lines had lower proline contents than CK under salt stress. The superoxide dismutase (SOD) activity was higher in Ze1 under control condition and its peroxidase (POD) activity increased significantly under salt stress. With Fr1 catalase (CAT) activity was higher under salt stress. The higher activity of these antioxidant enzymes may contribute to the enhanced salt tolerance of the four plant lines.  相似文献   

14.
A reliable protocol has been established for in vitro propagation of Artemisia nilagirica var. nilagirica (Indian wormwood), a valuable medicinal plant from India. A highly proliferating organogenic callus was obtained on Murashige and Skoog (MS) medium supplemented with 2.5 µM IAA when nodal explants were cultured on MS medium supplemented with various growth regulators. Further, highest regeneration frequency (83.3 %) of adventitious shoots was observed, when the callus was sub-cultured on MS medium supplemented with 6-benzylaminopurine (BAP; 2.5 µM) along with 7.5 µM 2-isopentenyl adenine (2-iP). An optimal of 10.16 ± 2.24 shoots were regenerated on medium supplemented with 2.5 µM BAP + 7.5 µM 2-iP. Quarter strength MS medium supplemented with 10 µM IBA was effective for rooting of the shoots. Ex-vitro plants were normal and were established successfully. Cytological and molecular marker studies showed that regenerated plants showed genetic stability in micro-propagated plants.  相似文献   

15.
In vitro selection of sweetpotato (Ipomoea batatas (L.) Lam.) plants tolerant to NaCl was achieved using embryogenic suspension cultures of sweetpotato cv. Lizixiang and gamma-ray induced mutation. Cell aggregates from embryogenic suspension cultures of Lizixiang were irradiated with 80 Gy gamma-ray, and 1 week after irradiation they were cultured in a selective medium containing 342 mM NaCl for in vitro selection. A total of 276 plants were regenerated from the irradiated 2,783 cell aggregates by a two-step in vitro selection procedure. After the regenerated plants were propagated into plant lines on the basal medium, they were cultured on the medium supplemented with 86, 171, 257 and 342 mM NaCl, respectively, in order to evaluate their in vitro salt tolerance. Of them 18 plant lines showed significantly higher in vitro salt tolerance than control plants. Proline and superoxide dismutase (SOD) were more accumulated in these 18 plant lines than in control plants when both were exposed to NaCl. Salt tolerance of the 18 plant lines was further evaluated with Hoalgland solution containing different concentrations of NaCl in a greenhouse. The results indicated that 3 of them had significantly better growth and rooting ability than the remaining 15 plant lines and control plants at 171 mM NaCl.  相似文献   

16.
We investigated the optimal levels of growth regulators, culture media, and pH on callus growth and organogenesis of in-vitro cultured ‘Kyoho’ grapes. Calli were induced by culturing leaf blades on an MS basal medium supplemented with 1 mg/IL BA and 0.01 mg/L 2,4-D. In addition, calli originating from the exocarp and mesocarp of grape fruits devel-oped on MS media supplemented with 0.1 mg/L IAA, NAA, or 2,4-D, or with 0.2 mg/L BA. In testing the potential for plant regeneration from shoot tips on various media, we found that the Nitsch medium, with I mg/L BA, was optimal for caulogenesis. The type of shoot development depended on the pH of the medium, with vigorous multiple-shoot devel-opment occurring at pH 6.0, and single shoots forming at pH 5.0. Finally, we were able to obtain rooted seedlings from the regenerated shoots that had been cultured on 1/4-strength Nitsch medium supplemented with 0.03 mg/L NAA.  相似文献   

17.
Efficient plant regeneration was achieved from callus derived from immature-cotyledon explants of oleaster (Elaeagnus angustifolia L.). Calli were obtained on MS media containing 3% sucrose and different concentrations of TDZ. The highest rate of green, compact and nodular callus was formed on MS medium supplemented with 1 mg/l of TDZ. Shoot organogenesis was achieved when the callus was transferred onto MS media containing 3% sucrose and BA alone (05–4 mg/l) or BA (0.5 and 1 mg/l) combined with NAA or IAA (0.5 and 1 mg/l). Maximum organogenesis was obtained with 1 mg/l BA in combination with 0.5 mg/l NAA. Rooting of the shoots was achieved on MS medium supplemented with 0.2 mg/l IBA. Regenerated plantlets were acclimatized and successfully transplanted to soil.  相似文献   

18.
Fast-growing callus, cell suspension and root cultures of Vernonia cinerea, a medicinal plant, were analyzed for the presence of alkaloids. Callus and root cultures were established from young leaf explants in Murashige and Skoog (MS) basal media supplemented with combinations of auxins and cytokinins, whereas cell suspension cultures were established from callus cultures. Maximum biomass of callus, cell suspension and root cultures were obtained in the medium supplemented with 1 mg/L alpha-naphthaleneacetic acid (NAA) and 5 mg/L benzylaminopurine (BA), 1.0 mg/L NAA and 0.1 mg/L BA and 1.5 mg/L NAA, respectively. The 5-week-old callus cultures resulted in maximum biomass and alkaloid contents (750 microg/g). Cell suspension growth and alkaloid contents were maximal in 20-day-old cultures and alkaloid contents were 1.15 mg/g. A 0.2-g sample of root tissue regenerated in semi-solid medium upon transfer to liquid MS medium containing 1.5 mg/L NAA regenerated a maximum increase in biomass of 6.3-fold over a period of 5 weeks. The highest root growth and alkaloid contents of 2 mg/g dry weight were obtained in 5-week-old cultures. Maximum alkaloid contents were obtained in root cultures in vitro compared to all others including the alkaloid content of in vivo obtained with aerial parts and roots (800 microg/g and 1.2 mg/g dry weight, respectively) of V. cinerea.  相似文献   

19.
在1/3海水培养基上筛选豆瓣菜耐盐变异体   总被引:1,自引:0,他引:1  
The responses of stem segments of watercress ( Nasturtium offtcinale R. Br. ) to 6-BA, NAA and 2,4-D were studied. MS medium supplemented with 2.0 mg/L 6-BA, 0.2 mg/L 2,4-D was used for callus initiation and maintainance. MS medium supplemented with 4.0 mg/L 6-BA was suitable for plant regeneration and MS medium without plant hormone supplement was used for rooting and plant propagation. For screening of salt. tolerant calli, stem segments of watercress were plated onto callus initiation medium containing 1/3 natural seawater. Seventeen out of the 325 plated explants produced calli. The growth curves demonstrated that the growth rate of salt-tolerant calli on saline medium almost matched that of the control calli on normal medium. Some of the salt-tolerant calli were transferred to the normal regeneration medium or saline regeneration medium to induce plant regeneration. In the first case, buds and shoots were regenerated in the same way as those of control calli on normal regeneration medium. More than 1 000 regenerated shoots were obtained of which 83 regenerated shoots were cut and transferred to saline MS base medium. At first, all shoot growth was inhibited, but 40 days after the transfer, rapid-growing axillary shoots were observed on 16 of the original shoots but none on the control shoots on saline MS base medium. Moreover, green spots appeared on most calli 10 days after they were transferred to saline medium, however buds appeared only on 5 calli from the 30 transferred calli and at the end only 2 rapid-growing shoots were obtained from two calli. In total, 18 variant lines were obtained through propagation of the salt-tolerant shoots on saline MS base medium. RAPD analysis was performed in 10 of the 18 salt-tolerant variant lines and DNA variation was detected in all the tested variant lines.  相似文献   

20.
Salt tolerant cultivars of sweet potato (Ipomoea batatas L.) can be obtained from induced mutation. The objective of the present study was to induce mutation for salt tolerance using ethylmethanesulphonate (EMS) in calli of sweet potato, followed by cell line selection and subsequent plant regeneration. Calli initiated from leaf explants were treated with 0.5% EMS for 0, 1, 1.5, 2, 2.5 and 3 h, followed by rinsing with sterile distilled water for four times. Preliminary experiments showed that 200 mM NaCl could be used as selection pressure. Salt tolerant calli were sub-cultured on medium supplemented with 200 mM NaCl for selection of mutant cell lines and this process repeated 5 times (20 days each). The selected calli were transferred onto somatic embryo formation medium, which was Murashige and Skoog (MS) medium supplemented with 4 mg l−1 abscisic acid (ABA), 10 mg l−1 gibberellic acid (GA). After 15 days, somatic embryos were transferred onto MS medium supplemented with 0.05 mg l−1 ABA, 0.2 mg l−1 zeatin (ZT) for regeneration. Plants designated as ML1, ML2 and ML3 were regenerated from the somatic embryos formed by calli treated with 0.5% EMS for 2 and 2.5 h. After propagation, salt tolerance of these mutants was investigated. Data suggested the mutants were more salt tolerant than control plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号