首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The monocarboxylate (pyruvate) transporter from pea (Pisum sativum) mitochondria was identified by means of a specific monoclonal antibody. The antibody blocked pyruvate-dependent oxaloacetate metabolism without interfering with the metabolism of malate, -ketoglutarate, or glycine. The antibody also blocked the pyruvate/pyruvate exchange reaction of the partially purified transporter reconstituted into phospholipid membranes. Using the specific monoclonal antibody, the transporter was identified on Western blots as a minor 19 kDa protein.  相似文献   

2.
The aspartate/glutamate carrier from bovine heart mitochondria was solubilized with dodecyl-octaoxyethylene ether (C12E8) and purified by chromatography on hydroxyapatite and celite. On SDS gel electrophoresis, the purified aspartate/glutamate carrier consisted of a single protein band with an apparent Mr of 31,500. When reconstituted into liposomes the aspartate/glutamate carrier protein catalyzed an N-ethylmaleimide-sensitive aspartate/aspartate exchange. It was purified 620-fold with a recovery of 17.2% and a protein yield of 0.03% with respect to the mitochondrial extract. The properties of the reconstituted carrier, i.e. requirement for a counteranion, substrate specificity and inhibitor sensitivity, were similar to those of the aspartate/glutamate carrier as characterized in mitochondria.  相似文献   

3.
The aspartate/glutamate carrier from beef heart mitochondria has been solubilized with detergent. The transport protein was partially purified by chromatography on hydroxyapatite in the presence of dodecyl octaoxyethylene ether and high concentrations of ammonium acetate. During purification, the aspartate/glutamate carrier was identified by functional reconstitution into egg yolk phospholipid liposomes. After hydroxyapatite chromatography the protein is 30 fold enriched in aspartate/glutamate transport activity but still contains ADP/ATP-carrier and phosphate carrier. The reconstituted activity is specific for exchange of L-aspartate and L-glutamate and is similar to intact mitochondria with respect to substrate affinity and inhibitor sensitivity.  相似文献   

4.
A partially purified preparation of the aspartate/glutamate carrier from bovine heart mitochondria was reconstituted into liposomal membranes by chromatography on hydrophobic ion exchange resins. Based on the favorable conditions of this reconstituted system the transmembrane orientation of the inserted carrier protein could be determined by functional analysis. For reliable measurement of the reconstituted aspartate-glutamate exchange activity an optimized inhibitor-stop technique using pyridoxal phosphate was developed. By simultaneous application of both forward and backward exchange experiments the practical usefulness of the reconstituted system could be extended to investigations including variation of internal and external substrate concentrations over a wide range. Thereby a complete set of Km values for both aspartate and glutamate at both the internal and external side of the proteoliposomes could be established. These experiments led to the following results and conclusions: (i) The observed substrate affinities are clearly different for the two different membrane sides both for aspartate (external 50 microM, internal 3 mM) and glutamate (external about 200 microM, internal 3 mM). (ii) The exclusive presence of only one type of transport affinity for every single substrate at one side of the liposomal membrane clearly demonstrates the asymmetric orientation of the functionally active carrier protein molecules. (iii) When comparing the values of these constants with published data obtained in mitochondria, an inside-out orientation of the aspartate/glutamate carrier after isolation and reinsertion into liposomes is strongly suggested.  相似文献   

5.
The mitochondrial aspartate/glutamate carrier catalyzes an important step in both the urea cycle and the aspartate/malate NADH shuttle. Citrin and aralar1 are homologous proteins belonging to the mitochondrial carrier family with EF-hand Ca(2+)-binding motifs in their N-terminal domains. Both proteins and their C-terminal domains were overexpressed in Escherichia coli, reconstituted into liposomes and shown to catalyze the electrogenic exchange of aspartate for glutamate and a H(+). Overexpression of the carriers in transfected human cells increased the activity of the malate/aspartate NADH shuttle. These results demonstrate that citrin and aralar1 are isoforms of the hitherto unidentified aspartate/glutamate carrier and explain why mutations in citrin cause type II citrullinemia in humans. The activity of citrin and aralar1 as aspartate/glutamate exchangers was stimulated by Ca(2+) on the external side of the inner mitochondrial membrane, where the Ca(2+)-binding domains of these proteins are localized. These results show that the aspartate/glutamate carrier is regulated by Ca(2+) through a mechanism independent of Ca(2+) entry into mitochondria, and suggest a novel mechanism of Ca(2+) regulation of the aspartate/malate shuttle.  相似文献   

6.
The pathway of glutamate metabolism in rat brain mitochondria   总被引:9,自引:2,他引:7       下载免费PDF全文
1. The pathway of glutamate metabolism in non-synaptic rat brain mitochondria was investigated by measuring glutamate, aspartate and ammonia concentrations and oxygen uptakes in mitochondria metabolizing glutamate or glutamine under various conditions. 2. Brain mitochondria metabolizing 10mm-glutamate in the absence of malate produce aspartate at 15nmol/min per mg of protein, but no detectable ammonia. If amino-oxyacetate is added, the aspartate production is decreased by 80% and ammonia production is now observed at a rate of 6.3nmol/min per mg of protein. 3. Brain mitochondria metabolizing glutamate at various concentrations (0-10mm) in the presence of 2.5mm-malate produce aspartate at rates that are almost stoicheiometric with glutamate disappearance, with no detectable ammonia production. In the presence of amino-oxyacetate, although the rate of aspartate production is decreased by 75%, ammonia production is only just detectable (0.3nmol/min per mg of protein). 4. Brain mitochondria metabolizing 10mm-glutamine and 2.5mm-malate in States 3 and 4 were studied by using glutamine as a source of intramitochondrial glutamate without the involvement of mitochondrial translocases. The ammonia production due to the oxidative deamination of glutamate produced from the glutamine was estimated as 1nmol/min per mg of protein in State 3 and 3nmol/min per mg of protein in State 4. 5. Brain mitochondria metabolizing 10mm-glutamine in the presence of 1mm-amino-oxyacetate under State-3 conditions in the presence or absence of 2.5mm-malate showed no detectable aspartate production. In both cases, however, over the first 5min, ammonia production from the oxidative deamination of glutamate was 21-27nmol/min per mg of protein, but then decreased to approx. 1-1.5nmol/min per mg. 6. It is concluded that the oxidative deamination of glutamate by glutamate dehydrogenase is not a major route of metabolism of glutamate from either exogenous or endogenous (glutamine) sources in rat brain mitochondria.  相似文献   

7.
Glutamate and aspartate play important roles in the intermediary metabolism of the myocardium and have been shown to improve cardiac recovery after hypoxia or ischemia. Limited data are available about the expression of glutamate transporters that are involved in the uptake of glutamate and aspartate in cardiomyocytes. In this study, non-radioactive in situ hybridization (ISH) using complementary RNA probes was applied to detect the glutamate transporters GLT1 variant (GLT1v) and EAAC1 mRNA in rat cardiomyocytes. The transporter proteins were demonstrated by Western blotting and immunocytochemistry using affinity-purified antibodies against transporter peptides. ISH and immunocytochemistry showed that both glutamate transporters are coexpressed in cardiomyocytes. The ISH labeling indicates the distribution of transporter mRNA throughout the cytoplasm of cardiomyocytes. GLT1v and EAAC1 proteins, which showed in Western blots a molecular mass of approximately 60 kD, are strongly enriched and colocalized in the transverse (T)-tubular system of cardiomyocytes. These results may indicate that glutamate/aspartate uptake into cardiomyocytes could be mediated by the high-affinity transporters GLT1v and EAAC1. A high efficiency of glutamate/aspartate transport into cardiomyocytes could be achieved by their localization in the T-tubular system, which consists of tubular invaginations of the sarcolemma extending deep into the cell.  相似文献   

8.
Control of reversible intracellular transfer of reducing potential.   总被引:1,自引:0,他引:1  
Isolated rat liver mitochondria were incubated in the presence of a reconstituted malate-aspartate shuttle under carboxylating conditions in the presence of glutamate, octanoyl-carnitine and pyruvate, or a preset lactate/pyruvate ratio. The respiration and attendant energy state were varied with soluble F1-ATPase. Under these conditions reducing equivalents are exported due to pyruvate carboxylation. This was shown by lactate production from pyruvate and by a substantial increase in the lactate/pyruvate ratio. This led to a competition between malate export and energy-driven malate cycling via the malate-aspartate shuttle, resulting in a lowered redox segregation of the NAD systems between the mitochondrial and extramitochondrial spaces. If pyruvate carboxylation was blocked, this egress of reducing equivalents was also blocked, leading to an elevated value of redox segregation, delta G(redox) (in kJ) = -5.7 log(NAD+/NADHout)/(NAD+/NADHin) being then equal to approximately one-half of the membrane potential, in accordance with electrogenic glutamate/aspartate exchange. Reconstitution of malate-pyruvate cycling led to a further kinetic decrease in the original malate-aspartate shuttle-driven value of delta G(redox). Therefore, the value of segregation of reducing potential between mitochondria and cytosol caused by glutamate/aspartate exchange can be diminished kinetically by processes exporting reducing equivalents from mitochondria, such as pyruvate carboxylation and pyruvate cycling.  相似文献   

9.
1. The interrelationship of metabolism of pyruvate or 3-hydroxybutyrate and glutamate transamination in rat brain mitochondria was studied. 2. If brain mitochondria are incubated in the presence of equimolar concentrations of pyruvate and glutamate and the K(+) concentration is increased from 1 to 20mm, the rate of pyruvate utilization is increased 3-fold, but the rate of production of aspartate and 2-oxoglutarate is decreased by half. 3. Brain mitochondria incubated in the presence of a fixed concentration of glutamate (0.87 or 8.7mm) but different concentrations of pyruvate (0 to 1mm) produce aspartate at rates that decrease as the pyruvate concentration is increased. At 1mm-pyruvate, the rate of aspartate production is decreased to 40% of that when zero pyruvate was present. 4. Brain mitochondria incubated in the presence of glutamate and malate alone produce 2-oxoglutarate at rates stoicheiometric with the rate of aspartate production. Both the 2-oxoglutarate and aspartate accumulate extramitochondrially. 5. Externally added 2-oxoglutarate has little inhibitory effect (K(i) approx. 31mm) on the production of aspartate from glutamate by rat brain mitochondria. 6. It is concluded that the inhibitory effect of increased C(2) flux into the tricarboxylic acid cycle on glutamate transamination is caused by competition for oxaloacetate between the transaminase and citrate synthase. 7. Evidence is provided from a reconstituted malate-aspartate (or Borst) cycle with brain mitochondria that increased C(2) flux into the tricarboxylic acid cycle from pyruvate may inhibit the reoxidation of exogenous NADH. These results are discussed in the light of the relationship between glycolysis and reoxidation of cytosolic NADH by the Borst cycle and the requirement of the brain for a continuous supply of energy.  相似文献   

10.
In order to study the mechanism of the glutamate-aspartate translocator, rat liver mitochondria were loaded with either glutamate or aspartate. In the presence of ascorbate plus tetramethyl-p-phenylenediamine as an electron donor at the third energy conservation site, exchange of external glutamate for matrix aspartate is highly favored over the reverse exchange. In the absence of an energy source, although the asymmetry of the exchange rates is much smaller, it is still observable. Further studies have shown that the proton uptake accompanying influx of glutamate in exchange for aspartate efflux occurs by protonation of a group on the carrier (pK = 7.9) at the external side of the inner mitochondrial membrane, followed by deprotonation at the matrix surface. It is postulated that glutamate binds to the protonated form of the carrier and aspartate to the deprotonated form. Because of the alkaline pK, aspartate efflux is inhibited with increased matrix [H+] due to limitation of the availability of deprotonated carrier for aspartate binding. For the reverse exchange, aspartate uptake is inhibited by increasing external [H+]. Thus the rate of aspartate uptake by mitochondria is apparently impeded both by a proton motive force (Δp) unfavorable to entry of ions with net negative charge as well as by the small proportion of deprotonated carrier at the outer surface of the membrane. This conclusion is further illustrated by inhibition of the aspartate-aspartate exchange with increased [H+] and by addition of an energy source. The glutamate-glutamate exchange, however, showed a slight stimulation by increased [H+] and was unaffected by the energy state.The model initially proposed for the carrier, in which a neutral glutamate-carrier complex exchanges for a negatively charged aspartate-carrier complex, is tested further. Glutamate uptake was noncompetitively inhibited by external aspartate, which indicates that aspartate and glutamate bind to separate forms of the carrier. Intramitochrondrial glutamate at a concentration of 18 mm, however, had no effect on aspartate efflux. Arrhenius plots for the glutamate-aspartate and aspartate-glutamate exchanges were linear over the range of temperatures tested (1–35 °C and 5–25 °C, respectively) and provided an average value of 14.3 kcal/mol for the energy of activation. In addition, there appear to be two pools, exchangeable and nonexchangeable, of matrix aspartate available to the translocator, since extramitochondrial radiolabeled aspartate can equilibrate only with unlabeled matrix aspartate at low aspartate loading (1–2 nmol of aspartate/mg of protein). The physiological significance of the data is discussed.  相似文献   

11.
The isolated aspartate/glutamate carrier and oxoglutarate carrier from mitochondria were coreconstituted into phospholipid vesicles. Reconstitution of the functionally active carrier proteins with high protein/lipid ratios was achieved by detergent removal on hydrophobic ion-exchange columns. A simplified version of the mitochondrial malate/aspartate shuttle was constructed by inclusion of glutamate-oxaloacetate transaminase and the substrates aspartate and oxaloacetate within the interior of the liposomes. Addition of external glutamate led to internal production of oxoglutarate which could be exchanged against externally added labeled malate. The reconstitution procedure was characterized with respect to the optimum ratio of reconstituted carrier proteins, the lipid concentration, and the concentration of internal substrates.  相似文献   

12.
The phosphate transporter from mitochondria will exchange matrix phosphate for cytosolic phosphate and facilitate either phosphate/proton symport or phosphate/hydroxyl ion antiport. The phosphate transported into the matrix by this carrier is either used for ATP synthesis or exchanges back out to the cytosol on the dicarboxylate transporter, permitting entry of malate and succinate into the matrix. The phosphate transporter was solubilized from etiolated pea (Pisum sativum L. cv Alaska) mitochondrial membranes with Triton X-114, purified approximately 500-fold by hydroxylapatite chromatography, and reconstituted into azolectin vesicles that were preloaded with 0.1 or 10 mM phosphate. Phosphate transport was measured as the exchange of preloaded phosphate for external [32P]phosphate. Phosphate/phosphate exchange occurred for over 40 min at room temperature with an apparent K0.5 of 1.6 mM and a maximum velocity of over 700 nmol (mg protein)-1 min-1. Diethyl pyrocarbonate was used as an inhibitor-stop reagent. Transport was inhibited by p-hydroxyphenylglyoxal, p-hydroxymercuribenzoate, pyridoxal 5-phosphate, and dansyl chloride but was insensitive to sulfate, nitrate, and N-ethylmaleimide, the standard inhibitor for the mammalian phosphate transporter. Phosphate/hydroxyl exchange was stimulated when the proton gradient was collapsed with carbonyl cyanide m-chlorophenylhydrazone, but phosphate/phosphate exchange was unaffected by the uncoupler.  相似文献   

13.
The kinetic parameters of D-glucose transport in liposomes reconstituted with the purified glucose transporter were determined. Net uptake and efflux both had Km values of 0.7 to 1.2 mM and Vmax values of 1.6 mumol/mg of protein/min. Equilibrium exchange had a Km of 35 mM and a Vmax of 50 mumol/mg of protein/min. By separating the liposomes from unreconstituted protein using density centrifugation, the Vmax of exchange was increased to 86 mumol/mg of protein/min, about 3 times that of the erythrocyte membrane. Trypsin, which inhibits erythrocyte glucose transport only from the cytoplasmic side, inhibited reconstituted transport activity about 40% when added externally. With internal treatment as well, the inhibition was about 80%. This suggests that the reconstituted transporter is oriented about equally in both directions. Antibody prepared against the purified transporter inhibits transport to a maximum of about 50%, also indicating a scrambled orientation. External trypsin treatment decreased the Km for uptake and increased the Km for efflux, consistent with asymmetric kinetic parameters for the two faces of the transporter. However, the calculated Km values are lower than those reported for erythrocytes. Phloretin and diethylstilbestrol inhibit the reconstituted transporter. However, they bind to liposomes, producing anomalous results under some experimental conditions. When this binding is taken into account, phloretin inhibits completely and symmetrically. The binding accounts for the apparent asymmetric effects of phloretin reported by others. The inhibitory effects of mercuric ions are consistent with action at two classes of binding sites. Treatment with trypsin increases the sensitivity to Hg2+, indicating that the more sensitive site is on the external face of the transporter.  相似文献   

14.
15.
beta-Methyleneaspartate, a specific inhibitor of aspartate aminotransferase (EC 2.6.1.1.), was used to investigate the role of the malate-aspartate shuttle in rat brain synaptosomes. Incubation of rat brain cytosol, "free" mitochondria, synaptosol, and synaptic mitochondria, with 2 mM beta-methyleneaspartate resulted in inhibition of aspartate aminotransferase by 69%, 67%, 49%, and 76%, respectively. The reconstituted malate-aspartate shuttle of "free" brain mitochondria was inhibited by a similar degree (53%). As a consequence of the inhibition of the aspartate aminotransferase, and hence the malate-aspartate shuttle, the following changes were observed in synaptosomes: decreased glucose oxidation via the pyruvate dehydrogenase reaction and the tricarboxylic acid cycle; decreased acetylcholine synthesis; and an increase in the cytosolic redox state, as measured by the lactate/pyruvate ratio. The main reason for these changes can be attributed to decreased carbon flow through the tricarboxylic acid cycle (i.e., decreased formation of oxaloacetate), rather than as a direct consequence of changes in the NAD+/NADH ratio. Malate/glutamate oxidation in "free" mitochondria was also decreased in the presence of 2 mM beta-methyleneaspartate. This is probably a result of decreased glutamate transport into mitochondria as a result of low levels of aspartate, which are needed for the exchange with glutamate by the energy-dependent glutamate-aspartate translocator.  相似文献   

16.
Glutamate and aspartate transport in rat brain mitochondria   总被引:11,自引:4,他引:7       下载免费PDF全文
1. Rat brain mitochondria did not swell in iso-osmotic solutions of ammonium or potassium (plus valinomycin) glutamate or aspartate, with or without addition of uncouplers. 2. Glutamate was able to reduce intramitochondrial NAD(P)(+); aspartate was able to cause partial re-oxidation. 3. These effects were inhibited by threo-hydroxy-aspartate in whole but not in lysed mitochondria. 4. The existence of a ;malate-aspartate shuttle' for the oxidation of extramitochondrial NADH was demonstrated. This shuttle requires the net exchange of glutamate for aspartate across the mitochondrial membrane. 5. Extramitochondrial glutamate did not inhibit intramitochondrial glutaminase under conditions in which the inhibition in lysed mitochondria was virtually complete. 6. The glutaminase activity of these mitochondria was not energy-dependent. 7. We conclude that these mitochondria do not possess a glutamate-hydroxyl antiporter similar to that of liver mitochondria nor a glutamate-glutamine antiporter similar to that of pig kidney mitochondria, but that they do possess a glutamate-aspartate antiporter.  相似文献   

17.
The malate-aspartate NADH shuttle in mammalian cells requires the activity of the mitochondrial aspartate-glutamate carrier (AGC). Recently, we identified in man two AGC isoforms, aralar1 and citrin, which are regulated by calcium on the external face of the inner mitochondrial membrane. We have now identified Agc1p as the yeast counterpart of the human AGC. The corresponding gene was overexpressed in bacteria and yeast mitochondria, and the protein was reconstituted in liposomes where it was identified as an aspartate-glutamate transporter from its transport properties. Furthermore, yeast cells lacking Agc1p were unable to grow on acetate and oleic acid, and had reduced levels of valine, ornithine and citrulline; in contrast they grew on ethanol. Expression of the human AGC isoforms can replace the function of Agc1p. However, unlike its human orthologues, yeast Agc1p catalyses both aspartate-glutamate exchange and substrate uniport activities. We conclude that Agc1p performs two metabolic roles in Saccharomyces cerevisiae. On the one hand, it functions as a uniporter to supply the mitochondria with glutamate for nitrogen metabolism and ornithine synthesis. On the other, the Agc1p, as an aspartate-glutamate exchanger, plays a role within the malate-aspartate NADH shuttle which is critical for the growth of yeast on acetate and fatty acids as carbon sources. These results provide strong evidence of the existence of a malate-aspartate NADH shuttle in yeast.  相似文献   

18.
1. The metabolism of glutamate was followed by measurements of phosphoenolpyruvate production, aspartate synthesis and ammonia release, whereas the transport of glutamate across the inner membrane of kidney cortex mitochondria was studied using an oxygen electrode and the swelling technique.2. When added separately, avenaciolide and aminooxyacetate only partially inhibited both State 3 and uncoupled respiration of the mitochondria, as studied in the presence of glutamate as substrate. In contrast, the addition of both inhibitors to the reaction medium resulted in an almost complete inhibition of glutamate oxidation.3. Swelling of kidney mitochondria in an isosmotic solution of ammonium glutamate was accelerated by uncoupler and inhibited by avenaciolide, while the swelling of mitochondria in potassium glutamate was stimulated by valinomycin and inhibited by uncoupler.4. When glutamate was used as the sole substrate, inhibition of aspartate formation by aminooxyacetate resulted in a stimulation of both ammonia release and phosphoenolpyruvate production. In contrast, with glutamate plus malate as substrate an elevation of the rate of glutamate deamination on the addition of aminooxyacetate was accompanied by an inhibition of phosphoenolpyruvate synthesis in both State 3 and uncoupled conditions.5. In the presence of valinomycin to induce K+-permeability a marked enhancement of glutamate deamination was accompanied by a significant inhibition of glutamate transamination.6. Based on the presented results it was concluded that in rabbit renal mitochondria utilizing glutamate as substrate the rates of ammonia production, phosphoenolpyruvate formation and aspartate synthesis vary in response to different metabolic conditions, in which both the glutamate—H+ symport and the glutamate—aspartate exchange systems are functioning to different extents.  相似文献   

19.
Monospecific antibodies have been prepared with a homogeneousprotein fraction of the main activity band of pea seed glutamatedehydrogenase. This protein precipitates with its antibodiesin a single band with complete fusion as seen by the Ouchterlonydouble-diffusion test. Identical behaviour is observed withthe protein of the adjacent activity bands of the multiple molecularforms of this enzyme and the antibodies to the former fraction.Organ-specific ‘isoenzymes’ of glutamate dehydrogenasewith preparations of pea roots and epicotyls are not detectedby this procedure. Partially purified glutamate dehydrogenasepreparations from Lemna perpusilla, Zea mays, and Oryza sativaalso precipitate with the antibodies to the pea protein. TheLemna protein is shown to be different from the pea enzyme asjudged from immunological behaviour. The pea antibodies1 donot cross-react with glutamate dehydrogenases from Candida orbeef liver, nor do the beef liver antibodies react with thepea and Candida enzymes.  相似文献   

20.
The tricarboxylate transporter has been purified in reconstitutively active form from rat liver mitochondria. The transporter was extracted from mitoplasts with Triton X-114 in the presence of cardiolipin and citrate and was then purified by sequential chromatography on hydroxylapatite, Matrex Gel Orange A, Matrex Gel Blue B, and Affi-Gel 501. Analysis of the purified material via sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated the presence of one main protein band with an apparent molecular mass of 32.5 kDa. Upon incorporation into phospholipid vesicles, the purified transporter catalyzed a 1,2,3-benzenetricarboxylate-sensitive citrate/citrate exchange with a specific transport activity of 3240 nmol/4 min/mg of protein. This value was enhanced 831-fold with respect to the starting material. Substrate competition studies indicated that the reconstituted transport could be substantially inhibited by isocitrate, malate, and phosphoenolpyruvate, but not by alpha-ketoglutarate, succinate, malonate, pyruvate, or inorganic phosphate. Moreover, in addition to 1,2,3-benzenetricarboxylate, the reconstituted exchange was sensitive to the anion transport inhibitor n-butylmalonate but was insensitive to phenylsuccinate, alpha-cyano-4-hydroxycinnamate, and carboxyatractyloside. Finally, studies with covalent modifying agents indicated the purified transporter was inhibited by sulfhydryl reagents and by diethyl pyrocarbonate, 2,3-butanedione, phenylglyoxal, and pyridoxal 5-phosphate. In conclusion, these studies describe the first procedure to yield a highly purified tricarboxylate transport protein that both displays a high specific transport activity and can be obtained in quantities that readily enable further structural as well as functional studies. Based on its substrate specificity and inhibitor sensitivity, the purified 32.5-kDa protein appears to represent the complete tricarboxylate transport system found in rat liver mitochondria. Finally, new information is presented concerning the effect of covalent modifying reagents on the function of this transporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号