首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential for enhancing ethanol production from cellodextrins by employing mixed-culture (Candida wickerhamii-Saccharomyces cerevisiae) fermentations was investigated. Initially, ethanol production was monitored in fermentation medium containing 50 g/L glucose plus 45 g/L cellobiose. Inoculum levels and times of inoculum addition were varied. Of the conditions tested, the most rapid rates of ethanol formation occurred in fermentations in which either C. wickerhamii and S. cerevisiae were coinoculated at a ratio of 57 : 1 cell/mL or in fermentations in which a 10-fold-greater S. cerevisiae inoculum was added to a pure culture C. wickerhamii fermentation after 1 day incubation. These conditions were used to attempt to enhance fermentations in which cellodextrins produced by trifluoroacetic acid hydrolysis of cellulose served as the sole carbon source. Cellodextrins that were not further purified after cellulose hydrolysis contained compounds that were slightly inhibitory to C. wickerhamii. In this case the mixed-culture fermentations produced 12-45% more ethanol than a pure culture C. wickerhamii fermentation. However, if the substrate was treated with Darco G-60 charcoal, the toxic materials were apparently removed and the pure culture C. wickerhamii fermentations performed as well as the mixed-culture fermentations.  相似文献   

2.
Ultrafine oxidized cellulose (OC) mats were prepared by oxidation of ultrafine cellulose mats produced by electrospinning and subsequent deacetylation of cellulose acetate for potential applications in nonwoven adhesion barriers. When ultrafine cellulose mats were oxidized with a mixture of HNO3/H3PO4 - NaNO2 (2/1/1.4 v/v/wt %), their ultrafine mat structure remained unchanged. The yield and carboxyl content of OC mats were 86.7% and 16.8%, respectively. OC showed lower crystallinity than cellulose because the oxidation of cellulose proceeded via disruption of hydrogen bonds between cellulose chains. The swelling behaviors of ultrafine OC mats were dependent on the type of swelling solution. In a physiological salt solution, their degree of swelling was approximately 230%.  相似文献   

3.
Addition of L-sorbose, a non-metabolizable non-inducing ketohexose, toTrichoderma reesei cultures growing on cellobiose or Avicel-cellulose lead to increased cellulase activities. Addition of sorbose resulted in a 6-fold increase in cellodextrins (cellotriose, cellotetraose, cellopentaose) concentration on day 3 in cellobiose cultures and 1.3-fold increase in cellodextrins concentrations on day 4 in Avicel cellulose cultures. This increase in intracellular cellodextrins concentration matched closely with the increase in endoglucanase activity at these time points. Treatment of the cell-free extracts with cellulase preparation led to disappearance of the cellodextrins and increase of glucose. These observations suggested a more direct involvement of cellodextrins in cellulase induction process. The cellulases produced in sorbose-supplemented cellobiose medium hydrolyzed microcrystalline cellulose as effectively as the ones produced on Avicel cellulose medium.  相似文献   

4.
When glucose or cellobiose was provided as an energy source for Fibrobacter succinogenes, there was a transient accumulation (as much as 0.4 mM hexose equivalent) of cellobiose or cellotriose, respectively, in the growth medium. Nongrowing cell suspensions converted cellobiose to cellotriose and longer-chain cellodextrins, and in this case the total cellodextrin concentration was as much as 20 mM (hexose equivalent). Because cell extracts of glucose- or cellobiose-grown cells cleaved cellobioise and cellotriose by phosphate-dependent reactions and glucose 1-phosphate was an end product, it appeared that cellodextrins were being produced by a reversible phosphorylase reaction. This conclusion was supported by the observation that the ratio of cellodextrins to cellodextrins with one greater hexose [n/(n + 1)] was approximately 4, a value similar to the equilibrium constant (Keq) of cellobiose phosphorylase (J. K. Alexander, J. Bacteriol. 81:903-910, 1961). When F. succinogenes was grown in a cellobiose-limited chemostat, cellobiose and cellotriose could both be detected, and the ratio of cellotriose to cellobiose was approximately 1 to 4. On the basis of these results, cellodextrin production is an equilibrium (mass action) function and not just an artifact of energy-rich cultural conditions. Cellodextrins could not be detected in low-dilution-rate, cellulose-limited continuous cultures, but these cultures had a large number of nonadherent cells. Because the nonadherent cells had a large reserve of polysaccharide and were observed at all stages of cell division, it appeared that they were utilizing cellodextrins as an energy source for growth.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
Yoon JJ  Cha CJ  Kim YS  Kim W 《Biotechnology letters》2008,30(8):1373-1378
An endoglucanase that is able to degrade both crystalline and amorphous cellulose was purified from the culture filtrates of the brown-rot fungus Fomitopsis pinicola grown on cellulose. An apparent molecular weight of the purified enzyme was approximately 32 kDa by SDS-PAGE analysis. The enzyme was purified 11-fold with a specific activity of 944 U/mg protein against CMC. The partial amino acid sequences of the purified endoglucanase had high homology with endo-beta-1,4-glucanase of glycosyl hydrolase family 5 from other fungi. The K(m) and K(cat)values for CMC were 12 mg CMC/ml and 670/s, respectively. The purified EG hydrolyzed both cellotetraose (G4) and cellopentaose (G5), but did not degrade either cellobiose (G2) or cellotriose (G3).  相似文献   

7.
Badal C. Saha   《Process Biochemistry》2004,39(12):1871-1876
A newly isolated strain of the fungus, Mucor circinelloides (NRRL 26519), when grown on lactose, cellobiose, or Sigmacell 50 produces complete cellulase (endoglucanase, cellobiohydrolase, and β-glucosidase) system. The extracellular endoglucanase (EG) was purified to homogeneity from the culture supernatant by ethanol precipitation (75%, v/v), CM Bio-Gel A column chromatography, and Bio-Gel A-0.5 m gel filtration. The purified EG (specific activity 43.33 U/mg protein) was a monomeric protein with a molecular weight of 27 000. The optimum temperature and pH for the action of the enzyme were at 55 °C and 4.0–6.0, respectively. The purified enzyme was fully stable at pH 4.0–7.0 and temperature up to 60 °C. It hydrolysed carboxymethyl cellulose and insoluble cellulose substrates (Avicel, Solka-floc, and Sigmacell 50) to soluble cellodextrins. No glucose, cellobiose, and short chain cellooligosaccarides were formed from these substrates. The purified EG could not degrade oat spelt xylan and larch wood xylan. It bound to Avicell, Solka-floc, and Sigmacell 50 at pH 5.0 and the bound enzyme was released by changing the pH to 8.0. The enzyme activity was enhanced by 27±5 and 44±14% by the addition of 5 mM MgCl2 and 0.5 mM CoCl2, respectively, to the reaction mixture. Comparative properties of this enzyme with other fungal EGs are presented.  相似文献   

8.
Cellodextrins are linear β‐1,4‐gluco‐oligosaccharides that are soluble in water up to a degree of polymerization (DP) of ≈6. Soluble cellodextrins have promising applications as nutritional ingredients. A DP‐controlled, bottom‐up synthesis from expedient substrates is desired for their bulk production. Here, a three‐enzyme glycoside phosphorylase cascade is developed for the conversion of sucrose and glucose into short‐chain (soluble) cellodextrins (DP range 3–6). The cascade reaction involves iterative β‐1,4‐glucosylation of glucose from α‐glucose 1‐phosphate (αGlc1‐P) donor that is formed in situ from sucrose and phosphate. With final concentration and yield of the soluble cellodextrins set as targets for biocatalytic synthesis, three major factors of reaction efficiency are identified and partly optimized: the ratio of enzyme activity, the ratio of sucrose and glucose, and the phosphate concentration used. The efficient use of the phosphate/αGlc1‐P shuttle for cellodextrin production is demonstrated and the soluble product at 40 g L?1 is obtained under near‐complete utilization of the donor substrate offered (88 mol% from 200 mm sucrose). The productivity is 16 g (L h)?1. Through a simple two‐step route, the soluble cellodextrins are recovered from the reaction mixture in ≥95% purity and ≈92% yield. Overall, this study provides the basis for their integrated production.  相似文献   

9.
Unique gelation behavior of cellulose in NaOH/urea aqueous solution   总被引:11,自引:0,他引:11  
Cai J  Zhang L 《Biomacromolecules》2006,7(1):183-189
A transparent cellulose solution was prepared by mixing 7 wt % NaOH with 12 wt % urea aqueous solution which was precooled to below -10 degrees C and which was able to rapidly dissolve cellulose at ambient temperature. The rheological properties and behavior of the gel-formed cellulose solution were investigated by using dynamic viscoelastic measurement. The effects of temperature, time, cellulose molecular weight, and concentrations on both the shear storage modulus (G') and the loss modulus (G") were analyzed. The cellulose solution having a viscosity-average molecular weight (M(eta)) of 11.4 x 10(4) had its sol-gel transition temperature decreased from 60.3 to 30.5 degrees C with an increase of its concentration from 3 to 5 wt %. The gelation temperature of a 4 wt % cellulose solution dropped from 59.4 to 30.5 degrees C as the M(eta) value was increased from 4.5 x 10(4) to 11.4 x 10(4). Interestingly, at either higher temperature (above 30 degrees C), or lower temperature (below -3 degrees C), or for longer gelation time, gels could form in the cellulose solutions. However, the cellulose solution remains a liquid state for a long time at the temperature range from 0 to 5 degrees C. For the first time, we revealed an irreversible gelation in the cellulose solution system. The gel having been formed did not dissolve even when cooled to the temperature of -10 degrees C, at which it was dissolved previously. Therefore, this indicates that either heating or cooling treatment could not break such stable gels. A high apparent activation energy (E(a)) of the cellulose solution below 0 degrees C was obtained and was used to explain the gel formation under the cooling process.  相似文献   

10.
11.
The effect of creatine and caffeine supplementation on muscle torque generation and relaxation was investigated in healthy male volunteers. Maximal torque (T(max)), contraction time (CT) from 0.25 to 0.75 of T(max), and relaxation time (RT) from 0.75 to 0.25 of T(max) were measured during an exercise test consisting of 30 intermittent contractions of musculus quadriceps (2 s stimulation, 2 s rest) that were induced by electrical stimulation. According to a double-blind randomized crossover design, subjects (n = 10) performed the exercise test before (pretest) and after (posttest) creatine supplementation (Cr, 4 x 5 g/day, 4 days), short-term caffeine intake (Caf, 5 mg x kg(-1) x day(-1), 3 days), creatine supplementation + short-term caffeine intake (Cr+Caf), acute caffeine intake (ACaf, 5 mg/kg) or placebo. Compared with placebo, Cr shortened RT by approximately 5% (P < 0.05). Conversely, Caf increased RT (+ approximately 10%, P < 0.05), in particular as RT increased because of fatigue. RT was not significantly changed by either Cr+Caf or ACaf. T(max) and CT were similar during all experimental conditions. Initial T(max) was approximately 20% of voluntary maximal isometric contraction force, which was not different between treatments. It is concluded that Caf intake (3 days) prolongs muscle RT and by this action overrides the shortening of RT due to creatine supplementation.  相似文献   

12.
The nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (l-NAME) increased vascular resistance (VR) 10% above baseline of 3.08+/-0.08 (n=11) mmHg/mL/min at 10 mg/kg and 20% above 3.05+/-0.08 (n=9) at 50 mg/kg in anesthetized toads (Bufo marinus). Blood pressure was unaffected by either dose of L-NAME. Blood flow decreased at the higher dose of L-NAME. L-arginine (300 mg/kg) reversed the effects of L-NAME on VR and blood flow in toads treated with 10 mg/kg but not with 50 mg/kg. Injection of 50 mg/kg L-NAME into empty-bladder toads produced a 10% decrease in water uptake, J(v), resulting in a J(v) of 1,267+/-11 cm(3)/cm(2)/s x 10(-7) (n=9) compared to 1,385+/-12 (n=8) for controls. Injection of 10 microg/kg angiotensin II (ANG II) increased J(v) 15% across the pelvic patch (J(v), cm(3)/cm(2)/s x 10(-7)), resulting in a J(v) of 1,723+/-12 cm(3)/cm(2)/s x 10(-7) (n=8) compared to 1,471+/-12 (n=8) for controls. It is hypothesized that during cutaneous drinking blood flow into the capillary bed of the pelvic patch is regulated by nitric oxide and ANG II.  相似文献   

13.
New carbohydrate-based surfactants consisting of hydrophilic cellobiosyl and hydrophobic glucosyl residues, methyl β-d-glucopyranosyl-(1→4)-α-d-glucopyranosyl-(1→4)-2,3,6-tri-O-methyl-α-d-glucopyranoside 1 (GβGαMα, G: glucopyranosyl residue, α and β: α-(1→4)- and β-(1→4) glycosidic bonds, M: methyl group), 2 (G(β)G(β)M(α)), 3 (G(β)G(α)M(β)), 4 (G(β)G(β)M(β)), 5 (G(β)G(α)E(α), E: ethyl group), 6 (G(β)G(β)E(α)), 7 (G(β)G(α)E(β)), 8 (G(β)G(β)E(β)) and eight α-and β-glycoside mixtures (a mixture of 1 and 2: 1/2=62/38 (9), 32/68 (10); a mixture of 3 and 4: 3/4=69/31 (11), 32/68 (12); a mixture of 5 and 6: 5/6=62/38 (13), 33/67 (14); a mixture of 7 and 8: 7/8=59/41 (15), 29/71 (16)) were synthesized via combined methods consisting of acid-catalyzed alcoholysis of cellulose ethers and glycosylation of phenyl thio-cellobioside derivatives. Their surface activities in aqueous solution depended on their chemical structures: α- or β-(1→4) linkage between hydrophilic cellobiosyl and hydrophobic glucosyl blocks, methyl or ethyl groups of hydrophobic glucosyl block, and α- or β-linked ether group at the C-1 of hydrophobic glucosyl block. The mixing effect of α- and β-glycosides on surface activities was also investigated. As a result, ethyl β-d-glucopyranosyl-(1→4)-α-d-glucopyranosyl-(1→4)-2,3,6-tri-O-ethyl-β-d-glucopyranoside 7 (G(β)G(α)E(β)) had the highest surface activity, and its critical micellar concentration (CMC) and γ(CMC) (surface tension at CMC) values of compound 7 were 0.5mM (ca. 0.03wt%) and 34.5mN/m, respectively. The surface tensions of α- and β-glycoside mixtures except for compounds 9 and 10 were almost equal to those of pure compounds. The syntheses of the mixtures of α- and β-glycosides without purification process are easier than those of pure compounds. Thus, the mixtures should be more practical compounds for industrial use as a surfactant.  相似文献   

14.
We investigated the chemopreventive effect of p-methoxycinnamic acid (p-MCA), an active phenolic acid of rice bran, turmeric, and Kaemperfia galanga against 1,2-dimethylhydrazine-induced rat colon carcinogenesis. Male albino Wistar rats were randomly divided into six groups. Group 1 consisted of control rats that received a modified pellet diet and 0.1% carboxymethyl cellulose. The rats in Group 2 received a modified pellet diet supplemented with p-MCA [80 mg/kg body weight (b.wt.) post-orally (p.o.)] everyday. The rats in Groups 3-6 received 1,2-dimethylhydrazine (DMH) (20 mg/kg b.wt.) via subcutaneous injections once a week for the first 4 weeks; additionally, the rats in Groups 4, 5 and 6 received p-MCA at doses of 20, 40 and 80 mg/kg b.wt./day p.o., respectively, everyday for 16 weeks. The rats were sacrificed at the end of the experimental period of 16 weeks. The DMH-treated rats exhibited an increased incidence of aberrant crypt foci (ACF) development; an increased crypt multiplicity; decreased concentrations of tissue lipid peroxidation markers such as thiobarbituric acid reactive substances (TBARS), conjugated dienes (CD) and lipid hydroperoxides (LOOH); decreased levels of tissue enzymic antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR); and decreased levels of non-enzymic antioxidants such as reduced glutathione (GSH) and vitamins C, E and A in the colon. Supplementation with p-MCA significantly reversed these changes and significantly inhibited the formation of ACF and its multiplicity. Thus, our findings demonstrate that p-MCA exerts a strong chemopreventive activity against 1,2-dimethylhydrazine-induced colon carcinogenesis by virtue of its ability to prevent the alterations in DMH-induced circulatory and tissue oxidative stress and preneoplastic changes. p-MCA was more effective when administered at a dose of 40 mg/kg b.wt. than at the other two doses tested.  相似文献   

15.
The specific properties have been examined of the 1,4-beta-glucanase component of Trichoderma koningii that participates in an early and effective stage of random breakdown of native cellulose to short fibres. The enzyme was purified and freed from associated components of the cellulase complex (particularly beta-glucosidase) that interfere with, and complicate interpretation of, the action of such enzymes. Purification increased the specific activity 25-fold over culture filtrates; the enzyme hydrolysed CM-cellulose faster than the purified beta-glucosidase from the same organism hydrolysed any of its substrates (cellobiose or cellodextrins). The specificity of the glucanase was directed towards soluble derivatives of cellulose, CM-cellulose and cellodextrins, and not to insoluble cellulose or alpha-linked polymers. The approximate Km was 2.5 mg of CM-cellulose . ml-1 at 37 degrees C at the optimum pH, 5.5, where enzymic activity was maximal with 6--7 mg of CM-cellulose . ml-1 and inhibited by higher concentrations. The temperature optimum was 60 degrees C. The glucanase attacked larger cellodextrins (cellohexaose to cellotetraose, in that order) much more readily than smaller dextrins (cellobiose and cellotriose) and released a mixture of products, glucose up to cellopentaose, which was quantitatively determined after chromatography on charcoal. Similar examination of hydrolysates of the reduced cellodextrins showed clearly the high specificity of the enzyme for the central bond of its natural substrates (the cellodextrins), whatever their chain length, and indicated the nature of the enzyme as an endoglucanase. Outer bonds shared a weaker, but similar, susceptibility to enzymic cleavage. Transferase activity was absent and no larger dextrins than the initial substrate were formed.  相似文献   

16.
To study the thermal response of interscapular brown fat (IBF) to norepinephrine (NE), urethan-anesthetized rats (1.2 g/kg ip) maintained at 28-30 degrees C received a constant venous infusion of NE (0-2 x 10(4) pmol/min) over a period of 60 min. IBF temperatures (T(IBF)) were recorded with a small thermistor fixed under the IBF pad. Data were plotted against time and expressed as maximal variation (Deltat degrees C). Saline-injected rats showed a decrease in T(IBF) of approximately 0.6 degrees C. NE infusion increased T(IBF) by a maximum of approximately 3.0 degrees C at a dose of 10(4) pmol x min(-1) x 100 g body wt(-1). Surgically thyroidectomized (Tx) rats kept on 0.05% methimazole showed a flat response to NE. Treatment with thyroxine (T(4), 0.8 microg x 100 g(-1) x day(-1)) for 2-15 days normalized mitochondrial UCP1 (Western blotting) and IBF thermal response to NE, whereas iopanoic acid (5 mg x 100 g body wt(-1) x day(-1)) blocked the effects of T(4). Treatment with 3,5, 3'-triiodothyronine (T(3), 0.6 microg x 100 g body wt(-1) x day(-1)) for up to 15 days did not normalize UCP1 levels. However, these animals showed a normal IBF thermal response to NE. Cold exposure for 5 days or feeding a cafeteria diet for 20 days increased UCP1 levels by approximately 3.5-fold. Nevertheless, the IBF thermal response was only greater than that of controls when maximal doses of NE (2 x 10(4) pmol/min and higher) were used. Conclusions: 1) hypothyroidism is associated with a blunted IBF thermal response to NE; 2) two- to fourfold changes in mitochondrial UCP1 concentration are not necessarily translated into heat production during NE infusion.  相似文献   

17.
Groundnut plants with chlorotic rosette disease contain a manually transmissible virus, groundnut rosette (GRV), which is also transmitted in the persistent (circulative) manner by aphids (Aphis craccivora), but only from plants that are co-infected with a manually non-transmissible luteovirus, groundnut rosette assistor virus (GRAV). Strains of GRV from plants with chlorotic or green forms of rosette are called GRV(C) and GRV(G) respectively. An isolate of GRV(C) from Nigeria remained infective in Nicotiana clevelandii leaf extracts for 1 day at room temperature and for 15 days at 4d?C, but lost infectivity after 1 day at -20d?C or after dilution to 10--4. Its infectivity and longevity in vitro were not altered by addition of 1 mg/litre bentonite to the extraction buffer. Infectivity in leaf extracts was abolished by treatment with 50% (v/v) ether, 10% (v/v) chloroform or 8% (v/v) n-butanol, but not by treatment for 30 min with RNase A at up to 100 ng/ml. In attempts to purify GRV(C), nearly all the infectivity from N. clevelandii extracts was found in the pellets from centrifugation at 65 000 g for 1. 5 h; infectivity also occurred in a cell membrane fraction that collected at the top of a 30% sucrose ‘cushion’ containing 4% polyethylene glycol and 0.2 M NaCI. However, no virus-like particles were found in either type of preparation by electron microscopy. Nucleic acid preparations made directly from GRV(C)-infected N. clevelandii leaves were very infective; this infectivity was totally inactivated by treatment for 30 min with RNase A at 10 ng/ml in buffers of both low and high ionic strength and was therefore attributed to ssRNA. When nucleic acid preparations were electrophoresed in gels no virus-specific bands were visible but the position of the infectivity indicated that the infective ssRNA has an apparent mol. wt of c. 1.55 × 106. A similar mol. wt was indicated by the rate of sedimentation of the infective ssRNA in sucrose gradients. Preparations of dsRNA made from GRV(C)-infected N. clevelandii leaves contained a species of mol. wt c. 3.0 × 106; in addition some dsRNA preparations contained an abundant component of mol. wt c. 0.6 × 106 together with several other components of intermediate mol. wt. Similar patterns of bands were observed in dsRNA preparations made from Nigerian-grown groundnut material infected with GRV(C) alone, or with GRV(C) + GRAV, or with GRV(G) + GRAV. The properties of GRV closely resemble those of two other viruses that depend on luteoviruses for transmission by aphids, carrot mottle virus and lettuce speckles mottle virus.  相似文献   

18.
The ability of Thermomonospora fusca, Thermomonospora curvata and Pseudonorcardia thermophila to grow on and hydrolyse pig faeces and straw was studied in a 6 d batch culture at 55°C. T. fusca produced the highest levels of cellulase activity (3·3 mg/ml/h) and the greatest cellulose reduction (from 25 to 6% dry wt) in a pig faeces medium (10 g/l). Replacing half the pig faeces with grass straw reduced the cellulose breakdown (29 to 18% dry wt). Increasing the concentration of pig faeces to 30 and 50 g/l caused a decrease in cellulose breakdown. To achieve similar cellulose reductions in straws required NaOH pretreatment. All fermentations resulted in significant increases in digestible protein. The celluloses produced by the strains growing on pig faeces exhibited greatest activity in the pH range 5·9–6·4.  相似文献   

19.
An extracellular enzyme preparation from shipworm bacterium cultures dramatically increased reducing sugar content of carboxymethylcellulose (CMC3), but did not solubilize sugar from particulate cellulose. The preparation degraded cellodextrins larger than cellotriose (G3). Only interior cellodextrin chain linkages were cleaved and the center-most bond of cellohexaose (G6) was preferentially cleaved. Activity maxima were observed at 60 degrees C and between pH 5.0 and 7.0. The activity was resistant to protease treatment and little loss of activity was observed after 14 d at 25 degrees C.  相似文献   

20.
31 adult patients (study A) with acute myelocytic leukaemia were treated for remission induction with cytosine arabinoside (ARA-C, 100 mg/m2/day) by a 7 (5) day continuous infusion. 3 (2) doses of daunorubicin (DNR, 45 mg/m2 i.v.) were added at daily intervals. For maintenance 5 day ARA-C was given monthly in sequential combination with DNR, thioguanine (TG), or ifosfamide (IFOS). 16 (52%) patients achieved complete remission (C.R.) after 1.8 (1-3) courses and 6.7 (3-10) weeks from treatment start. The median survival for responders and non-responders was 11.5 months, early death rate within 6 weeks was 3 (10%). Median remission duration was 13.5 months. Among 11 patients surving for 7-22 months 7 patients are in first remission for 5.5-20.5 months. DNR, IFOS and TG were given before the 3rd day of ARA-C infusion. In a previous group of 34 leukaemic patients and in 44 therapy courses DNA histograms of bone marrow cells using pulse cytophotometry showed marked accumulation in S-phase for 75% of courses. Also (G2 + M)-cells in the DNA distribution and thymidine pulse labelling indices were markedly increased in most cases, whereas thymidine uptake by scintillation counter was diminished and mitotic indices had not changed significantly. In now 15 patients (study B) the induction regimen was intensified by adding vincristine (VCR, 2 mg i.v.) and 3 doses of IFOS (600 mg/m2 i.v.). Preliminary results are 50% C.R. after 1,7 (1-2) courses and 6.8 (5-10) weeks from initiation of therapy. 2 patients died in the first 6 weeks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号