首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microspores of Brassica napus L. cv. Topas, undergo embryogenesis when cultured at 32.5 °C for the first 18–24 h and then at 25 °C. The first division in heat-treated microspores is a symmetric division in contrast to the asymmetric division found after the first pollen mitosis in-planta or in microspores cultured continuously at 25 °C. This asymmetric division is unique in higher plants as it results in daughter cells separated by a non-consolidated wall. The cytoskeleton has an important role in such morphological changes. We examined microtubule (MT) organization during the first 24 h of heat induction in the embryogenic B. napus cv. Topas and the non-embryogenic B. napus breeding line 0025. Preprophase bands (PPBs) of MTs appeared in cv. Topas microspores in late uninucleate microspores and in prophase figures after 4–8 h of heat treatment. However, more than 60% of the PPBs were not continuous bands. In contrast, PPBs were never observed in pollen mitosis; MT strands radiated from the surface of the nuclear envelope throughout microspore maturation to the end of prophase of pollen mitosis I, during in-planta development and in microspores cultured at 25 °C. Following 24 h of heat treatment, over 95% of the microspores appeared to have divided symmetrically as indicated by the similar size of the daughter nuclei, but only 7–16% of the microspores eventually formed embryos. Discontinuous walls were observed in more than 50% of the divisions and it is probable that the discontinuous PPBs gave rise to such wall abnormalities which may then obstruct embryo development. Preprophase bands were not formed in heat-treated microspores of the non-embryogenic line 0025 and the ensuing divisions showed discontinuous walls. It is concluded that the appearance of PPBs in heat-induced microspores marks sporophytic development and that continuous PPBs are required for cell wall consolidation and embryogenesis. It follows that induced structures with two equally condensed nuclei, do not necessarily denote symmetric divisions. Received: 22 October 1998 / Accepted: 28 November 1998  相似文献   

2.
Culture temperature determines the developmental fate of isolated microspores from Brassica napus L. At 18°C, tricellular pollen develops, whereas culture at 32°C for 8 h leads to the quantitative and synchronous induction of embryogenesis, and ultimately to the formation of embryos. We investigated the changes in protein synthesis that are associated with this 8-h inductive period by using in-situ [35S]methionine labeling, followed by two-dimensional (2-D) gel electrophoretic analysis of the radiolabeled proteins. Qualitative and quantitative computer analyses of 2-D [35S]methionine protein patterns showed six polypeptides specifically labeled under embryogenic culture conditions. Eighteen polypeptides incorporated [35S]methionine at a statistically significant higher rate under embryogenic culture conditions (32°C) than in the controls (18°C), whereas one protein was preferentially labeled under non-embryogenic culture conditions (18°C). These results indicate that only a limited number of proteins detectable in the 2-D gels of microspore extracts are associated with the early induction of embryogenesis. The reproducible identification of the differentially radiolabeled proteins in the 2-D gels allow the sequencing of representative peptides and the isolation of the corresponding cDNAs. This may lead to the identification and characterization of proteins associated with the very first stages of plant embryogenesis.Abbreviations 2-D two-dimensional We would like to thank Dr. H. Van Steeg (Rijks Instituut voor Milieubeheer (RIVM), Bilthoven, The Netherlands) for use of the PhosphorImager apparatus. This research was carried out as part of the EC-Bridge project Regulation of the inductive phase of microspore embryogenesis and EC-Science project The role of mitotic and cytoskeletal genes in the induction of plant cell division.  相似文献   

3.
Summary Brassica napus cv. Topas microspores, isolated and cultured near the time of the first pollen mitosis and subjected to a heat treatment of 24 h, can be induced to develop into haploid embryos. This is a study of microspore structure during induction and embryo determination. Early during the 32.5 °C incubation period the nucleus moved away from the edge of the cell, and granules, 30 to 60 nm in diameter, appeared in the mitochondria and as a cluster in the cytoplasm. Cells divided symmetrically and at the end of the heat treatment, acquired the features of induced bicellular structures described previously. The features persisted as the cells divided randomly within the exine for 4–7 days following heat induction. Multicellular structures released from the exine underwent periclinal divisions resulting in protoderm differentiation of the globular embryo, thus determining embryo development. The cytoplasm of early heart-stage embryos contains abundant polyribosomes. Non-embryogenic development was indicated by large accumulations of starch and/or lipid and thickened cell walls or an unorganized pattern of cell division following release of the multicellular structures from the exine. Embryogenesis is discussed in terms of induction, embryo determination and development.  相似文献   

4.
Brassica napus cv. Topas microspores can be diverted from pollen development toward haploid embryo formation in culture by subjecting them to a heat stress treatment. We show that this switch in developmental pathways is accompanied by the induction of high levels of napin seed storage protein gene expression. Changes in the plant growth or microspore culture conditions were not by themselves sufficient to induce napin gene expression. Specific members of the napin multigene family were cloned from a cDNA library prepared from microspores that had been induced to undergo embryogenesis. The majority of napin clones represented three members (BnmNAP2, BnmNAP3 and BnmNAP4) that, along with a previously isolated napin genomic clone (BngNAP1), constitute the highly conserved BnmNAP subfamily of napin genes. Both RNA gel blot analysis, using a subfamily-specific probe, and histochemical analysis of transgenic plants expressing a BngNAP1 promoter--glucuronidase gene fusion demonstrated that the BnmNAP subfamily is expressed in embryogenic microspores as well as during subsequent stages of microsporic embryo development.  相似文献   

5.
Scanning electron microscopy of microspore embryogenesis inBrassica spp.   总被引:1,自引:0,他引:1  
Scanning electron microscopy was employed to study and compare microspore embryogenesis in vitro with pollen development in planta inBrassica napus andB. oleracea. An exine with its specific pattern had already been formed, when microspores were released from tetrads. During subsequent pollen development, microspores increased in size and continued to strengthen the exine. Upon in vitro culture, all microspores, i.e., embryogenic and nonembryogenic, initially showed the same morphological features. After 24 h in culture, the microspores had increased in size. Thereafter, embryogenesis was indicated in some microspores by two different morphological changes. One featured an expansion in volume of the cell cluster around the germination aperture (type I), the other showed cell cluster volume expansion over the entire microspore surface (type II). Two-thirds of embryogenic microspores in bothB. napus andB. oleracea demonstrated type I development. When followed by fluorescence microscopy, in vitro culture of microspores revealed cultures with a high embryo frequency were those with a high frequency of symmetrical division.Abbreviations SEM Scanning electron microscopy - TEM Transmission electron microscopy  相似文献   

6.
Specific stress treatments (sucrose starvation, alone or combined with a heat shock) applied to isolated tobacco (Nicotiana tabacum L.) microspores irreversibly blocked normal gametophytic development and induced the formation of embryogenic cells, which developed subsequently into pollen-derived embryos by culture at 25°C in a sugar-containing medium. A cold shock at 4°C did not inhibit microspore maturation in vitro and did not induce cell division activity, even when combined with a starvation treatment. In the absence of sucrose, microspores isolated in the G1 phase of the cell cycle replicated their DNA and accumulated in G2. Late microspores underwent miotosis during the first day of culture which resulted in a mixed population of bicellular pollen grains and uninucleate microspores, both embryogenic. After the inductive stress treatments the origin of the first multicellular structures, formed in the sugar-containing medium, could be traced to divisions of the microspore cell or divisions of the vegetative cell of bicellular pollen, indicating that the symmetry of microspore mitosis in vitro is not important for embryogenic induction. These results represent a step forward towards a unified model of induction of embryogenesis from microspores/pollen which, within a relatively wide developmental window, are competent to deviate from normal gametophytic development and initiate the alternative sporophytic programme, in response to specific stress signals.Abbreviation DAPI 4,6-diamidino-2-phenylindole We acknowledge the help of Monica Boscaiu and Zarko Hrzenjak with the artwork, and Michaela Braun-Mayer for growing the tobacco plants. This project was financed by the Austrian Fonds zur Forderung der wissenschaftlichen Forschung, grant S6003-BIO.  相似文献   

7.
Plant mitogen-activated protein kinase (MAPK) cascades are involved in extracellular stress signalling pathways, leading to different cellular responses. Stress-induced microspore embryogenesis involves the internalization of an extracellular stress signal, generating a number of cellular responses where MAPK cascades might be involved. These responses include a change of the developmental programme, the entry into an early proliferative stage and, subsequently, into differentiation stages during haploid embryogenesis. In this work we studied the expression during microspore embryogenesis of several kinases, to assess their putative role in these events. The known Brassica napus MAP kinase kinase kinases (MAP3Ks BnMAP3K1, BnMAP3K1 and BnMAP3K, the BnBSK kinase and B. napus extracellular signal-regulated kinase (ERK) homologues were analysed by electron microscope (EM) in situ hybridization, immuno-gold labelling, immunofluorescence and western blotting. The differential in situ expression of these kinases suggests a role for them during embryogenesis. Two different expression patterns were observed, indicating a different regulation. BnMAP3K1, BnMAP3K, and the ERKs showed a pattern consistent with a role mainly in proliferative events. Conversely, BnMAP3K1 and BnBSK, presented a pattern that suggested an involvement in differentiation stages. In addition, ERK homologues migrate to the nucleus immediately after induction, being found in a phosphorylated state in a larger amount.  相似文献   

8.
A stress treatment of 32 degrees C for at least 8h was able to change the gametophytic program of the microspore, switching it to embryogenesis in Brassica napus, an interesting model for studying this process in vitro. After induction, some microspores started symmetric divisions and became haploid embryos after a few days, whereas other microspores, not sensitive to induction, followed their original gametophytic development. In this work the distribution and ultrastructural localization of two heat-shock proteins (Hsp70 and Hsp90) throughout key stages before and after embryogenesis induction were studied. Both Hsp proteins are rapidly induced, localizing in the nucleus and the cytoplasm. Immunogold labeling showed changes in the distribution patterns of these proteins, these changes being assessed by a quantitative analysis. Inside the nucleus, Hsp70 was found in association with RNP structures in the interchromatin region and in the nucleolus, whereas nuclear Hsp90 was mostly found in the interchromatin region. For Hsp70, the accumulation after the inductive treatment was accompanied by a reversible translocation from the cytoplasm to the nucleus, in both induced (embryogenic) and noninduced (gametophytic) microspores. However, the translocation was higher in embryogenic microspores, suggesting a possible additional role for Hsp70 in the switch to embryogenesis. In contrast, Hsp90 increase was similar in all microspores, occurring faster than for Hsp70 and suggesting a more specific role for Hsp90 in the stress response. Hsp70 and Hsp90 colocalized in clusters in the cytoplasm and the nucleus, but not in the nucleolus. Results indicated that stress proteins are involved in the process of microspore embryogenesis induction. The differential appearance and distribution of the two proteins and their association at specific stages have been determined between the two systems coexisting in the same culture: embryogenic development (induced cells) and development of gametes (noninduced cells).  相似文献   

9.
Elevation of the culture temperature to 32°C for approximately 8 h can irreversibly change the developmental fate of isolatedBrassica napus microspores from pollen development to embryogenesis. This stress treatment was accompanied by de-novo synthesis of a number of heat-shock proteins (HSPs) of the 70-kDa class: HSP68 and HSP70. A detailed biochemical and cytological analysis was performed of the HSP68 and HSP70 isoforms. Eight HSP68 isoforms, one of which was induced three fold by the stress treatment, were detected on two-dimensional immunoblots. Immunocytochemistry revealed a co-distribution of HSP68 with DNA-containing organelles, presumably mitochondria. Six HSP70 isoforms were detected, one of which was induced six fold under embryogenic culture conditions. During normal pollen development, HSP70 was localized in the nucleoplasm during the S phase of the cell cycle, and predominantly in the cytoplasm during the remainder. Induction of embryogenic development in late unicellular microspores was accompanied by an intense anti-HSP70 labeling of the nucleoplasm during an elongated S phase. In early bicellular pollen the nucleus of the vegetative cell, which normally does not divide and never expresses HSP70, showed intense labeling of the nucleoplasm with anti-HSP70 after 8 h of culture under embryogenic conditions. These results demonstrate a strong correlation between the phase of the cell cycle, the nuclear localization of HSP70 and the induction of embryogenesis. As temperature stress alone is responsible for the induction of embryogenic development, and causes an altered pattern of cell division, there might be a direct involvement of HSP70 in this process.Abbreviations HSP heat-shock protein - 2-D two-dimensional - DAPI 4,6-diamidino-2-phenylindole. 1-D = one-dimensional - pI isoelectric point  相似文献   

10.
Several phosphoproteins specifically correlated with the induction of embryogenic cells were detected in immature pollen grains of Nicotiana tabacum L. By regulating the concentration of glutamine in the medium the developmental pathways of immature pollen grains isolated at the mid-bicellular stage could be controlled, resulting in the formation of either mature pollen grains or embryogenic cells. Different phosphoproteins, designated as a-d and as e-i, respectively, were detected when the pollen grains either became embryogenic cells in glutamine-free medium, or when they were allowed to mature in glutamine-containing medium. The formation of embryogenic cells was suppressed by adding glutamine or cytokinin to the glutamine-free medium, nor did it occur with pollen grains at younger or older stages, and in these cases the phosphoproteins a-d were detectable only partially or faintly. The phosphoproteins a-d and e-i thus may be one of the factors necessary to direct the developmental pathway of immature tobacco pollen grains to embryogenic cells and to mature pollen grains, respectively.The authors thank Dr. V.S. Jaiswal (Botany Department, Banaras Hindu University, Varanasi, India) for his valuable suggestion in the preparation of the paper. This work was supported by a Grantin-Aid for special project research from the Ministry of Education, Science and Culture of Japan.  相似文献   

11.
Prior to this report, heat treatment (32.5°C, 24 h) was the method used to induce embryogenesis fromBrassica napus microspores. Continuous culture at 25°C results in pollen development. This study shows that colchicine alone, at the non-inductive temperature of 25°C, can induce embryogenesis, thus demonstrating that heat shock is not required for embryogenic induction inB. napus cv. Topas. Embryogenic frequencies of over 15% were obtained by culturing isolated microspores with 25 M colchicine for 42 h at 25°C. The microspore developmental stages responsive to colchicine were unicellular vacuolate and late unicellular, somewhat earlier stages than the population responsive to heat induction. Other groups have reported that heat-shock proteins are essential to the induction of embryogenesis. The present study offers a method of embryogenic induction without the use of heat which will allow discrimination between the factors associated with response to heat shock and those involved with changing cell development.Abbreviations LU Late-unicellular - PPB Preprophase band - UV unicellular-vacuolate The authors wish to thank C. Bornman for his interest and encouragement. We gratefully acknowledge support from the School of Graduate Studies and Research, Queen's University to J.-P. Z., from Hilleshog AB, Sweden to D.H.S., and from the Natural Sciences and Engineering Research Council of Canada to D.H.S. and W.N. Plant Research Centre contribution No. 1595.  相似文献   

12.
Summary Changes in the actin filament and microtubule cytoskeleton were examined during heat- and cytochalasin D-induced embryogenesis in microspores ofBrassica napus cv. Topas by rhodamine phalloidin and immunofluorescence labelling respectively. The nucleus was displaced from its peripheral to a more central position in the cell, and perinuclear actin microfilaments and microtubules extended onto the cytoplasm. Heat treatment induced the formation of a preprophase band of microtubules in microspores; preprophase bands are not associated with the first pollen mitosis. Actin filament association with the preprophase band was not observed. The orientation and position of the mitotic spindle were altered, and it was surrounded with randomly oriented microfilaments. The phragmoplast contained microfilaments and microtubules, as in pollen mitosis I, but it assumed a more central position. Cytoskeletal reorganisation also occurred in microspores subjected to a short cytochalasin D treatment, in the absence of a heat treatment. Cytochalasin D treatment of microspores resulted in dislocated mitotic spindles, disrupted phragmoplasts, and symmetric divisions and led to embryogenesis, confirming that a normal actin cytoskeleton has a role in preventing the induction of embryogenesis.Abbreviations CD cytochalasin D - MF actin microfilament - MT microtubule - PPB preprophase band  相似文献   

13.
14.
Stress is an essential component during embryogenesis induction in microspore culture. Cold pretreatment has been used in cereal microspore culture but very seldom attempted in Brassica microspore culture. The effect of cold pretreatment of flower buds subjected to a liquid medium on microspore embryogenesis was investigated in spring and winter Brassica napus, as well as in B. rapa and B. oleracea. Cold pretreatment significantly enhanced microspore embryogenesis (by 1–7 fold) compared to commonly used microspore culture protocol in B. napus, while it was less effective in B. rapa or even negative in B. oleracea. The appropriate duration of cold pretreatment was found to be 2–4 days, which stimulated the best microspore embryogenesis. Cold pretreatment was also able to promote embryo development including the improvement of embryo quality and acceleration of embryogenesis. When incorporating with medium refreshing, cold pretreatment could initiate the most microspore embryogenesis than any other treatment used. With further improvement cold pretreatment method may have a positive potential in Brassica breeding programmes.  相似文献   

15.
16.
We have established an efficient method to induce embryo formation from isolated wheat (Triticum aestivum L.) microspores. Culture of excised anthers under starvation and heat shock conditions induced the formation of embryogenic microspores at high frequency in nine Austrian winter wheat genotypes, including cultivars that had been considered as recalcitrant in anther culture. Percoll gradient centrifugation of the mechanically isolated microspores allowed us to obtain homogeneous populations of embryogenic microspores in all genotypes which, after transfer to a rich medium containing immature ovaries for conditioning, divided and produced globular embryos. Thousands of embryos were produced in one petri dish. Many of these embryos developed into plantlets after transfer to a solid medium without ovaries.  相似文献   

17.
The dynamics of nuclear DNA synthesis were analysed in isolated microspores and pollen of Brassica napus that were induced to form embryos. DNA synthesis was visualized by the immunocytochemical labelling of incorporated Bromodeoxyuridine (BrdU), applied continuously or as a pulse during the first 24 h of culture under embryogenic (32 °C) and non-embryogenic (18 °C) conditions. Total DNA content of the nuclei was determined by microspectrophotometry. At the moment of isolation, microspore nuclei and nuclei of generative cells were at the G1, S or G2 phase. Vegetative nuclei of pollen were always in G1 at the onset of culture. When microspores were cultured at 18 °C, they followed the normal gametophytic development; when cultured at 32 °C, they divided symmetrically and became embryogenic or continued gametophytic development. Because the two nuclei of the symmetrically divided microspores were either both labelled with BrdU or not labelled at all, we concluded that microspores are inducible to form embryos from the G1 until the G2 phase. When bicellular pollen were cultured at 18 °C, they exhibited labelling exclusively in generative nuclei. This is comparable to the gametophytic development that occurs in vivo. Early bicellular pollen cultured at 32 °C, however, also exhibited replication in vegetative nuclei. The majority of vegetative nuclei re-entered the cell cycle after 12 h of culture. Replication in the vegetative cells preceded division of the vegetative cell, a prerequisite for pollen-derived embryogenesis.  相似文献   

18.
Summary Ultrastructural and cytochemical features of embryo development during anther and free microspore culture inBrassica napus have been followed from the late uninucleate microspore stage through the first embryonic division. On transfer to culture, the microspore cytoplasm possesses a large vacuole, often containing electron opaque aggregates, and a peripheral nucleus. Mitochondria, endoplasmic reticulum and starch-free plastids are distributed throughout the cytoplasm. The conditions of culture induce a number of major changes in the cytoplasmic organisation of the microspore. First, the central vacuole becomes fragmented allowing the nucleus to assume a central position within the cell. Secondly, starch synthesis commences in the plastids which, in turn, are seen to occupy a domain investing the nucleus. Thirdly, the cell develops a thick fibrillar wall, situated immediately adjacent to the intine of the immature pollen wall. Finally, the microspores develop large cytoplasmic aggregates of globular material. The nature of this substance remains unknown, but it remains present until the young embryos have reached the 30 cell stage. The first division of cultured microspores destined to become embryos is generally symmetrical, in contrast to the asymmetric division seen in normal development in vivo. Consideration is given to the differences observed between embryos developing from anthers and free microspores in culture.  相似文献   

19.
In planta differentiation of somatic embryos was induced in seedlings of peanut (Arachis hypogaea L.) obtained from mature seeds germinated on a medium supplemented with thidiazuron (TDZ: N-phenyl-N1- (1,2,3 thiadiazol-yl)urea). At optimum levels of TDZ (10 M), all germinating seeds produced embryogenic seedlings, and somatic embryos developed in the apical region and on the surface of cotyledons and hypocotyls. These somatic embryos matured, germinated, and formed shoots which eventually developed into whole plants. Thidiazuron-induced direct embryogenesis from morphologically intact seedlings may provide an excellent experimental system for investigating somatic embryogenesis and the morphoregulatory role of TDZ.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - MS Murashige and Skoog (1962) medium - TDZ thidiazuron (N-phenyl-N1(1,2,3 thiadiazol-yl)urea) This research was supported by an operating grant from the Natural and Engineering Research Council of Canada to P.K.S. We thank Drs. J.A. Qureshi and Judith Strommer for helpful discussions, and Sangeeta Saxena for technical assistance. A gift of technical-grade thidiazuron from Nor-Am Chemical Co., Wilmington, Del., USA is gratefully acknowledged.  相似文献   

20.
Summary Embryogenic microspore and pollen culture followed by subculture of microspore-derived plantlets enabled the production of clones ofBrassica napus cv. Topas. Flow-cytometric analysis revealed that most microspore- and pollen-derived embryos (pEMs) were haploid initially. Spontaneous diploidization occurred at the globular stage of the pEMs, and was expressed as the relative increase of the 2C and 4C nuclear DNA content. Diploidization occurred throughout various organs of the pEMs and resulted in the formation of haploid and doubled haploid chimerics. In some embryos, nearly all cells were doubled haploid. From early cotyledon stage onward, pure haploid embryos were not observed anymore. At late cotyledon and germination stages, pure doubled haploid embryos and plantlets increased in number. Tetraploid pEMs were found occasionally. A culture regime was established to induce somatic embryos on the pEM-derived young plantlets. The ploidy of the somatic embryos varied highly and tended to be the same as that of the tissue at the initiation site on the pEM-plant. The results show that during the embryogenic development ofB. napus microspores, spontaneous diploidization occurs at globular stage, and increases progressively, resulting in the formation of chimerical haploid and doubled haploid plants as well as pure doubled haploid plants; ploidy neither affects pEM development at embryo developmental stages nor somatic embryogenesis, that starts on young pEM-derived plantlets; doubled haploid somatic embryos can be cloned from single pEM-derived plantlets; and doubled haploid embryos develop to fertile plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号