首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In flagellate green algae two types of fibrous flagellar roots can be distinguished: system I fibres, cross-striated bundles of 2nm filaments (striation periodicity about 30 nm), which are associated with flagellar root microtubules, and system II fibres, contractile bundles of 4–8 nm filaments which are often cross-striated (striation periodicity variable but greater than 80 nm). The major protein of system II fibres is centrin, a Ca2+-modulated phosphoprotein, which is a member of the EF-hand protein family. The major protein of system I fibres (of severalChlamydomonas-type green algae) is a 34 kDa phosphoprotein, named assemblin. Because of the solubility characteristics of system I fibres and the properties of their major protein (paracrystal-formation in vitro, several isoelectric variants, heptad motifs in parts of the amino acid sequence), assemblin is presumably related to the k-m-e-f class of -helical fibrous proteins.Abbreviations NBBC nucleus-basal body connector - SMAC striated microtubule-associated component - k-m-e-f class keratin-myosin-elastin-fibrinogen class - EF-hand protein family Ca2+-binding proteins containing one to several Ca2+-binding motifs consisting of a peculiar helix-loop-helix configuration - PVDF polyvinyhdene difluoride  相似文献   

2.
M. Melkonian 《Protoplasma》1981,108(3-4):341-355
Summary The flagellar apparatus of the quadriflagellate scaly green algaPyramimonas obovata has been studied in detail and the absolute configuration of the flagellar apparatus has been determined. The flagellar root system is cruciate (4-2-4-2-system). 18 major basal body associated fibrous structures connect the four basal bodies with each other. Each basal body is linked to an adjacent basal body by a unique set of connecting fibres, i.e., the flagellar apparatus does not exhibit 180° rotational symmetry. The flagellar apparatus ofPyramimonas obovata is compared with that of quadriflagellate motile cells of theChlorophyceae sensu Stewart andMattox and the phylogenetic relationships are discussed.  相似文献   

3.
Summary Isolated transverse flagella ofPeridinium inconspicuum (Dinophyceae) undergo a rapid Ca2+-induced (50M Ca2+) contraction in the absence of exogenous ATP. Longitudinal flagella from the same species do not contract under these conditions. Contraction leads to a supercoiling of the axoneme and a shortening of the paraxonemal fiber that accompanies the axoneme over most of its length. Using a polyclonal antibody generated against centrin, a 20 kDa Ca2+-modulated contractile protein of striated flagellar roots of the green flagellateTetraselmis striata, we have found that the paraxonemal fiber in transverse flagella of three taxa ofDinophyceae is immunoreactive by indirect immunofluorescence. The localization of the antigen in the paraxonemal fiber of transverse flagella was confirmed by two-colour double immunofluorescence using monoclonal mouse-anti--tubulin for identification of the axoneme. No structure was immunoreactive to anticentrin in the longitudinal flagella of all taxa. Electrophoretic and immunoblot analysis of isolated flagella ofP. inconspicuum show that the antigen is a 21 kDa protein, indicating that it is either centrin or a closely related protein. We conclude that centrin confers contractility to the transverse flagellum of dinoflagellates and possibly to other contractile eukaryotic flagella.Abbreviations ASP-H artificial seawater medium with Hepes-buffer - BSA bovine serum albumine - DTT dithiothreitol - EGTA ethylene glycol bis(2-amino-ethylether)tetraacetic acid - FITC fluorescein isothiocyanate - MT buffer microtubule stabilizing buffer - PBS phosphate buffered saline - SDS sodium dodecyl sulfate - TLCK N-p-tosyl-l-lysine chloromethyl ketone - TRITC tetramethylrhodamine isothiocyanate  相似文献   

4.
The flagellar apparatus of the small prymnesiophytePrymnesium patellifera has been analysed and a reconstruction is presented. Externally, the cell carries two sub-equal flagella and a short non-coiling haptonema. Within the cell, there are four microtubular roots and a number of fibrous bands, the latter interconnecting the two basal bodies and the haptonema base. One of the roots (r1) consists of a sheet of up to 25 microtubules originating close to the proximal extremity of the haptonema base, but the other three roots are composed of between 1 and 4 microtubules only. Distally, a large striated fibrous auxiliary connecting root extends across the anterior part of the cell linking root r1 and a mitochondrial profile on the opposite side of the cell. The arrangement of the components of the flagellar apparatus ofP. patellifera is commensurate with the general pattern found in many prymnesiophytes other than members of the Pavlovales, but there are a number of differences in detail from the other species described hitherto.  相似文献   

5.
M. Melkonian 《Protoplasma》1982,111(3):221-233
Summary The structure and topography of flagellar scales (underlayer scales, rodshaped scales, hair-scales) in the green flagellateTetraselmis cordiformis has been studied in detail and the effect of divalent cations and fixation conditions on scale structure and topography was followed quantitatively. Hair-scales occur in two rows on opposite sides of a flagellum and are linked to the flagellar membrane and to two axonemal doublets by B-tubule-flagellar membrane connectives. Underlayer scales form about 24 longitudinal rows along the flagellum and occur in two distinctive shapes (pentagonal and square). The square shaped underlayer scales are related in position to the attachment sites of the hair-scales. Rod-shaped scales occur in about 20 longitudinal rows along the flagellum and are characteristically positioned as double scales. Calcium in the culture medium is necessary to retain rod-shaped scales on the flagellum, absence of calcium or chelation with EGTA or pyrophosphate leads to disappearance of rod-shaped scales from the flagellum. Other divalent cations can only partially substitute for calcium. It is suggested that calcium provides the linkage between underlayer scales and rod-shaped scales inTetraselmis. Flagellar scales inTetraselmis apparently fall into two categories: a) hair-scales (not affected by fixation or absence of divalent cations, firmly bound to axonemal microtubules via the flagellar membrane), b) underlayer scales and rod-shaped scales (affected by fixation and absence of divalent cations, kept on the flagellum mainly by electrostatic forces). The function of flagellar scales inTetraselmis is discussed.  相似文献   

6.
The spatial configuration of the flagellar apparatus of the biflagellate zoospores of the green algal genusMicrospora is reconstructed by serial sectioning analysis using transmission electron microscopy. Along with the unequal length of the flagella, the most remarkable characteristics of the flagellar apparatus are: (1) the subapical emergence of the flagella (especially apparent with scanning electron microscopy); (2) the parallel orientation of the two basal bodies which are interconnected by a prominent one-piece distal connecting fiber; (3) the unique ultrastructure of the distal connecting fiber composed of a central tubular region which is bordered on both sides by a striated zone; (4) the different origin of the d-rootlets from their relative basal bodies; (5) the asymmetry of the papillar region which together with the subapical position of the basal bodies apparently cause the different paths of corresponding rootlets in the zoospore anterior; (6) the presence of single-membered d-rootlets and multi-membered s-rootlets resulting in a 7-1-7-1 cruciate microtubular root system which, through the different rootlet origin, does not exhibit a strict 180° rotational symmetry. It is speculated that the different basal body origin of the d-rootlets is correlated with the subapical implant of flagella. It is further hypothesized that in the course of evolution the ancestors ofMicrospora had a flagellar papilla that has migrated from a strictly apical position towards a subapical position. Simultaneously, ancestral shift of flagella along the apical cell body periphery has taken place as can be concluded from the presence of an upper flagellum overlying a lower flagellum in the flagellar apparatus ofMicrospora. The basic features of the flagellar apparatus of theMicrospora zoospore resemble those of the coccoid green algal generaDictyochloris andBracteacoccus and also those of the flagellate green algal genusHeterochlamydomonas. This strengthens the general supposition thatMicrospora is evolutionarily closely related to taxa which were formerly classified in the traditionalChlorococcales.  相似文献   

7.
Mesostigma viride Lauterborn (Prasinophyceae) is the first green flagellate found to have multilayered structures (MLS) in its flagellar apparatus. MLS's were previously known from green algae only in charophycean swarmers, linking theCharophyceae to the origin of land plants, whose male gametes (when flagellated) also possess an MLS.M. viride is, therefore, probably more closely related to the origin of theCharophyceae than any other green flagellate that has been thoroughly studied so far. The occurrence of MLS's in green flagellates and apparently in other algae and protozoans suggests that an MLS occurred in an ancient group of flagellates and has survived in various protistan lines, including the line of green algae related to land plants. The occurrence of a synistosome inM. viride and other of its characteristics suggest that it is more closely related toPyramimonas than to other genera of scaly green flagellates.This work was supported by National Science Foundation Grant DEB-78-03554.  相似文献   

8.
Summary Cells ofScherffelia dubia regenerate flagella with a complete scale covering after experimental flagellar amputation. Flagellar regeneration was used to study Golgi apparatus (GA) activity during flagellar scale production. By comparing the number of scales present on mature flagella with the flagellar regeneration kinetics, it is calculated that each cell produces ca. 260 scales per minute during flagellar regeneration. Flagellar scales are assembled exclusively in the GA and abstricted from the rims of thetrans-most GA cisternae into vesicles. Exocytosis of scales occurs at the base of the anterior flagellar groove. The central portion of thetrans-most cisterna, containing no scales, detaches from the stack of cisternae and develops a coat to become a coated polygonal vesicle. Scale biogenesis involves continuous turnover of GA cisternae, and scale production rates indicate maturation of four cisternae per minute from each of the cells two dictyosomes. A possible model of membrane flow routes during flagellar regeneration, which involves a membrane recycling loop via the coated polygonal vesicles, is presented.  相似文献   

9.
10.
Summary This fine structural study ofUlothrix flacca (Dillw.) ThuretRoscoffensis variety (Berger-Perrot), a marineUlothrix, describes in detail the flagellar apparatus configuration of gametesin situ in the gametangia and in motile zygotes. The gametes's flagellar apparatus shows two basal bodies overlapping at their proximal end at a 30° angle, in an 11/5 o'clock configuration or with a counterclockwise absolute orientation. The basal bodies are interconnected by a non-striated band or capping plate. They are wrapped in their proximal part by an electron-dense sheath and obtured by a bilobed terminal cap. A cruciate microtubular root system having a 4-2-4-2 alternation pattern is present. A striated microtubule associated component (S.M.A.C.) or system I fibres accompany the two membered root R2. The system II fibres or rhizoplasts along with striated bands associated to the microtubular roots, were not observed and are presumed to be absent.In the motile zygotes, the basal bodies are paired in a cruciate pattern. During the fusion process, two basal bodies, one of each pair, slide in a face to face position with a slight displacement into the 11/5 o'clock direction; the other two make a 30° counterclockwise rotation, thus making a 60° angle between the two basal bodies of each pair instead of 30° in the gamete.After comparison with the flagellar apparatus of other green alga gametes, it is concluded that the taxonomic affinities ofUlothrix flacca var.Roscoffensis, lie with theUlvophyceae sensuStewart andMattox 1978.Abbreviations CP capping plate - ER endoplasmic reticulum - G Golgi body - LG lipid globule - M mitochondria - MS presumed mating structure - N nucleus - R 2,R 4 microtubular roots - SH sheath - SMAC striated microtubule associated component - TC terminal cap - V vacuole - Ve vesicles in the anterior papilla - 1, 2, 1, 2 basal bodies numerotation  相似文献   

11.
Summary We examined the zoospores produced by the unilocular sporangia ofLaminaria digitata (L.) Lamour. andNereocystis luetkeana Post. & Rupr. by serial sectioning to determine the absolute configuration of their flagellar apparatuses. The basal bodies, which are interconnected by three striated bands, lie parallel to the ventral face of the zoospore, and the posterior basal body always is found to the right of the anterior basal body when the cell is viewed from the ventral face, anterior end up. The four rootlets associated with the basal bodies include a major anterior rootlet of about seven microtubules extending from the anterior basal body along the ventral face towards the apex, a five-membered bypassing rootlet that passes ventral to the basal bodies and is connected to the posterior basal body by a posterior fibrous band, and two short rootlets having a single member each, the minor anterior and posterior rootlets. We consider the configuration observed here to be typical of most phaeophycean motile cells. The flagellar apparatus features suggest a considerable phylogenetic difference between thePhaeophyceae and other classes of chlorophyll c-containing organisms.  相似文献   

12.
Minibayeva  F.  Polygalova  O.  Alyabyev  A.  Gordon  L. 《Plant and Soil》2000,219(1-2):169-175
The shifts of Ca2+, K+ and proton homeostasis of wheat (Triticum aestivum L. M. cv Ljuba) root cells induced by the Ca2+-ionophore A23187 caused different responses, depending on the time of exposure to the ionophore. Oxygen consumption and heat production by roots were increased when the Ca2+-specific effect of A23187 was expressed. Ultrastructural re-organization of cell organelles was found to follow the ion shifts. The endoplasmic reticulum, Golgi apparatus and mitochondria rearranged their membranes following treatment. The increased ion permeability of root cell membranes is proposed to cause an excessive energy expenditure for the restoration of ion homeostasis.  相似文献   

13.
(Na++K+)-ATPase (NKA) mediates positive inotropy in the heart. Extensive studies have demonstrated that the reverse-mode Na+/Ca2+-exchanger (NCX) plays a critical role in increasing intracellular Ca2+ concentration through the inhibition of NKA-induced positive inotropy by cardiac glycosides. Little is known about the nature of the NCX functional mode in the activation of NKA-induced positive inotropy. Here, we examined the effect of an NKA activator SSA412 antibody on 45Ca influx in isolated rat myocytes and found that KB-R7943, a NCX reverse-mode inhibitor, fails to inhibit the activation of NKA-induced 45Ca influx, suggesting that the Ca2+ influx via the reverse-mode NCX does not mediate this process. Nifedipine, an L-type Ca2+ channel (LTCC) inhibitor, completely blocks the activation of NKA-induced 45Ca influx, suggesting that the LTCC is responsible for the moderate increase in intracellular Ca2+. In contrast, the inhibition of NKA by ouabain induces 4.7-fold 45Ca influx compared with the condition of activation of NKA. Moreover, approximately 70% of ouabain-induced 45Ca influx was obstructed by KB-R7943 and only 30% was impeded by nifedipine, indicating that both the LTCC and the NCX contribute to the rise in intracellular Ca2+ and that the NCX reverse-mode is the major source for the 45Ca influx induced by the inhibition of NKA. This study provides direct evidence to demonstrate that the activation of NKA-induced Ca2+ increase is independent of the reverse-mode NCX and pinpoints a mechanistic distinction between the activation and inhibition of the NKA-mediated Ca2+ influx path ways in cardiomyocytes.  相似文献   

14.
Summary Flagellar scales from the green flagellateTetraselmis striata (Prasinophyceae) were isolated, purified by isopycnic cesium chloride-gradient and zonal sucrose gradient centrifugation and their structure and biochemical composition investigated. Three types of flagellar scales were purified to more than 90% purity, a fourth type up to 75% purity. In addition to the previously known types of flagellar scales (pentagonal scales, rod-shaped scales, hair-scales), a novel scale type (i.e., the knotted scales) was discovered. New information about the asymmetric structure of the rod-shaped scales is presented and consequently they are renamed man scales. Flagellar scales consist mainly of carbohydrate (50–70%), significant amounts of protein (11% of dry weight) were found only in pentagonal scales. The main sugars (90%) of the pentagonal and man scales are the unusual 2-keto-sugar acids 3-deoxy-5-O-methyl-2-octulosonic acid (5 OMeKDO), 3-deoxy-2-heptulosaric acid (DHA), and 3-deoxy-2-octulosonic acid (KDO), the knotted scales contain as major sugars galactose and arabinose in addition to KDO and 5 OMeKDO but lack DHA. 13 major polypeptides were identified in flagellar scales by one-dimensional SDS-PAGE, 11 of these are of high molecular mass (>116 kDa). While the majority of polypeptides was found associated with pentagonal scales, at least 4 polypeptides were tentatively assigned to the hair-scales and knotted scales.Abbreviations CSF crude scale fraction - PS pentagonal scales - MS man scales - HS hair-scales - KS knotted scales - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - DHA 3-deoxylyxo-2-heptulosaric acid - 5 OMeKDO 3-deoxy-5-O-methyl-manno-2-octulosonic acid - KDO 3-deoxy-manno-2-octulosonic acid - GA Golgi apparatus  相似文献   

15.
In canine myocardium, the -subunit of the L-type Ca2+ channel is phosphorylated by cAMP dependent protein kinase in vitro as well as in vivo (Haase et al. FEBS Lett 335: 217–222, 1993). We have assessed the identity of the -subunit as well as its in vivo phosphorylation in representative experimental groups of catecholamine-challenged canine hearts. Adrenergic stimulation by high doses of both noradrenaline and isoprenaline induced rapid (within 20 sec) and nearly complete phosphorylation of the Ca2+ channel -subunit. Phosphorylation in vivo was about 4-fold higher as compared to untreated controls. When related to catecholamine-depleted (reserpine-treated) hearts noradrenaline and isoprenaline increased the in vivo phosphorylation of the -subunit even 8-fold. This phosphorylation correlated positively with tissue levels of cAMP, endogenous particulated cAMP-dependent protein kinase (PKA) and the rate of contractile force development dP/dtmax. The results imply the involvement of a PKA-mediated phosphorylation of the Ca2+ channel -subunit in the adrenergic stimulation of intact canine myocardium.  相似文献   

16.
The inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP3R) is an endoplasmic reticulum-localized Ca2+ -release channel that controls complex cytoplasmic Ca(2+) signaling in many cell types. At least three InsP3Rs encoded by different genes have been identified in mammalian cells, with different primary sequences, subcellular locations, variable ratios of expression, and heteromultimer formation. To examine regulation of channel gating of the type 3 isoform, recombinant rat type 3 InsP3R (r-InsP3R-3) was expressed in Xenopus oocytes, and single-channel recordings were obtained by patch-clamp electrophysiology of the outer nuclear membrane. Gating of the r-InsP3R-3 exhibited a biphasic dependence on cytoplasmic free Ca2+ concentration ([Ca2+]i). In the presence of 0.5 mM cytoplasmic free ATP, r-InsP3R-3 gating was inhibited by high [Ca2+]i with features similar to those of the endogenous Xenopus type 1 Ins3R (X-InsP3R-1). Ca2+ inhibition of channel gating had an inhibitory Hill coefficient of approximately 3 and half-maximal inhibiting [Ca2+]i (Kinh) = 39 microM under saturating (10 microM) cytoplasmic InsP3 concentrations ([InsP3]). At [InsP3] < 100 nM, the r-InsP3R-3 became more sensitive to Ca2+ inhibition, with the InsP(3) concentration dependence of Kinh described by a half-maximal [InsP3] of 55 nM and a Hill coefficient of approximately 4. InsP(3) activated the type 3 channel by tuning the efficacy of Ca2+ to inhibit it, by a mechanism similar to that observed for the type 1 isoform. In contrast, the r-InsP3R-3 channel was uniquely distinguished from the X-InsP3R-1 channel by its enhanced Ca2+ sensitivity of activation (half-maximal activating [Ca2+]i of 77 nM instead of 190 nM) and lack of cooperativity between Ca2+ activation sites (activating Hill coefficient of 1 instead of 2). These differences endow the InsP3R-3 with high gain InsP3-induced Ca2+ release and low gain Ca2+ -induced Ca2+ release properties complementary to those of InsP3R-1. Thus, distinct Ca2+ signals may be conferred by complementary Ca2+ activation properties of different InsP3R isoforms.  相似文献   

17.
Although in vitro studies have shown that oxygen free radicals depress the sarcolemmal Ca2+-pump activity and thereby may cause the occurrence of intracellular Ca2+ overload for the genesis of contractile failure, the exact relationship between changes in sarcolemmal Ca2+-pump activity and cardiac function due to these radicals is not clear. In this study we examined the effects of oxygen radicals on sarcolemmal Ca2+ uptake and Ca2+-stimulated ATPase activities as well as contractile force development by employing isolated rat heart preparations. When hearts were perfused with medium containing xanthine plus xanthine oxidase, the sarcolemmal Ca2+-stimulated ATPase activity and ATP-dependent Ca2+ accumulation were depressed within 1 min whereas the developed contractile force, rate of contraction and rate of relaxation were increased at 1 min and decreased over 3–20 min of perfusion. The resting tension started increasing at 2 min of perfusion with xanthine plus xanthine oxidase. Catalase showed protective effects against these alterations in heart function and sarcolemmal Ca2+-pump activities upon perfusion with xanthine plus xanthine oxidase whereas superoxide dismutase did not exert such effects. The combination of catalase and superoxide dismutase did not produce greater effects in comparison to catalase alone. These results are consistent with the view that the depression of heart sarcolemmal Ca2+ pump activities may result in myocardial dysfunction due to the formation of hydrogen peroxide and/or hydroxyl radicals upon perfusing the hearts with xanthine plus xanthine oxidase.  相似文献   

18.
Cardiac plasma membrane Ca2+/Mg2+ ecto-ATPase (myoglein) requires millimolar concentrations of either Ca2+ or Mg2+ for maximal activity. In this paper, we report its localization by employing an antiserum raised against the purified rat cardiac Ca2+/Mg2+ ATPase. As assessed by Western blot analysis, the antiserum and the purified immunoglobulin were specific for Ca2+/Mg2+ ecto-ATPase; no cross reaction was observed towards other membrane bound enzymes such as cardiac sarcoplasmic reticulum Ca2+-pump ATPase or sarcolemmal Ca2+-pump ATPase. On the other hand, the cardiac Ca2+/Mg2+ ecto-ATPase was not recognized by antibodies specific for either cardiac sarcoplasmic reticulum Ca2+-pump ATPase or plasma membrane Ca2+-pump ATPase. Furthermore, the immune serum inhibited the Ca2+/Mg2+ ecto-ATPase activity of the purified enzyme preparation. Immunofluorescence of cardiac tissue sections and neonatal cultured cardiomyocytes with the Ca2+/Mg2+ ecto-ATPase antibodies indicated the localization of Ca2+/Mg2+ ecto-ATPase in association with the plasma membrane of myocytes, in areas of cell-matrix or cell-cell contact. Staining for the Ca2+/Mg2+ ecto-ATPase was not cardiac specific since the antibodies detected the presence of membrane proteins in sections from skeletal muscle, brain, liver and kidney. The results indicate that Ca2+/Mg2+ ecto-ATPase is localized to the plasma membranes of cardiomyocytes as well as other tissues such as brain, liver, kidney and skeletal muscle.  相似文献   

19.
Density (age) separated rabbit erythrocytes were examined for differences in the activities of calmodulin and the protein inhibitor of membrane (Ca2+ + Mg2+)-ATPase (Lee, K.S. and Au, K.S. (1983) Biochim. Biophys. Acta 742, 54–62) as well as response of the ATPase towards these protein modulators. It was found that activities of the cytosol protein-bound and free inhibitor as well as membrane-bound inhibitor were higher in top (young) cells as compared to bottom (old) cells. Though the activity of the divalent cation associated membrane calmodulin pool was also higher in young cells, calmodulin activity in the erythrosol remained constant in cells from both age groups. The pool of membrane-associated inhibitor was shown to have greater influence on the ATPase than the membrane-associated calmodulin pool. The influence was more pronounced with inhibitor derived from old than from young cell membranes. Response of the young cell ATPase towards the protein inhibitor was better than the old cell enzyme at low inhibitor concentration. At higher inhibitor concentration, however, response of the ATPase from both cell types was similar.  相似文献   

20.
Summary Calcium signaling systems in nonexcitable cells involve activation of Ca2+ entry across the plasma membrane and release from intracellular stores as well as activation of Ca2+ pumps and inhibition of passive Ca2+ pathways to ensure exact regulation of free cytosolic Ca2+ concentration ([Ca2+] i ). A431 cells loaded with fura-2 cells were used as a model system to examine regulation of Ca2+ entry and intracellular release. Epidermal growth factor (EGF) and transforming growth factor alpha (TGF-) both stimulated Ca2+ entry and release while bradykinin appeared only to release Ca2+ from intracellular stores. The possible role of protein kinase C (PKC) in modulating the [Ca2+] i response to these agonists was examined by four methods. Low concentrations of TPA (2×10–10 m) had no effect on Ca2+ release due to EGF, TGR- or bradykinin but resulted in a rapid return of [Ca2+] i to baseline levels for EGF or TGF-. Addition of the PKC inhibitor staurosporine (1 and 10nm)_completely inhibited the action of TPA on EGF-induced [Ca2+] i changes. An inhibitor of diglyceride kinase (R59022) mimicked the action of TPA. Down-regulation of PKC by overnight incubation with 0.1 or 1 m TPA produced the converse effect, namely prolonged Ca2+ entry following stimulation with EGF or TGF-. To show that one effect of TPA was on Ca2+ entry, fura-2 loaded cells were suspended in Mn2+ rather than Ca2+ buffers. Addition of EGF or TGF- resulted in Ca2+ release and Mn2+ entry. TPA but not the inactive phorbol ester, 4--phorbol-12,13-didecanoate, inhibited the Mn2+ influx. Thus, PKC is able to regulate Ca2+ entry due to EGF or TGF- in this cell type. A431 cells treated with higher concentrations of TPA (5×10–8 m) inhibited not only Ca2+ entry but also Ca2+ release due to EGF/TGF- but had no effect on bradykinin-mediated Ca2+ release, suggesting differences in the regulation of the intracellular stores responsive to these two classes of agonists. Furthermore, sequential addition of EGF or TGF- gave a single transient of [Ca2+] i , showing a common pool of Ca2+ for these agonists. In contrast, sequential addition of EGF (or TGF-) and bradykinin resulted in two [Ca2+] i transients equal in size to those obtained with a single agonist. Ionomycin alone was able to fully deplete intracellular Ca2+ stores, whereas ionomycin following either EGF (or TGF-) or bradykinin gave an elevation of the [Ca2+] i signal equal to that of the second agonist. These data indicate that there are separate pools of intracellular Ca2+ for EGF-mediated Ca2+ release which also respond differently to TPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号