首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Two distinct types of cell growth of suspension-cultured Mentha were formed when the cells maintained in the medium containing 1000 micrograms l-1 2,4-D were subcultured into different 2,4-D concentrations. Few cell elongation of Mentha (average cell length: 34-40 microns) was observed after division in the medium containing 1-200 micrograms l-1 2,4-D; and significant cell elongation (average cell length: 95-130 microns) was observed after cell division in the medium containing 500-2000 micrograms l-1 2,4-D. A close correlation between culture medium and water content in the cells indicated that 2,4-D promoted cell elongation by water uptake. Amounts of phenolic acid in cell walls were much higher in unelongated cell walls than in elongated ones during the cultivation, and there was a close correlation between the amounts and the level of PAL activity in elongated and unelongated cells. However, there was no significant difference in cell wall components and its neutral sugar composition between elongated and unelongated cells.  相似文献   

3.
Cells of Vicia hajastana Grossh. cultured with 2,4-D showed coupled division and growth and formed multicellular files of small isodiametric cells. In GA without added 2,4-D, the cells stopped dividing and continued elongating for several days. Total growth was the same in both hormone conditions. An immunofluorescent technique was developed to study microtubule (MT) distribution. Cells in GA showed parallel MT arrays oriented transversely to the axis of elongation. In some cells the number of MT per unit length was maintained during growth while other elongating cells showed reduced frequency of MT. Microtubules often appeared as thickened, branched strands, probably as a result of lateral aggregation. In cells grown in 2,4-D some pre-prophase bands of MT were observed. Cells in mitosis lacked cortical MT, and all organized staining was in spindles or phragmoplasts. Interphase cells in 2,4-D showed variable organization of cortical MT ranging from disordered to transversely ordered. Cells in early interphase had disordered MT while larger cells showed order. These observations indicate that MT in cycling cells are continually changing organization, probably accounting for the different distributions observed in interphase cells. On cessation of the mitotic cycle, reorganization of MT stops and transverse arrays of cortical MT are maintained as cells elongate. These processes are similar to those observed in organized tissues; however, cultured cells offer distinct advantages for experimental manipulation and microscopic observation of cytoskeleton.  相似文献   

4.
Foliar explants of Nicotiana tabacum cv Xanthi n.c. were cultured on four different media: a basal medium, basal medium plus benzyladenine, basal medium plus 2,4-dichlorophenoxyacetic acid (2,4-D), and the basal medium containing both hormones. No differentiation or cell division occurred in leaf explants cultured on the basal medium. Addition of benzyladenine caused the formation of buds on the explants, while 2,4-D caused callus formation and proliferation. Likewise, only callus was formed when explants were cultured on medium containing both hormones, but growth was significantly greater than that of callus grown on a medium containing 2,4-D alone. The levels of amines and hydroxycinnamoyl putrescines were determined in the four types of explants. In nongrowing explants, amines (except an aromatic amine, tyramine) and hydroxycinnamoyl putrescines were always at a low level and only small changes in their concentrations were observed. In callus cultures, amine (except an aromatic amine, phenethylamine) and hydroxycinnamoyl putrescine levels were higher than those found in bud cultures. In all the media, transitory accumulation of aromatic amines occurred after a few days of culture. Higher levels of hydroxycinnamoyl putrescines were attained in callus cultures with a slow growth rate (2,4-D alone) than in callus cultures with a fast growth rate (benzyladenine + 2,4-D). The formation of buds was accompanied by significant changes in putrescine and hydroxycinnamoyl putrescine levels. Increasing levels were found during the first 14 days in culture when cell multiplication was rapid, followed by a sharp decline after 20 days in culture as the rate of cell division decreased and differentiation took place. The relationship among amines, hydroxycinnamoyl putrescines, and cell division and bud formation is discussed.  相似文献   

5.
A strain of carrot cells (Daucus carota cv. Kintoki) grew exponentially in the presence of 2,4-dichlorophenoxyacetic acid (2,4-D, 1 mg/1) with a doubling time of about 2 days. When those cells were transferred to a medium lacking 2,4-D, they continued to grow at almost the same rate for about a week. When the cells were again transferred to the auxin-free medium, the rate of cell division gradually decreased. After the cell division had ceased, cells were returned to the ordinary 2,4-D medium. A burst of cell divisions occurred after about 2 days. Timing of DNA synthesis and of mitosis suggested that the cells had been arrested at G1 phase. In a medium containing indoleacetic acid instead of 2,4-D, the auxin was rapidly degraded and the culture was similarly synchronized as in the auxin-omitted medium.  相似文献   

6.
石竹细胞悬浮培养研究   总被引:4,自引:0,他引:4  
李宗艳 《广西植物》2004,24(3):266-269
石竹细胞继代周期为 7d时 ,悬浮细胞培养系生长最快 ,生长率最高 ,而且培养物中胚性细胞较多 ,并能保持较快的分裂和生长 ,能促进已形成的大细胞团的生长和分化。转代时接种物与新鲜培养基的体积比以1∶2较好 ,悬浮系细胞生长最快 ,生长率最高 ,以 1∶2和 1∶3的高倍稀释接种有利于胚性细胞的形成及产生小的胚性细胞团 ,对悬浮系添加椰乳和水解乳蛋白的混合物 ,可较大幅度地提高悬浮细胞系的生长速率 ,单独添加上述两种物质的效果均不如二者的综合效应好。在 6种不同激素组合中 ,配方 2 (2 ,4 D 1 .5mg/L +NAA0 .5mg/L +6 BA 0 .5mg/L)最好 ,生长率最高。配方 5 (2 ,4 D 1 .5mg/L +NAA 0 .5mg/L +6 BA 1 .0mg/L)其次 ;配方 1 (2 ,4 D 1 .0mg/L +NAA 0 .5mg/L +6 BA 0 .5mg/L)次之。  相似文献   

7.
Summary Somatic embryos produced in vitro may exhibit structural abnormalities that affect their subsequent germination and conversion into plants. To assess the influence of auxin type on embryo initiation and development, a morphological and histological comparison was made of pecan (Carya illinoinensis) somatic embryogenic cultures induced on media with naphthaleneacetic acid or 2,4-dichlorophenoxyacetic acid (2,4-D), using light and scanning electron microscopy. Both auxins promoted enhanced cell division, particularly in subepidermal cell layers. However, notable differences were observed in mitotic activity, location of embryogenic cell proliferation, epidermal continuity, callus growth, and embryo morphology. Cultures induced on naphthaleneacetic acid had embryogenic regions composed of homogeneous, isodiametric, meristematic cells. Embryos derived from these cultures generally had a normal morphology, were single, and had a discrete apical meristem. In contrast, tissues induced on media with 2,4-D had more intense and heterogeneous regions of cell division. Proliferating cell regions were composed of meristematic cells interspersed with callus and involved more extensive regions of the mesophyll. Marked callus proliferation caused epidermal rupture in some areas. Embryos induced on medium with 2,4-D had a higher incidence of abnormalities that included fasciated, fan-shaped, and tubular embryos. Defined apical meristems were often lacking or partially obliterated due to callus proliferation. The heterogeneous, often intensive proliferation of cells in cultures induced with 2,4-D may interfere with normal patterns of embryo development.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - BAP 6-benzylaminopurine - NAA naphthaleneacetic acid - SEM scanning electron microscopy  相似文献   

8.
Campanoni P  Nick P 《Plant physiology》2005,137(3):939-948
During exponential phase, the tobacco (Nicotiana tabacum) cell line cv Virginia Bright Italia-0 divides axially to produce linear cell files of distinct polarity. This axial division is controlled by exogenous auxin. We used exponential tobacco cv Virginia Bright Italia-0 cells to dissect early auxin signaling, with cell division and cell elongation as physiological markers. Experiments with 1-naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D) demonstrated that these 2 auxin species affect cell division and cell elongation differentially; NAA stimulates cell elongation at concentrations that are much lower than those required to stimulate cell division. In contrast, 2,4-D promotes cell division but not cell elongation. Pertussis toxin, a blocker of heterotrimeric G-proteins, inhibits the stimulation of cell division by 2,4-D but does not affect cell elongation. Aluminum tetrafluoride, an activator of the G-proteins, can induce cell division at NAA concentrations that are not permissive for division and even in the absence of any exogenous auxin. The data are discussed in a model where the two different auxins activate two different pathways for the control of cell division and cell elongation.  相似文献   

9.
Omission of 2,4-dichlorophenoxyacetic acid (2,4-D) from batchcultures of sycamore produced an immediate reduction in ratesof cell division and eventually in rates of biomass accumulation.The sequential responses of a chemostat and of turbidostat culturessubjected to gradual withdrawal of 2,4-P were: (i) a transientincrease in biomass accumulation, (ii) increased accumulationof p-coumaric acid, flavonoids, and lignin, (iii) increasedcell aggregation, (iv) reduced rates of cell division, and (v)death. During stepwise reduction of 2,4-D supplied to turbidostatcultures, rates of 2,4-D uptake were reduced when the spentmedium concentration fell to 3?5–1?0 ? 10–7 M. Underthese conditions the 2,4-D concentration in soluble and insolublecell fractions declined. The growth responses were correlatedwith the spent-medium 2,4-D concentration but not with its concentrationin the intracellular fractions.  相似文献   

10.
When 2,4-dichlorophenoxyacetic acid (2,4-D)-dependent tobacco cell suspensions, one normal and one transformed by Agrobacterium tumefaciens, were subcultured on hormone-lacking medium the stationary phase of the cell cycle was reached earlier than on medium containing 2,4-D. Addition of the auxin 2,4-D could restore cell division activity within 10–12 h for the most rapidly reacting cell line. The cell-division response was characterized as being auxin-specific and optimal with 2,4-D at 2.2 10-6 M. Although the cell lines used showed different characteristics, both reacted with a rapid increase in at least three mRNA species within 1 or 2 h after 2,4-D application. Two, 2,4-D-induced protein spots, seen after in-vitro translation, had the same characteristics (MWs 35 kilodaltons (kDa) and 25 kDa with isoelectric points of 7.1 and 6.3, respectively) in both cell lines. Water-treated controls did not show alterations in the translatable mRNA populations. This indicates that the accumulation of the corresponding mRNAs is an early hormone-induced event. Since cell division is the only measurable reaction found after auxin application, cell systems as described here offer excellent possibilities for studying early auxin-induced changes at the molecular level preceding mitosis.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - kDa kilodalton  相似文献   

11.
Takeda, J. 1988. Light-induced synthesis of anthocyanin in carrotcells in suspension. I. The factors affecting anthocyanin production.—J.exp. Bot. 39: 1065–1077. A light-triggered anthocyanin-synthesizing system was establishedfor carrot cells in suspension. A few days after transfer ofthe cells to a 2,4-dichlorophenoxyacetic acid (2,4-D)-free mediumin the dark, light irradiation triggered anthocyanin synthesisand concomitantly stopped expansion growth. Over 90% of thecells synthesized anthocyanin without cell division. By loweringthe concentration of phosphate or both nitrogen and phosphateand delaying the time of onset of irradiation, the productionof anthocyanin per cell increased to a maximum level of 0–8µmol anthocyanin per 106 cells. A change in the physiologicalstate of cells (light-insensitive to light-sensitive state)induced by the transfer to 2,4-D-free medium is suggested tobe a prerequisite for the light-triggered synthesis of anthocyanin. Key words: Anthocyanin production, cultured cells, Daucus carota, light-triggered, 2,4-D  相似文献   

12.
Auxins and cytokinins support cell division in tissue and cell cultures. In cytokinin-independent pear (Pyrus communis) cells, omission of 2,4-dichlorophenoxyacetic acid (2,4-D) from the medium for two successive transfers leads to rapid cell lysis, unless the osmolarity is raised to 0.4 molar with mannitol. Use of this system (nutrients plus mannitol minus 2,4-D) for the study of cell senescence was explored both in batch culture and in a system designed to permit medium renewal without withdrawal of live cells.  相似文献   

13.
Brassinosteroids (BRs) are steroidal phytohormones that are essential for many processes in plant growth and development, such as cell expansion, vascular differentiation, and responses to stress. The effects of BRs on cell division are unclear, as attested by contradictory published results. To determine the effect of BRs on cell division, the tobacco (Nicotiana tabacum) BY-2 cell line, which is a widely-used model system in plant cell biology, was used. It was found that brassinolide (BL) promoted cell division only during the early phase of culture and in the absence of auxin (2,4-D). This promotion of cell division was confirmed by RNA gel blot analyses using cell-cycle-related gene probes. At later stages in the culturing periods of BL-supplied and 2,4-D-supplied BY-2 cells, differences in cell multiplication and cell-cycle-related gene expression were observed. Moreover, the BL-treated BY-2 cells had morphological differences from the 2,4-D-treated cells. To determine whether suppressed organellar DNA replication limited this promotion of cell division during the early culture phase, this replication was examined and it was found that BL treatment had no effect on activating organellar (plastid- and mitochondrial-) DNA synthesis. As preferential organellar DNA synthesis, which is activated by 2,4-D, is necessary during successive cell divisions in BY-2 cells, these data suggest that the mechanism of the promotion of cell division by BL treatment is distinct from that regulated by the balance of auxin and cytokinin.  相似文献   

14.
Auxin, actin and growth of the Arabidopsis thaliana primary root   总被引:2,自引:0,他引:2  
To understand how auxin regulates root growth, we quantified cell division and elemental elongation, and examined actin organization in the primary root of Arabidopsis thaliana. In treatments for 48 h that inhibited root elongation rate by 50%, we find that auxins and auxin-transport inhibitors can be divided into two classes based on their effects on cell division, elongation and actin organization. Indole acetic acid (IAA), 1-naphthalene acetic acid (NAA) and tri-iodobenzoic acid (TIBA) inhibit root growth primarily through reducing the length of the growth zone rather than the maximal rate of elemental elongation and they do not reduce cell production rate. These three compounds have little effect on the extent of filamentous actin, as imaged in living cells or by chemical fixation and immuno-cytochemistry, but tend to increase actin bundling. In contrast, 2,4-dichlorophenoxy-acetic acid (2,4-D) and naphthylphthalamic acid (NPA) inhibit root growth primarily by reducing cell production rate. These compounds remove actin and slow down cytoplasmic streaming, but do not lead to mislocalization of the auxin-efflux proteins, PIN1 or PIN2. The effects of 2,4-D and NPA were mimicked by the actin inhibitor, latrunculin B. The effects of these compounds on actin were also elicited by a 2 h treatment at higher concentration but were not seen in two mutants, eir1-1 and aux1-7, with deficient auxin transport. Our results show that IAA regulates the size of the root elongation zone whereas 2,4-D affects cell production and actin-dependent processes; and, further, that elemental elongation and localization of PINs are appreciably independent of actin.  相似文献   

15.
A system of synchronous cell division was established by starvation of auxin and its readdition to suspension cultures of cells of Catharanthus roseus L. cv. Little-Pinky. When cells in the stationary phase were transferred to fresh medium free of 2,4-dichlorophenoxyacetic acid (2,4-D), cells were arrested preferentially at the G1 phase. After cells had been cultured for 2 days in medium without 2,4-D, readdition of 2,4-D induced the synchronous division of cells. In this system, 70–80% of cells divided synchronously within 3 to 4h, and the mitotic index increased sharply in parallel with the increase in cell number. Active synthesis of DNA was demonstrated by measurements of incorporation of [3H]-thymidine into the DNA fraction. The induction of cell division by the addition of 2,4-D was inhibited by treating cells with analogues of auxin, such as 2,4,6-trichlorophenoxyacetic acid and p-chlorophenoxyisobutyric acid.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - DAPI 4,6-diamidino-2-phenylindole - IAA indole-3-acetic acid - MS Murashige & Skoog - NAA -naphthalenacetic acid - PCIB p-chlorophenoxyisobutyric acid - 2,4,6-T 2,4,6-trichlorophenoxyacetic acid  相似文献   

16.
Megagametophytes of Siberian pine were cultured on an in vitro culture medium 1/2 LV supplemented with growth regulators 2,4-dichlorophenoxyacetic acid (2,4-D) and benzylaminopurine (6-BAP) to form embryos. The competency of somatic cell of explants to embryogenesis manifested itself in an organized growth and polarity. A coenocyte consisting of long vacuolated cells was formed in the megagametophyte culture. Then, the migration of the nuclei to one of the poles of the cell, their division, and formation of embryoids was observed. The megagametophyte culture of the Siberian pine differed from the zygotic embryo culture by the absence of asymmetric division in the vacuolated cell.  相似文献   

17.
The effects of plant growth regulators were investigated onanthocyanin synthesis induced by removing auxin from carrotsuspension cultures. Of the auxins tested, 2,4-D showed thestrongest inhibiting effect on anthocyanin synthesis and hadthe strongest promoting effect on undifferentiated growth. When2,4-D was added to anthocyanin synthesizing cells, in whichcell division had ceased, anthocyanin synthesis was repressedimmediately, accumulated anthocyanin disappeared and cell divisionresumed. All cytokinins examined promoted anthocyanin synthesisin the absence of auxin. Both gibberellic acid (GA3) and abscisicacid inhibited anthocyanin synthesis in media lacking 2,4-D,though GA3 showed no effect on cell division. These effectsof growth regulators on anthocyanin synthesis are similar tothose reported for their effects on embryogenesis [Fujimuraand Komamine (1975) Plant Sci. Lett. 5: 359, (1979) Z. Pflanzenphysiol.95: 13, (1980) Z. PJlanzenphysiol. 99: 1]. The relationshipbetween the induction of anthocyanin synthesis, metabolic differentiation,and embryogenesis are discussed. 1 Present address: Department of Biology, College of Arts andSciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo153, Japan. 2 Present address: Biological Institute, Faculty of Science,Tohoku University, Sendai, Miyagi 980, Japan. (Received November 28, 1985; Accepted July 23, 1986)  相似文献   

18.
The effects of 2,4-D on nucleic acid and protein synthesis andcell respiration were compared between a 2,4-D-resistant variantand its wild-type cell lines of tobacco (Nicotiana tabacum L.).The variant continued cell division and growth in the presenceof 100 µM 2,4-D which was strongly inhibitory to the wild-typecell lines. Among the macromolecular syntheses studied, DNAsynthesis was the most sensitive and protein synthesis was theleast sensitive to inhibitory concentrations of 2,4-D. The variantdisplayed threefold higher resistance to 2,4-D than the wild-typecell line based on the 50% inhibitory concentrations of 2,4-Don DNA synthesis. No significant differences which could explainthe 2,4-D resistance were found between the variant and thewild-type cell lines in 2,4-D concentrations required to inhibitRNA and protein synthesis. The effect of 2,4-D on cell respirationwas detectable without a noticeable lag. The resistance of thevariant based on the effect on cell respiration also was apparentimmediately after 2,4-D addition. According to the 50% inhibitoryconcentrations of 2,4-D on cell respiration, the variant showeda level of resistance similar to that estimated by DNA synthesis.These results indicate that the resistance of the variant isdue to a modification which reduces the cellular sensitivityto phyto-toxic concentrations of 2,4-D with respect to, at least,DNA synthesis and respiration. (Received August 6, 1985; Accepted November 27, 1985)  相似文献   

19.
Culturing leaf protoplast-derived cells of the embryogenic alfalfa (Medicago sativa subsp. varia A2) genotype in the presence of low (1 microM) or high (10 microM) 2, 4-dichlorophenoxyacetic acid (2,4-D) concentrations results in different cell types. Cells exposed to high 2,4-D concentration remain small with dense cytoplasm and can develop into proembryogenic cell clusters, whereas protoplasts cultured at low auxin concentration elongate and subsequently die or form undifferentiated cell colonies. Fe stress applied at nonlethal concentrations (1 mM) in the presence of 1 microM 2,4-D also resulted in the development of the embryogenic cell type. Although cytoplasmic alkalinization was detected during cell activation of both types, embryogenic cells could be characterized by earlier cell division, a more alkalic vacuolar pH, and nonfunctional chloroplasts as compared with the elongated, nonembryogenic cells. Buffering of the 10 microM 2,4-D-containing culture medium by 10 mM 2-(N-morpholino)ethanesulfonic acid delayed cell division and resulted in nonembryogenic cell-type formation. The level of endogenous indoleacetic acid (IAA) increased transiently in all protoplast cultures during the first 4 to 5 d, but an earlier peak of IAA accumulation correlated with the earlier activation of the division cycle in embryogenic-type cells. However, this IAA peak could also be delayed by buffering of the medium pH by 2-(N-morpholino)ethanesulfonic acid. Based on the above data, we propose the involvement of stress responses, endogenous auxin synthesis, and the establishment of cellular pH gradients in the formation of the embryogenic cell type.  相似文献   

20.
Auxin requirements of sycamore cells in suspension culture   总被引:3,自引:3,他引:0       下载免费PDF全文
Sycamore (Acer pseudoplatanus L.) cell suspension cultures (strain OS) require 2,4-dichlorophenoxyacetic acid (2,4-D) in their culture medium for normal growth. If the 2,4-D is omitted, rates of cell division are dramatically reduced and cell lysis may occur. Despite this `auxin requirement,' it has been shown by gas chromatography-mass spectrometry that the cells synthesize indol-3yl-acetic acid (IAA). Changes in free 2,4-D and IAA in the cells during a culture passage have been monitored.

There is a rapid uptake of 2,4-D by the cells during the lag phase leading to a maximum concentration per cell (125 nanograms per 106 cells) on day 2 followed by a decline to 45 nanograms per 106 cells by day 9 (middle of linear phase). The initial concentration of IAA (0.08 nanograms per 106 cells) rises slowly to a peak of 1.4 nanograms per 106 cells by day 9 then decreases rapidly to 0.2 nanograms per 106 cells by day 15 (early declining phase) and 0.08 nanograms per 106 cells by day 23 (early stationary phase).

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号