首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Colonic mucosal biopsies cultured for 6 h in the presence of cycloheximide (CH) showed a dose-dependent inhibition of protein synthesis but a biphasic PGE2 production pattern with an increase in both basal and A23187 stimulated PGE2 release at 0.2 microM. At 10 microM CH both protein synthesis as well as basal and PMA induced PGE2 production was inhibited by 90% whereas A23187 stimulated release showed a 50% decrease. At a dose of 100 microM, CH totally blocked also A23187 stimulated PGE2 release without much further decrease in protein synthesis. The effects of 10 microM CH were time-dependently reversible. In biopsies loaded with 3H-arachidonic acid (AA), 10 microM CH had no apparent effect on phospholipase A2 activity, nor could exogenous AA overcome the CH inhibition of basal PGE2 release. No inhibition of prostaglandin synthetase (PS) activity was found in homogenates of biopsies treated with 10 microM CH for 6 h. No direct effect of CH (up to 1 mM) was seen in control homogenates. It is concluded that at least one step in the PGE2 production is protein synthesis dependent. The effect is however not due to a limitation in the enzymes of the major PS system but more likely to one of its co-factors. This factor only plays a role in the intact cell and its importance seems to be reduced during A23187 conditions possibly due to altered cell status and/or other sources of PS. Commonly used high doses (100 microM) of CH give unspecific effects unrelated to inhibition of protein synthesis.  相似文献   

4.
The purpose of this investigation was to study the mechanism of stimulation of PGE2 output from human amnion epithelial cells by the synthetic glucocorticoid dexamethasone. Cells incubated in serum-free pseudo-amniotic fluid produced very low levels of PGE2, even when arachidonic acid (1 microM) was present. Pretreatment of cells with dexamethasone (50 nM) for 21 h increased the PGE2 output 6- to 7-fold in 2-h incubations only in the presence of arachidonic acid. The RNA synthesis inhibitor, actinomycin D (1 microgram/ml), and the protein synthesis inhibitor, cycloheximide (40 micrograms/ml), each blocked dexamethasone-stimulated arachidonic acid conversion to PGE2. The time course of these events suggests that dexamethasone first initiates RNA synthesis. Acetylsalicylic acid, a specific and irreversible blocker of prostaglandin endoperoxide H synthase (cyclooxygenase), was used to determine whether dexamethasone could stimulate new enzyme synthesis. Cells treated first with acetylsalicylic acid (30 min) then dexamethasone (22 h) produced as much PGE2 in response to 1 microM arachidonate as did cells exposed to dexamethasone only. Exposing cells to acetylsalicylic acid after dexamethasone completely eliminated PGE2 output. These data suggest that dexamethasone stimulates the synthesis of prostaglandin endoperoxide H synthase.  相似文献   

5.
J M Pash  J M Bailey 《FASEB journal》1988,2(10):2613-2618
Cultures of vascular smooth muscle cells superfused with [14C]arachidonic acid synthesized the antiplatelet substance prostacyclin as the major cyclooxygenase product. Prostacyclin synthesis was inactivated by aspirin, which irreversibly acetylates cyclooxygenase. Aspirin-treated cells recovered within 2 h by a process that was blocked by cycloheximide but not by actinomycin D, and that required a serum component identified as epidermal growth factor (EGF). EGF-induced recovery of cyclooxygenase was greatly potentiated by type beta transforming growth factor (TGF-beta). Incubation with EGF and TGF-beta in the 0.1-1.0 nanomolar range stimulated cyclooxygenase recovery up to 20-fold without increasing [35S]methionine incorporation into other cell proteins. Induction of cyclooxygenase by EGF and TGF-beta also was prevented by cycloheximide but not by actinomycin D. EGF-dependent recovery was blocked by preincubation with dexamethasone (2 microM), an effect that was duplicated by pure lipocortin (2-4 micrograms/ml). Incubation of membrane preparations from these cells with EGF selectively activated phosphorylation of a 35-kDa cellular protein that comigrated with lipocortin. The results suggest that cyclooxygenase recovery in aspirin-inactivated vascular smooth muscle cells is mediated by an EGF-dependent translational control that is inhibited by corticosteroids. The findings also provide a new mechanism whereby corticosteroids suppress inflammatory prostaglandins.  相似文献   

6.
In Swiss 3T3 murine fibroblasts, interleukin 1 (IL-1) and bradykinin stimulate prostaglandin E2 (PGE2) synthesis. However, in the present study, we found that neither agonist stimulated PGE2 synthesis in BALB/c 3T3 murine fibroblasts, this in spite of expression of similar numbers of receptors for each agonist compared to Swiss 3T3 cells. When BALB/c 3T3 cells were preincubated with cAMP analogs, both IL-1 and bradykinin stimulated PGE2 synthesis to levels similar to those observed in Swiss 3T3 cells. Similarly, when the cells were preincubated with forskolin, which activates the catalytic subunit of adenylate cyclase directly, or NECA, which stimulates cellular cAMP accumulation by activating adenosine receptors, IL-1 and bradykinin stimulated PGE2 synthesis. Rp-cAMPS, an inhibitor of cAMP-dependent protein kinase, blocked the ability of cAMP or NECA to render cells responsive to IL-1 and bradykinin. In basal BALB/c 3T3 cells, bradykinin and IL-1 stimulated arachidonate release in the absence of cAMP, but little conversion of released arachidonate to PGE2 occurred. cAMP, forskolin, and NECA all increased cyclooxygenase activity in the cells. SV-T2 is a clonal line originating from BALB/c 3T3 transformed with SV-40. In these cells, IL-1 and bradykinin stimulated PGE2 synthesis despite basal intracellular cAMP concentrations similar to BALB/c, and cAMP only modestly potentiated the response. In summary, cyclooxygenase expression appears to be regulated by cAMP in BALB/c 3T3 cells, and SV-40 transformation results in increased cyclooxygenase expression, apparently independent of cAMP.  相似文献   

7.
8.
Using HSDM1 C1 cell line derived from the mouse fibrosarcoma which synthesizes and secretes prostaglandin (PG) E2, specific binding sites for epidermal growth factor (EGF), a potent growth stimulator of many tissues, and its effect on PGE2 production by cultured tumor cells were studied. HSDM1 C1 cell line possessed specific, high-affinity receptors for EGF: Kd (5.5 X 10(-10 M) and binding capacity (17,650 sites/cell). EGF significantly stimulated PGE2 production in HSDM1 C1 line cultured in serum-free medium for 24 h in a dose-dependent manner; a 2.5-fold increase over control was induced by as little as 0.1 ng/ml and the maximal effect (3.5-fold increase) by 1 ng/ml. Its stimulatory effect on PGE2 production was completely blocked by indomethacin, an inhibitor of PG biosynthesis. These data suggest that EGF may be involved in modulation of synthesis and/or secretion of PGE2, a potent bone-resorbing factor, by the tumors which may partly contribute to hypercalcemia in certain types of neoplasms.  相似文献   

9.
The effect of NaF on prostaglandin E2 (PGE2) synthesis in a clonal osteoblast-like cell line, MOB 3-4, was examined in the presence of Al3+. The MOB 3-4 cell line, which was derived from neonatal mouse calvaria, displays many osteoblastic characteristics, including the biosynthesis of PGE2. In the absence of Al3+, 1 mM NaF increased PGE2 synthesis (per well) to about 340% of the control level, whereas NaF at lower concentrations (below 0.1 mM) did not show such a significant effect. In the presence of 10 microM Al3+, NaF concentrations ranging from 0.01 to 1 mM increased PGE2 synthesis in a dose-dependent manner, though 10 microM Al3+ had no effect by itself. Similar effects were observed on alkaline phosphatase (ALP) activity per well, but a stimulatory effect of NaF on protein synthesis was observed only in the presence of 10 microM Al3+. These data demonstrated that PGE2 synthesis per protein was increased by NaF alone, and this effect was markedly enhanced by the addition of AlCl3. ALP activity per protein was, however, significantly increased by NaF in the absence of AlCl3. Taken together with our previous finding that Al3+ enhances the NaF-induced Ca2+ mobilization in MOB 3-4 cells, these results suggest that F- combined with Al3+ (i.e., AlF4-) is a more potent stimulator of PGE2 synthesis in cells than F- alone, and that the AlF4- -enhanced PGE2 synthesis may be caused by an increase in cytosolic free Ca2+ concentration during activation of the G protein by AlF4-.  相似文献   

10.
Prostaglandins (PGs) such as PGE2 enhance proliferation in many cells, apparently through several distinct mechanisms, including transactivation of the epidermal growth factor (EGF) receptor (EGFR) as well as EGFR-independent pathways. In this study we found that in primary cultures of rat hepatocytes PGE2 did not induce phosphorylation of the EGFR, and the EGFR tyrosine kinase blockers gefitinib and AG1478 did not affect PGE2-stimulated phosphorylation of ERK1/2. In contrast, PGE2 elicited EGFR phosphorylation and EGFR tyrosine kinase inhibitor-sensitive ERK phosphorylation in MH1C1 hepatoma cells. These findings suggest that PGE2 elicits EGFR transactivation in MH1C1 cells but not in hepatocytes. Treatment of the hepatocytes with PGE2 at 3 h after plating amplified the stimulatory effect on DNA synthesis of EGF administered at 24 h and advanced and augmented the cyclin D1 expression in response to EGF in hepatocytes. The pretreatment of the hepatocytes with PGE2 resulted in an increase in the magnitude of EGF-stimulated Akt phosphorylation and ERK1/2 phosphorylation and kinase activity, including an extended duration of the responses, particularly of ERK, to EGF in PGE2-treated cells. Pertussis toxin abolished the ability of PGE2 to enhance the Akt and ERK responses to EGF. The results suggest that in hepatocytes, unlike MH1C1 hepatoma cells, PGE2 does not transactivate the EGFR, but instead acts in synergism with EGF by modulating mitogenic mechanisms downstream of the EGFR. These effects seem to be at least in part G(i) protein-mediated and include upregulation of signaling in the PI3K/Akt and the Ras/ERK pathways.  相似文献   

11.
12.
We investigated the formation and pharmacology of prostaglandin E(3) (PGE(3)) derived from fish oil eicosapentaenoic acid (EPA) in human lung cancer A549 cells. Exposure of A549 cells to EPA resulted in the rapid formation and export of PGE(3.) The extracellular ratio of PGE(3) to PGE(2) increased from 0.08 in control cells to 0.8 in cells exposed to EPA within 48 h. Incubation of EPA with cloned ovine or human recombinant cyclooxygenase 2 (COX-2) resulted in 13- and 18-fold greater formation of PGE(3), respectively, than that produced by COX-1. Exposure of A549 cells to 1 microM PGE(3) inhibited cell proliferation by 37.1% (P < 0.05). Exposure of normal human bronchial epithelial (NHBE) cells to PGE(3), however, had no effect. When A549 cells were exposed to EPA (25 microM) or a combination of EPA and celecoxib (a selective COX-2 inhibitor), the inhibitory effect of EPA on the growth of A549 cells was reversed by the presence of celecoxib (at both 5 and 10 microM). This effect appears to be associated with a 50% reduction of PGE(3) formation in cells treated with a combination of EPA and celecoxib compared with cells exposed to EPA alone. These data indicate that exposure of lung cancer cells to EPA results in a decrease in the COX-2-mediated formation of PGE(2), an increase in the level of PGE(3), and PGE(3)-mediated inhibition of tumor cell proliferation.  相似文献   

13.
KAT-50, an established human thyrocyte cell line, expresses constitutively high levels of prostaglandin endoperoxide H synthase-2 (PGHS-2), the inflammatory cyclooxygenase. Here, we examine primary human thyrocytes. We find that they, too, express PGHS-2 mRNA and protein under control culture conditions. A substantial fraction of the basal prostaglandin E(2) (PGE(2)) produced by these cells can be inhibited by SC-58125 (5 microM), a PGHS-2-selective inhibitor. Interleukin (IL)-1beta (10 ng/ml) induces PGHS-2 expression and PGE(2) production in primary thyrocytes. The induction of PGHS-2 and PGE(2) synthesis by IL-1beta could be blocked by glucocorticoid treatment. Unlike KAT-50, most of the culture strains also express PGHS-1 protein. Our observations suggest that both cyclooxygenase isoforms may have functional roles in primary human thyroid epithelial cells, and PGHS-2 might predominate under basal and cytokine-activated culture conditions.  相似文献   

14.
Prostacyclin synthesis by cultured vascular smooth muscle cells was inactivated by aspirin. Recovery required serum factors replaceable by EGF plus TGF-beta and was blocked by cycloheximide but not by actinomycin D. Recovery of cyclooxygenase activity was prevented by preincubation with dexamethasone (0.1 to 2 microM), which also suppressed basal enzyme activity by up to 70%. A full length 2.8 Kb cDNA hybridization probe for human cyclooxygenase identified a cyclooxygenase messenger RNA of approximately 2.8 Kb in these cells. Cyclooxygenase mRNA levels were enhanced by EGF/TGF-beta, but suppressed completely by corticosteroids. It is concluded that inhibition of prostanoid synthesis by corticosteroids is mediated by suppressing cyclooxygenase messenger RNA. These observations provide a new molecular mechanism for the anti-inflammatory activity of the corticosteroids.  相似文献   

15.
Studies were performed to examine a potential role for a guanine nucleotide-binding protein in epidermal growth factor (EGF)-stimulated phospholipase A2 (PLA2) activity. EGF increased prostaglandin E2 (PGE2) production in intact or saponin-permeabilized rat inner medullary collecting tubule (RIMCT) cells. Incubation of permeabilized cells with guanosine 5'-O-(thiotriphosphate) (GTP gamma S) enhanced and with guanosine 5'-O-(2-thiodiphosphate) (GDP beta S) inhibited the response to EGF. GDP beta S had no effect on ionomycin-stimulated PGE2 production. Exposure of intact cells to 25 mM NaF + 10 microM AlCl3 enhanced both basal and EGF-stimulated PGE2 production. Pertussis toxin ADP-ribosylated a 41-kDa protein in RIMCT cell membranes. Pretreatment of cells with pertussis toxin (100 ng/ml for 16 h) eliminated the response to EGF in intact cells and the response to EGF + GTP gamma S in permeabilized cells. Pertussis toxin had no effect on the response to ionomycin. The effect of pertussis toxin was not due to alterations in cAMP as cellular cAMP levels were unaffected by pertussis toxin both in the basal state and in the presence of EGF. PGE2 production in response to EGF was not transduced by a G protein coupled to phospholipase C (PLC) as neomycin, which inhibited PLC, did not decrease EGF-stimulated PGE2 production. Also, PGE2 production was not increased by inositol trisphosphate and did not require the presence of extracellular Ca2+. In contrast to EGF-stimulated PLC activity, stimulation of PLA2 by EGF was not susceptible to inhibition by phorbol 12-myristate 13-acetate. These results clearly demonstrate the existence of a PLA2-specific pertussis toxin-inhibitable guanine nucleotide-binding protein coupled to the EGF receptor in RIMCT cells.  相似文献   

16.
Prostaglandins (PGs) have numerous cardiovascular and inflammatory effects. Cyclooxygenase (COX), which exists as COX-1 and COX-2 isoforms, is the first enzyme in the pathway in which arachidonic acid is converted to PGs. Prostaglandin E2 (PGE2) exerts a variety of biological activities for the maintenance of local homeostasis in the body. Elucidation of PGE2 involvement in the signalling molecules such as COX could lead to potential therapeutic interventions. Here, we have investigated the effects of PGE2 on the induction of COX-2 in human umbilical vein endothelial cells (HUVEC) treated with interleukin-1beta (IL-1beta 1 ng/ml). COX activity was measured by the production of 6-keto-PGF1alpha, PGE2, PGF2alpha and thromboxane B2 (TXB2) in the presence of exogenous arachidonic acids (10 microM for 10 min) using enzyme immunoassay (EIA). COX-1 and COX-2 protein was measured by immunoblotting using specific antibody. Untreated HUVEC contained only COX-1 protein while IL-1beta treated HUVEC contained COX-1 and COX-2 protein. PGE2 (3 microM for 24h) did not affect on COX activity and protein in untreated HUVEC. Interestingly, PGE2 (3 microM for 24h) can inhibit COX-2 protein, but not COX-1 protein, expressed in HUVEC treated with IL-1beta. This inhibition was reversed by coincubation with forskolin (100 microM). The increased COX activity in HUVEC treated with IL-1beta was also inhibited by PGE2 (0.03, 0.3 and 3 microM for 24h) in a dose-dependent manner. Similarly, forskolin (10, 50 or 100 microM) can also reverse the inhibition of PGE2 on increased COX activity in IL-1beta treated HUVEC. The results suggested that (i) PGE2 can initiate negative feedback regulation in the induction of COX-2 elicited by IL-1beta in endothelial cells, (ii) the inhibition of PGE2 on COX-2 protein and activity in IL-1beta treated HUVEC is mediated by cAMP and (iii) the therapeutic use of PGE2 in the condition which COX-2 has been involved may have different roles.  相似文献   

17.
Prostaglandin E(2) (PGE(2)) enhances the mitogenic response to epidermal growth factor (EGF) in hepatocytes, but the underlying mechanisms are not clear. We previously observed that PGE(2) upregulates EGF-induced signalling in the MEK/ERK and PI3K/Akt pathways in hepatocytes. Other investigations have indicated that ErbB2 enhances the mitogenic effect of EGF in these cells. In the present study we found that treatment with PGE(2) increased ErbB2 and decreased ErbB3 expression at both the mRNA and protein level in cultured rat hepatocytes. Silencing of the ErbB2 expression with specific siRNA blocked the stimulation by PGE(2) and EGF of cyclin D1 expression and DNA synthesis. Both EGF and PGE(2) increased the expression of ERK and Akt, but while the effect of EGF was inhibited by ErbB2-directed siRNA, this did not affect the PGE(2)-induced upregulation of ERK and Akt. These data suggest that PGE(2) can enhance the mitogenic effect of EGF both by increasing ErbB2 expression and by ErbB2-independent mechanisms.  相似文献   

18.
We have previously established a murine flat revertant cell line R1 from an activated H-ras transformant EJ-NIH/3T3 by subjecting it to ethyl methanesulfonate. From the R1 cells, we cloned a mutated gelsolin gene His321 and have shown the inhibitory activity of His321 against EJ-NIH/3T3 tumors. Our present experiments were conducted to find out whether the His321 gene has any effects on untransformed NIH/3T3 fibroblasts. Rhodamine-phalloidin staining revealed that two NIH/3T3 clones expressing His321 (NIH/λ2S-3 and NIH/λ2S-6) form organized actin stress fibers as two clones transfected with the vector alone (NIH/neo-3 and NIH/neo-5). We also found that in a liquid medium, NIH/λ2S-3 and NIH/λ2S-6 grew more slowly than NIH/neo-3 and NIH/neo-5 and that the doubling times of the former were about 10 h slower than those of the latter. To investigate the effects of His321 on the signal transduction pathway necessary for cell growth, we stimulated the cell lines by prostaglandin E1 (PGE1), a platelet-derived growth factor (PDGF), or the epidermal growth factor (EGF). Although stimulation by PGE1 increased intercellular cyclic AMP in R1 cells, it did not do so in NIH/λ2S-3 and NIH/λ2S-6 cells. On the other hand, stimulation by PDGF or EGF induced far less DNA synthesis in NIH/λ2S-3 and NIH/λ2S-6 than in NIH/neo-3 and NIH/neo5. These results suggest that through the effects on the signal transduction pathway of PDGF and/or EGF His321-mutated gelsolin inhibits the growth of NIH/3T3.  相似文献   

19.
Epidermal growth factor (EGF) and prostaglandins (PGs) have been implicated in the regulation of a number of developmental processes in the mammalian embryonic palate. Normal palatal ontogenesis is dependent on the presence and quite possibly on the interaction of various hormones and growth factors. The interaction between EGF and PGs in regulation of murine embryonic palate mesenchymal (MEPM) cell growth and differentiation was therefore investigated by monitoring the activity of ornithine decarboxylase (ODC), the principle and rate limiting enzyme of polyamine biosynthesis. ODC activity is tightly coupled to the proliferative and differentiative state of eukaryotic cells and therefore serves as a reliable indicator of such cellular functions. Treatment of confluent cultures of MEPM cells with EGF (1-50 ng/ml) resulted in a dose-related increase in ODC activity, while similar treatment with either PGE2 or PGF2 alpha (at concentrations up to 1 microM) did not elicit a dose-dependent increase in enzyme activity. Concurrent treatment of MEPM cells with EGF (20 ng/ml) and either PGE2 or PGF2 alpha (0.1-10000 nM) resulted in a marked prostaglandin dose-dependent induction of ODC activity, suggesting a strong cooperative interaction between these factors. ODC activity was maximal by 4 to 8 hr and could be completely inhibited by preincubation of the cells with actinomycin D or cycloheximide, indicating that de novo synthesis of RNA and protein is necessary for enzyme induction. Stimulation of ODC activity by EGF and PGE2 in these cells was not positively correlated with the level of cellular DNA synthesis but did result in a ninefold increase in the synthesis of extracellular glycosaminoglycans (GAGs), a key macromolecular family implicated in palatal morphogenesis. Stimulation of GAG synthesis was significantly inhibited by the administration of 5 mM DFMO (an irreversible inhibitor of ODC), indicating that the marked increase in GAG production was dependent, in part, on the induction of ODC activity by EGF and PGE2. Qualitative analysis of the palatal GAGs indicated that synthesis of several major classes of GAGs was stimulated. Collectively these data demonstrate a cooperative interaction between EGF and PGs in the induction of ODC activity. Such activity may serve to regulate the synthesis of GAGs, which are instrumental in mammalian palatal ontogenesis.  相似文献   

20.
During in vitro maturation of porcine cumulus-oocyte complexes (COCs), follicle-stimulating hormone (FSH) increases both prostaglandin E2 (PGE2) production and the expression levels of EGF-like factors. The ligands act on cumulus cells by the autocrine system due to their specific receptors, EP2, EP4, or EGF receptor. When each pathway is suppressed by inhibitors, complete cumulus expansion and oocyte maturation do not occur. In this study, we examined the relationship between both of these pathways in cumulus cells of porcine COCs. When COCs were cultured with FSH, Fshr mRNA expression was immediately decreased within 5 h, whereas Ptger2, Ptger4, and Ptgs2 expression levels were significantly increased in cumulus cells in the culture containing FSH for 5 or 10 h. The PTGS2 inhibitor NS398 significantly suppressed not only PGE2 secretion at any culture time point but also Areg, Ereg, and Tace/Adam17 expression in cumulus cells at 10 and 20 h but not at 1 or 5 h. During the early culture period, phosphorylation of MAPK3 and MAPK1 (MAPK3/1) was not affected by NS398; however, at 10 and 20 h, phosphorylation was suppressed by the drug. Furthermore, down-regulations of MAPK3/1 phosphorylation and expression of the target genes by NS398 was overcome by the addition of either PGE2 or EGF. FSH-induced cumulus expansion and meiotic progression to the MII stage were also suppressed by NS398, whereas these effects were also overcome by addition of either PGE2 or EGF. These results indicated that PGE2 is involved in the sustainable activation of MAPK3/1 in cumulus cells via the induction of EGF-like factor, which is required for cumulus expansion and meiotic maturation of porcine COCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号